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Introduction

Fourier integral operators have been defined by Hormander [5], and
developed extensively by himself and many other authors as a tool of
studying fundamental solutions of Cauchy problems of pseudo-differential
equations c)f hyperbolic type. However, if we deal with a Fourier integral
operator F' defined on a manifold, we see immediately that the expression
of F' contains usually a huge ambiguity. Phase functions and amplitude
functions do not have invariant meanings under the change of local
coordinate systems, and the rule of coordinate transformations is usually
a very complicated one. Therefore, there arise several difficulties to
define a topology, for instance, on the space .# ° of all Fourier integral
operators of order 0.

In [11], we gave a sort of global expression of Fourier integral
operators and in [12] we defined a “vicinity” R of the identity operator
in the space . ° such that 2 satisfies the properties of a topological
local group. Moreover we have shown in [11] that FeN can be ex-
pressed in an “almost” unique fashion, if we fix a C riemannian metric
on N. ' ’

Let us explain this situation at first. Let =2 " be the group of all
‘symplectic transformations of order one on T*N—{0}, where T*N is the
cotangent bundle a closed C~ riemannian manifold N. It is known that
4" is isomorphic to the group <=, ,(S*N) of all contact transformations
on the unit cosphere bundle S*N. Since =,(S*N) is a topological group
under the C*~ topology, we give the same topology on =Z through
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the above isomorphism. Let 1 be a neighborhood of the identity in
4.

Let C~(D*N) be the Fréchet space of all C-valued C~ functions on
the closed unit disk bundle D*N in T*N. Define a diffeomorphism
7: D*N—T*N by t(x; )= (x; (tan (7/2)|6])(8/|6])), where (x; ) indicates
the point in T*N such that the base point is x and #e T* (the fibre
of T*N at z), and D*N is the open disk bundle in T*N. We set
Se=7"1*C=(D*N). % is a Fréchet space through the identification
T.

Let C*(Nx N) be the Fréchet space of all C-valued C> functions on
NxN. For each KeC~(NxN), we define usually a smoothing operator
Ko with kernel K. A function y(x, y) € C*(Nx N) will be called a cut off
Junction of breadth e, if

(1) v, ¥)=0, v(x, y)=2(y, 2),

(ii) »(x, ¥)=0 if o(x, y)=(2/3)e, where p is the distance function.

(iii) v(z, y)=1 if p(x, y)=(1/3)e.

Usually, we fix a cut off function v with sufficiently small breadth ¢, say
e<7r,/50 where », is the injectivity radius of N.

Under these notations, one can define precisely a “vicinity” M. Let
I be a sufficiently small neighborhoods of the identity in 2§ and let
U, V, be sufficiently small neighborhoods of 1 in 3% and of 0 in
C>*(Nx N) respectively. A Fourier integral operator F' is said to be
contained in N=N(U, U,, V,) if and only if there are pell,ac U, and
Ke V, such that F' can be written in the form

(1) Fu@)=_at@; eulea; g+ Kou)a) ,

where d&=(1/v'2n)"d&, A - - - Ad¢, using an orthonormal coordinate system

(&, -+, &) on T* and v is a cut off function mentioned above. vu is
defined as follows (ef. [11]):

(2) Dy 7;)=§ Wy, 2)e-"u(z)dz, Y=z (i.e., Exp,Y=2),
N

where dz=(1/1"27)" X (volume element on N). vu can be regarded as a
sort of Fourier transform of wu.

The above expression (1) contains almost no ambiguity, for ¢ and
the asymptotic expansion of @ are uniquely determined by F. Thus the
ambiguity in the expression is contained only in the term of smoothing
operators. If 1, U, V, are chosen to be sufficiently small, then 2 turns
out to be a topological local group (cf. [12]).
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Though a smoothness structure on 3 will be defined in a forthcoming
paper, we call a one parameter family F, of operators in M a smooth
curve, if there are @,ell, a,e€ U,, K, V, which are smooth in the variable
t such that F, can be written in the form

(8)  Fa@=|_ ae; e )+ Eou)) .

Let G.#,° be the group generated by a vicinity R given by sufficiently
small 1, U,, V,. Although a manifold-structure on G.%;° has not yet
been defined, we shall define here the tangent space T.G.%;° of G.Z.°
at the identity as the space of all initial derivatives of smooth curves
in M starting at the identity. Namely, Pe T.G.,° if and only if there
is a smooth curve F, in RN such that F,=1TI and Pu=/(d/dt)|,_.F,u for every
u € C=(N). In this paper, we shall prove at first the following:

Proposition A. T,G.%#,°=1"—15", where "' is the space of all
pseudo-differential operators of order one with real principal symbols.

For every Pe &, there exists, therefore, a smooth curve F, in N
such that F,=1, (d/dt)|,..F,=1"—1P. For every G e G.%,°, it is easy to see
that t—~GF,G™'u is a C~ mapping of R into C*(N) for every u € C°(N).
(In fact, GF,G™ is again a smooth curve in R, but this fact will be shown
in a forthcoming paper.) We define Ad(G)P by

(4) Ad(G)Pu=_1__ 2

1 GF.G-'u=GPG'u .
V=1 dt “ “

t=0

Suppose G, is another smooth curve in N such that G,=1I and (d/dt) li=G:=
1V —1Q. Then, we see easily that

(5) [V =1Q, Vﬁp]uz%

B AdG )WV —1Pu

i
for every w e C=(N), where [A, B]=AB—BA. Note that it is well-known
that [V =17, v —1&)c1V—12%. Hence, we see that the tangent
space T,G.%#,° has a structure of a Lie algebra, which is closely related
to the group operations in G.#,° through (4) and (5). In this sense,

we call V=157 the Lie algebra of G.&;°.
For simplicity, we define a bracket product [, ] on as follows:

(6) [P, Q=—==[V'=1P, v'=1q] .
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Let &#~™ m=0, be the space of all pseudo-differential operators of order
—m, and -let F~=NF ™ be the space of all smoothing operators.
FP™ 0<m= oo, are Lie ideals of 7, and the factor space P~/ P~ (1=0)
is naturally isomorphic to the abelian Lie algebra C~(S*N)r—* of all C-
valued C> functions on T*N—{0} of positively homogeneous of degree —1.
Moreover, !/ ?° is naturally isomorphic to the Lie algebra Cg(S*N)r
of all real valued C~ functions on T*N—{0} of positively homogeneous
of degree 1, where the Lie algebra structure is given by the Poisson
bracket {,}. It is well-known that CZ(S*N)r is isomorphic to the
Lie algebra of all contact vector fields on the unit cosphere bundle
S*N. Therefore, &'/ #* can be regarded as an extension of I',(T'S*N)
(the Lie algebra of all contact vector fields on S*N) or &2/ F° by.the
abelian kernel C~(S*N) or F°/F~, i.e., we have the following exact
sequence:

(7) 0— FAFP 7 —— PP — P F—0
§ )

C=(S*N) Cx(S*Nyr=TI(TS*N) .

Hence, the above exact sequence defines a second cohomology class he
H*(I' (TS*N); C=(S*N)) (cf. [7]). The sequence (7) splits as Lie algebras
if and only if h=0. For simplicity we use the notation .,(X, &) instead
of (Exp, X; (d Exp;1)%8). (X, &) is regarded as a normal coordinate system
of T*N around z. Using this notation, we shall prove the following:

Theorem A. A representative 2-cocycle of & is given by w, such that
for f, g € CR(S*N)r

_ ey 9 (. 0
20 f, 9)(x; &) 302, (x; &) 0 X0 X¢

_ o*g . o
5208, oz

1o, +R O f 09 _ 39 of .
3 6iRlt Bia)@) (5L 2 et 2w o),

9%, )

S )

where R); is the curvature tensor on N.
Moreover, w, is a coboundary of @ which is given by

. _ azf ') if_ iz} aZf
268X, =g+ | | L+ Lol
Remark. The formula (11.39) written in [10] was false.
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The right hand side of the above defining equality of 28 can be
understood as (9/0&,)(Vf/0X*) in the following sense: Let ¢(¢) be a smooth
curve such that (d/dt)|...c(t)=0/0X*, and let &(t) be the parallel displace-
ment of ¢ along c¢(t). Define Vf/0X* by (d/dt)|.—.f(c(t); &t)). Then, we
have easily : S

Vf _of  of
(8) aX'— 9X* ' ag, {3@}5"'

Thus, taking the fiber derivative 0/02, we get the right hand side. The-
refore 23(f) is well-defined as a global function on T*N—{0}.

By the above result, the exact sequence (7) splits as Lie algebras,
and hence there is a subalgebra ® of & such that 8> . and @/ F 1=
F[F°. Hence, we have an exact sequence

(9) 00— FPFP P — @/ FrP— G/ F—0

i

FP|F°=I (TS*N) .

Since F~1/ P2 is abelian, the above sequence defines also a second
cohomology class h € H¥I' ,(TS*N); C=(S*N)r~") (cf. Losik [7]). However,
we have the following:

Theorem B. The above cohomology class % never vanishes on any
manifold N such that dim N=>2. -

Now, we denote by P, the pseudo—dlfferentlal operator with symbol
a, that is,

(10) Pa@)=|_ atz; oica; ea

Define a bilinear mapping v: CR(S*N)r x C=(N)—C>(N) by |
(1) Vo=V =1(Pu—V —1Pyyu) .

Since Cg(S*N)r is isomorphic to the Lie algebra of Z,8*N), V may be
understood as an invariant connection (cf. [9] p. 18 or [10] p. 117) on a
vector bundle & over Z,(S*N) with the fibre C=(N), though we do not
give the precise construction of &. Set

12 V=I1R(S, 0= (V¥ =V, = Vi,
and call it the curvature of V. By virtue on Jarcobi’s 1dent1ty on 1/ 1.7‘
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# satisfies the following Bianchi’s identity:
1s) S([v,, (g, h)]—Z{S, 9}, W)}=0,

where & means the cyclic summation with respect to} f, g, h. Moreover,
Theorem A shows that Z(f, g)e &°!, but Theorem B shows that the
curvature can never vanish.

§1. Lie algebra of G.%;°.

In this section, we shall prove Proposition A. Let F, be a smooth
curve in N written in the form (3) such that ¢,=id, a,=1 and K,=0.
We set at first

d = (e 2) 0
(14) yrap ¢,(x, ) X(x; £)= 35‘(a:, &) —— aX* +.:s,-(a:, 5)5.5,
where (X*, ---, X") is a normal chart around z, and (&, .-, &) is its

dual chart on T*. Since @, is assumed to be positively homogeneous of
order 1, we see that

r>0.

(15) { Xi(w; re)=%'(x; &)

Ex; re)=r8=; &)’
Remark that

(16) L | e ) =%

. 2| X, )

avu

+ 5, (x, E) (x &,

where ., (X, &)= (Exp, X; (d Exp.")1).

For more precise computations of the right hand members of (16),
we need several notations as follows: We have used a brief notation
..X instead of Exp, X. If YeT , and . ;Y=.,Z, then Y can be written
by using X and Z, which we shall denote by

amn Y=S(z; Z, X) (cf. §1. [11)]).
We shall use also the following normal coordinate expressions around x:
(zX; Y)=3(Xy ?) ’ (zX; 77)=,,(X, 5) ,

where (X, ¥) means (Exp, X; (d Exp,);Y), and (X, &)= (Exp, X
(d Exp;)%£) as was already mentioned. If Y is given by (17), then
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the normal coordinate expression of S will be denoted by S(x; Z, X).
Using these notations, we see

| ”’?;(w; $)=S v(z, 2)u(R)e=¢\dz, 2=,Z .
(18) _ | N )
vu(.z(X, &)= ng(,xX, z)u(z)e—-«elsw:z,xndz .

Therefore, we have

o auu . — T (e 0 —V=1E| 2D

bl af, (x’ 5) :5_,(07, 5) SNv(w’ Z)u(Z)a&,e dz ,

: 0 ~ _( ye 0¥ —vTie12)
(19) JuBo| s, o) SNae aX*’ _u(a)e dz

‘ Y | 1§ % <e 95 (a; 7, 0)> POy, Z)u(z)dz .
Remark that 85//6X'(x; 0, 0)= —oi. So, we set
(20) _"_S’-(x- Z, 0)+ 8] =Ti(x; Z)Z*
aXl ’ » l 123 ’ ’
and we obtain the following:
d ~ .
@) | |, i o
—_— i
_S ;S @; E) 6X‘

— S[__& T + %' Tk ] —VERAD (g, 2)u(2)dzdE

u(z)e‘“:l<f'z>dz+ 174 :_lgrﬁ‘(x; £)ewu(e; £)de

—ST, 5 5;'(96; gvu(z; £)dé .

x

Since 9v/6X‘=0 for sufficiently small X, we see that the first term of

the right hand side is a smoothing operator. We denote this operator
by K,ou. Set

(22) bias &)=~ |[ 2@ &+ 7E+7)Thtas 2)

+E(x; £+ ) Thias Z)]e—“mdzcm ,

and we get
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(23) 2| s e)a

=1/:TS' a3 e e+ blw; OPuca; ag
_S S Evu(e; Hdé+ (Keou)()

and hence

ey 2| (Fa@

i

:]/:S &l(x, 5)5,vu(x, 5)55

) &) ]vu(x, e)d&

+§m[-i”w—|’= ai@; &)+b(@; §—25

) K,+K,)ou>(w) :

The first term (resp. second term) is a pseudo-differential operator .of
order 1 (resp. 0), and the last term is a smoothing operator. Hence, we
get (d/dt)|,_F, eV —17.

Conversely, let Pe1” =15, and let V' —1a, be the principal symbol
of P. a,(x; ¢) is real valued and positively homogeneous of degree 1. By
the definition of pseudo-differential operators, there are d(x; £)e 3% and
KeC>(NxN) such that

Pu@=|_/=Te+apule; Hot+(Kou)a)

(Warning: @ and K are not necessarily unique, but the asymptotic ex-
pansion of @ is uniquely determined by P.) Now, set

da 0 l 0 l
.3 =—i(x; &) (X, )L
@ =52 557|537 | B K O
Then, X is a Hamiltonian vector field on T*N—{0} satisfying (15); More.’-'
over, X¥¢;=(0a,/0¢;)¢;=a,. % generates a one parameter symplectic trans-
formation group @, 2. Also using X, we define b(x; &) by (22), and
K, by the first term of (21). Now, set

(Fou)(z)= S (1+ta th+ ‘;‘i )uu@,(x; £)de + (LK —tK)u)(@) .

Z
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Then the same computation as in (21)~(24) leads us to the conclusion
(d/dt)|,—oF,=P. This completes the proof of Proposition A. ‘
It is well-known that 1 —157" is a Lie algebra under the usual
commutator bracket. ‘ .

REMARK. According to the statement of Theorem A, the exact
sequence (7) splits as Lie algebras. However this splitting does not
necessarily imply the existence of a splitting of the following exact
sequence:

(25) 1—G@FIGF ' — GF|GF T — Z,(S*N)—1,

where G~ }(1=0) be the group of all invertible operators written in
the form I+P, PeZ”-'. If an infinite dimensional analogue of the
results of [4] or [18] would hold in this case, then we should see that
(25) splits as groups or that =,(S*N) is not simply connected.

§2. Local cohomology group of the Lie algebra of contact vector
fields.

It is easy to see that the cohomology groups related to the exact
sequence (7) or (9) can be defined also locally or formally at an arbitrarily
fixed point z in N. So, at first, in this section we shall deal with the
cohomology group of the Lie algebra of formal symplectic vector fields.

Let &=C[a', ---, ", &, -+, &) be the ring of all formal power series
of complex coefficients with variables «!, ---, ", &, -, &,, and let @' be
the subalgebra of @ consisting of all polynomials of &', ---, " &, ---, &,.
® and @ are Lie algebras under the Poisson bracket {,} defined as
follows:

{f, 9}=0"f0.9—0°gd.f ,

where 6°=0/0¢;, 0;=0/0x*. We denote by C%®) (resp. C®’)) the space of
all g-linear skew-symmetric mapping of X - - - X @ into @ (resp. &' X - - - X @'
into @’). We make also the convention C%(@)=@®, C(@')=9®'. An element
¢ of CY®) will be called a g-cochain. For g-cochain ¢ € CY®) (resp. C*(2")),
we define dc € C**(®) (resp. C**(@")) by

QoS o= 3y (=D Fy oSy -y Foy v, Fad)
(26) o +§;(~1)i+jc({ﬁ, fj}7 S "':fi, ) A.ir Ty fq+1)’ g=1
do(f)={e, f}, ¢ C@) (resp. C(@) . B
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It is well-known that d*=0, and hence the above system {C*(®), d}
defines a cohomology group, which will be denoted by H*(®). Obviously,
H(@)=C and it is known in [1], [6] that H!@)=C. The non-trivial first
cocycle is a derivation §, given by

(27) 0 f)=§;0"f +x'0. f —2f .
We shall prove at first the following:
PROPOSITION 2.1. The second cohomology group H*®) is non-trivial.

REMARK. The above result has been known in [3], [14] by using
deformation theories. However, an explicit expression of non-trivial 2-
cocycle is not directly given. Here, we have to know an explicit expres-
sion. Therefore what we really want is Lemma 2.4 stated below.

Although the above fact will be proved in several lemmas below, we
should remark first of all that H*®) corresponds to the isomorphism
classes of the extensions of the Lie algebra (@, {,}) with the abelian
kernel @. Therefore, if we have an extension of (@,{,}), then we can
find at least a second cocycle.

Now, for fe® we denote by P, the pseudo-differential operator
with the symbol f(x; &), i.e.,

(28) P =|_| 7@ perem gy .

R™ JR"

Then, by the well-known product formula (cf. [8]), we see that the
commutator [V'—1P,, v'—1P,), f, g € @' is also a pseudo-differential operator
V' =1P,, he @', and h is given as follows:

(29) h=1, 01+ 5(Ae)  5ols )
where

c(f, 9)=0""1f0, .0 —0" g, ... f
and
o' it=0%- -9, 0;....;= 0,0y, .
Obviously, ¢, can be extended to a 2-cochain, i.e., ¢, € C¥(®).

LEMMA 2.2. ¢, is a 2-cocycle. However c, i3 a coboundary of o,
defined by 0,(f)= —0if where 0%=0%5,.
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PROOF. Since the commutator bracket of pseudo-differential operators
satisfies Jacobi’s identity, ¢, has to be a 2-cocycle. However, we see
c.(f, 9)=(dd)(f, 9) by a direct computation.

Now, we set V,=V —1(P;+ P =;,5.) for fed’, and set
, VI=1Z(f, 9)=[Y, V1=V, f,9€9,
and set Z(f, 9)=P,,

—_ 1 1 LI )
h—aﬁs(f, g)+‘—1—!—94(f, 9)+ ’
where 2,’s are the 2k-homogeneous terms with respect to the order of

differentiations. By a direct computation we have the following:

LEMMA 2.3. Q.(f, 9) is given by
S, 9)=—c,(f, g)+%cz(f, ‘51<g)>+%c2<al<f>, g)——g—{«x(f), 5:()} -

Moreover, 2, can be extended to a 2-cocycle in C*®).

PrROOF. We have only to check the second statement. By Jacobi’s
identity, £, must be a 2-cocycle in C*®’). However, this 2-cochain can
be obviously extended to a cochain in C*®).

LEMMA 2.4. 2, can not be a coboundary.

PROOF. Assume for a while that 2,(f, g)=dw(f, g) by some @ € CX®).
Then, the above equality should hold for any homogeneous polynomials
of degree 3. Moreover, 2,(f, 9)(0)=dw(f, g)(0). Note that dw(f, g)(0)=
—o{f, 9H(0) for such polynomials.

Now, remark that {(&)°, (¢)%}= {«'(£), 8(%")%.} =9(&)*(«")*. Hence
2:((8)% (2)%)(0) must equal 2,(x'(£,)? 3(x')%,)(0). However, by direct com-
putation, we see that

2,(8)°, (@)°) = —co((£)% (')*)=—36 ,
but
2y(x*(81)?, 3(:::‘)’51)::2—9{31(3:‘(51)2), 0,((=*)*¢1)}

= —18{g,, #'}=—18 .

This completes the proof of Proposition 2.1 also.
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Let @, be the subring of @ consisting of all f such that the constant
term and the linear term vanish. For C-valued skew-symmetric g-linear
form ¢ on @,X% ---xX®P,, we define d¢ as follows:

~ ~

da(.flr ) fq+1):%(_1)¢+j6({fh fi}’ .fl’ "'7fiy "':fiy ) fq+1) .

Since d*=0, the above system defines a cohomology group H*(®,, C). It
is not hard to see that the linear mapping 7c¢ defined by

(ﬂc)(.fl: Tty fq)=c(.f1y Tty fq)(o): cE Cq(@)

induces a homomorphism r* of H*(®) into H *(@,, C). The argument in
the proof of the above lemma shows also the following:

COROLLARY 2.5. H¥®,, C)+{0} and the mapping n*: HY(®)— H®D,, C)
18 not trivial.

Now, we shall apply the above results to the local cohomology group
of the Lie algebra of contact vector fields. Let U be a neighborhood of
the origin 0 in R*. We fix a linear coordinate system («', :---, 2*) on U.
Denote R"—{0} by R:. We fix on R% the dual coodinate system (&, ---, &,)
of («*, ---,2"). Let S* be the unit ball in R} and set S}=S*xU. By
C=(S¥)r'(resp. C3(S%)r') we denote the space of all C (resp. R) valued
functions on U X R%, positively homogeneous of degree I. It is well-known
that C=(S¥)r is a Lie algebra under the Poisson bracket, and Cz(S¥)r is
its real subalgebra, which is isomorphic to the Lie algebra of contact
vector fields on S¥%.

For every f(x; &) e C>(S¥)r' such that supp fCUX R}, we define a
pseudo-differential operator P, by (28). Remark also that (29) and Lemmas
2.2,2.3 hold also in our situation. Hence, we have a second cocycle
2.: COI)SHr < Cg(SE)r — Cx(S¥)r~*, defined by the same equality as in
Lemma 2.3. -

In the last part of this section, we shall prove the following:

PROPOSITION 2.6. £2, %8 mot a coboundary, tf n=2. FEspecially,
H*(CR(S§)r, CR(SH)r—)=+{0}.

PrOOF. Suppose for a while that 2,=dw, i.e.,

2.(f, 9)={/f, @@} —{9, o(N}—w{/, 9}) .

Let p» be a point in Ux R% such that z(p)=0,1<:i<n, and ¢&;(»)=0,1=
i=n-—1, &,(p)=1. (Recall the assumption n=2.) The above equality
should hold at ».
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Let r=1"32, (&) If we set f=(1/r)2'(8)* 9= (@)%, then {f, w(g)}(p)=
{9, @(NH}p)=0, and

U, =@y ey —2@e) .
r r

On the other hand, set f'=7"%g,)", g’ =r(2')’, and we see that {f’, w(g"}p)=
{9', o(fH}0)=0, and

(', =2 @) —Swyre) .
r r

Thus, {f’, 9'}={3f, g} and hence 32,(f, 9)(p) must equal 2,(f’, ¢')(p). How-
ever by direct computations, we see that

32,(f, g)(p)= ——3~%{31(f), 3.(0)}(p)= —18 ,

A", 9Y®)= —eF, OB +-30ls", 36w =—36 .

REMARK. Cochains in this section are not assumed to have locality,
continuity or differentiability. So, the cohomology in this section is more
general than Losik cohomology group.

§3. Changing riemannian metrics.

A pseudo-differential operator 1—1Pe1V —1&”' on a riemannian
manifold N is written in the form

(30) (V=IP@) =V 1| ale; ue; g+ (Kou)(a) .

The above expression contains less ambiguity than any other expression
whenever we fix a riemannian metric on N. The asymptotic expansion
a;+ay+a_+--- of a is determined uniquely by P. However, if we
change the riemannian metric, then the above asymptotic expansion
changes very seriously. In this section, we shall compute how it will
be changed. Remark first of all that all computations in this section can
applied to the operators defined locally on an open subset U in N.

Now, let g, g be two riemannian metrics on N. The exponential
mappings with respect to ¢, g will be denoted by ., X, .. Y, respectively.
We define .,(Y, 2), ..(Y, &) etc. by the same manner as .. (X, Z), ..(X, &)
ete. respectively.

We fix a linear coordinate system on the tangent space 7T, and its
dual coordinate system on the cotangent space T*. Using these coordinate
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systems Ye T, £ T* are expressed by Y=(Y*, ---, Y"), 6=(&, * -, &)
respectively. Through the exponential mapping .,: T,— N, the above
linear coordinate system can be regarded as a local coordinate system
around 2. Thus that a point ze N has a local coordinate (2, ---, 2")
implies z2=.,Y and z*=Y*% 1<41<n. Riemannian metrics g, ¢§ will be ex-
pressed ¢.,(2), §:;(z) by using the above local coordinate system. We
denote by |g|(2), |g]|(2) the determinant of g,;(z), §.;(z), respectively.

Since the Fourier transform ;z't(y; 7)) defined in (2) depends on riemah-

nian metrics g, g, we indicate these by 23;4,', 1374,", respectively. Pseudo-
differential operators written in the form (30) depend of course on g, g.
So, we denote these by P,u, P,u, where the suffix a indicates the symbol
a(x; £). Since we are concerned only with the asymptotic expansion of
a, we need not to care about the breadth of the cut off function v and
the smoothing operator Ko. Thus, we set as follows:

(Pay@)=|_a(z; O (@; ¢,
(31) =
(Pow)(x)= ST‘a(w; vu'(x; &)d¢ ,

where d'¢, ¢°¢ are volume elements on T'F given by

. 1

d d 1 ’/\d n
) =Y l/lgl( jeaN ¢

dE = L_gen---Ade, .

V' 2r)* Vg ()

Now, assume P,=P; modulos moothing operators. Then, a(x; &)
should be written by using a(x; £). In what follows, we shall compute
out this relation up to the order 0.

Set

————V[g[R)dZA - - - Ad2*, °2=——=VT@[(@)d2'A - - - Ad2" .

1/(2 )m Venr (2 B

Recall that

w) (z; $)=S e~ 10w, 2)u(2)d’z, . X=2,
(33) _ "
.l(vu") (x; &)= SNe_“e"””(w, 2)u(2)d’z, .. Y =2

Since z=.,X=.,Y, X depends smoothly on Y whenever Y is sufficiently
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close to 0. We denote this function by
(34) | X=0'(;Y) .
As O (x; 0)=0, we may set
(35) ?(;Y)=0(2; Y)Y,
where‘ @ (x;Y): T,— T, is a linear mapping, which will be written as
(36) A Xi=0i(x; Y)Y*

by using the above linear coordinate system. Using these notations, we
see Y

Gw)a; 9= VTG @e (e, u@az, - ¥=%,

where |§|(2)/|d](2) is understood as a function of (x; Y). Set 7=£®.(x, Y)
. and we get

(P;%)(x)=s S a(e; 1, Y)e “'Vu(x, 2)u(z)d’zdy, z=.Y,
T JN

%

where
5 (e — e n® (V)L 1 .
- ia(x, 7, V=0 18, Y) g ol Y)
H; Y)=VTgI@I@N8I@I51R) , 2=-Y .
Since

d(w; 7, Y)=ST;STad(w; N, Z)e - 0¢°24°C
we get easily
(Pou)(x)= SSSS&(Q:; N, Z)e < Z-D=0y(g 2)u(z)d’ 48 Cd 28N
= SS“&'(x; V' +8&, Z)e D" Za Ce " Vy(, z)u(z)d’zd’ " .
Thus, we obtain
(38) a(w; n)=\(aw; 4+, De“Pa 2T

modulo rapidly decreasing functions in 7. By Taylor’s theorem, we see
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a(x; N+, Z)~>, —-05d(x; 1, Z)¢*
lalzo !

and hence

_1 9
v =162

Now, we want to compute the right hand side of (39) more Qrecisely
by using differential geometrical method. So, let { ﬁc} , {;}c} be the

Christoffel symbols with respect to ¢, g respectively. Since (Y*, ---, Y")
is a normal coordinate system at xe€ N with respect to g, we have

"k}n(x)=0. Then, using the well-known fact (9/92") lOgl/|g|={£'l} (cf.
[2] p. 18), we get

(39) a(@; 1)~ -(Ds@@; 7, 0), Di=
lal20 (X {

LEMMA 3.1. The Taylor éa:pansion of H(xz; Y) of (87) i3 given by

i ol o-{a] v af o e

PrROOF. Take the Taylor series of logl” |{]|(x)/|g|(w)+logl/ g1, Y)—
logV 9(-, Y).

Note that (tY?, ---,tY") is a geodesic with respect to g. Let (Y'(?),
-, Y*(t)) be a geodesic with respect to ¢ with the initial vector X=
(X4 ---, X*. Then

@ a * a ‘o —
dth (t)+§jk} Y’(t) Y #&)=0, it ton(t)—X .
Hence

Yit)= tX‘——i{ k} (a:)X"X"——F‘,,,(x)X’X"X‘
where

v 1 1 '_ 1) (m)’
Fiu=t @{ {ak} z{mj} {m} ] (ct. [2] p. 52) .

Therefore, putting t=1, we get the coordinate expression of .,: T,— N.
Namely, setting Y*=(,X)* (¢.-th component), we see
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(40) Yi= Xt { }( )X’X"———-l-l"kz(x)X’X"X‘

~ 3 i

Therefore, computing the inverted Taylor series, we obtain the coordinate
expression of (34):

(41) Xi= Y*+—21,—{ }(x)Y’Y"

1 1 t) ki
37 E@jkl {:{jk}.z(x)—i- {9 } (x){ } (W)JY’Y Y+

Hence, we gét the following:
LEMMA 3.2.

() B D =45 { ol @vagrgeal {4+ T vy

(ii) (@(w Y))i= '!__l_{j » } () Y*Y?

3 k
{%5&}{3}( 9 o] Z}O(w)"%{ o) o) @ [y
i asay 1A wr-g 1al) i) Jorr
(5l 1] +Tslaef {af sl ff Jorr s
() X‘/aY°——3*+{ak}.(x)X"+2—1! %Ha@k} +{k"l} +{l2}

lot) laf * ) L] 2l i JOR T

Now, recall (37) and (39). Using Lemmas 3.1-2, we have the following:

PropoSITION 3.38. Suppose P,=P; modulo the operators of order — .
Then

(x; 1)+ lower o'rde'r terms .

o D=atw; N—Ag 0| o] @i
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§4. Second cocycles on a closed riemannian manifold.

Let N be a closed manifold with a riemannian metric §. At the
first step in this section, we shall remark the following: '

LEMMA 4.1. For each point x in a riemannian manifold (N, g),
there 18 a coordinate qwighborhood U with a local coordinate system

(¥, -+, y") such that {z?l}'zo.

PrROOF. Let V'|g|(z)dz'A-:-Adz" be the volume element of (N, g)
Since SL(n)-structure is always integrable, there exists a local coordinate

system ¢, ---, y* such that V'[g|(y)=1. This implies {&}EO by virtue
of (2/ays)log VTETW)=1{33} -

At each point we choose by the above lemma a coordinate peighborhood
U with a local coordinate system (3!, ---, ¥™) such that {?}c} =0 on U,

and let (%, ---, ,) be its dual coordinate system. Define a riemannian
metric § on U by ds*=3, (dy*)* so that (%', ---, y™) is a normal coordinate
system with respect to §. Now, note that the computations in the previous

section are still valid on a coordinate neighborhood U. Remark also ., Y=

(x*+Y? ---, 2"+ Y") where («', ---, 2*) is the coordinate of x and {;k} =0.

Let d(x; 7) be a smooth function on UX R} such that supp dc UXx
R and @ is of polynomial growth. Since ..Y=2+ Y=y, the pseudo-
differential operator P> can be written by

Pru@=\ | _a@ neve, yu@aydy .

Now, let P, P, be pseudo-differential operators of order 1 such that
supp a, supp b T*U—{0}. In this section, we shall compute first of all
the bracket product [P;, P,] up to the order 0 (cf. (6)). By Proposition 3.3,
we see that P,=P; such that

42) aw; N=a; D+ @) —Ir @+ -
where

43 o

“ (@)= 77‘{ }amam

Thus, we see that [P,, P;]=Pj such that
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4  h={q b}+‘/2 1\({a, b))
VT

—— 02((1 b) +{a, X(d)} +{N\o(a), b} — 7\40({“ b})]

+lower order terms.

If we set [P,, P,]=P,, then

(45) h={a, b}+1/ —-1&)5((1,_ b)+lower order terms ,
where '
(46) | —2,(a, b)=c,(a, b)—d(a, b) .

Remark that w,(a, b) must be the cocycle given by the exact sequenéé
(7) in the introduction. However, w,(a, b) in (46) is written by using the
local coordinate system (%', ---, ¥, %, -+, %.). So, we shall rewrite this
by using normal coordinate systems.

LEMMA 4.2.

0> .
m'm”( «X, 7))

2%b 0%b 1) 0%b 1) ob (k

=avor & D o0y {m} Tt ey {ky} T 5y U
b (e’ (B]° 1 ab[(B

s ) ™ log) 8w ) et

a2 2

Proof is little complicated but a direct computation by using (40)
and the relation yi=x'+Y".
Compute (c,(a, b) —d\(a, b))(x; 7). Then, we have the following:‘

)’ L)y ...
3”&3,,-1) + ai’.a {. .} ﬂlakb_ {_ .} a“aazb
(] (¥} :

]

L) )’
oY ow s
@) ) 1k l
—a,,-aa‘fb—rj,{ } akaa“b—i—a,a{

1

1)’ l
_ ka5'b — 423'b
7]; {’ik} a,aa b 77; {jk} a,,aa ’

Lo
1J
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where 0°*=0%/08,08,, 0¥ =0%/0y’0s, etc. Therefore, using the above lemma,
we have

d’a 0’ - % 9
b(.. (X, 7)) — -
3%577,- aX‘aX’ X=0 ( ( 7])) 37],37], 3X‘3X’

—(¢cx(a, b) —dN(a, b))(x; 7)

—luk_”k 8) B._B- 8 ) (a)"
=3 (070033 “)ij}f{ki},,- 2{z‘j}.k+{aj} {zk}

o2

Note that the inside of the bracket [ ] on the right hand side of the
above equality is equal to

Lo L)~ o) i
lal o el Bl -t

Hence, we have the following:

x=oa’('z(X’ 77))

+

LEMMA 4.3. c¢,(a, b)—d\(a, b) is given by

o’a 9’ o°b a’
b(.. (X —
0n.0m; 0X*'0X? | x=0 Co(X, 7)) on0m; X0 X?

1/ o%a b b da
BE)} - R LR, .
3 <a77¢37],- a7]k, 377¢67],- avk)[ ikt t:k]yiﬁ

Remark this proves the first half of Theorem A, for by a suitable par-
tition of unity the equality in the above lemma is still valid for any
functions a, b on T*N—{0}, whenever they are positively homogeneous
of degree one.

Now, recall that c,(a, b)=dé,(a, b) (cf. Lemma 2.2). Therefore, c,(a, b)—
dxl(a, b)=d(6,—N\)(a, b). Note that

a(-.(X, 7))

X=0

(48) (0:—No)(@)(@; )= —dia(x; 7)—7) {yzc} o a(x; ) .

LEMMA 4.4. a'§d+77,‘{j7}c} .akka 18 a globally defined fumction on T*N—
{0}. '

PROOF. For a(x; ), define 9,a by
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(49) @0)(@; 7)(©)=lim {a(; 7+58) —a(@; 1)} -

0,0 is a fiber preserving mapping of T*N—{0} into TN such that
(50) (0,0)(z; )= (3%a)(@; )0, .

Let y(t)=(y'(¢), ---, y™(t)) be a smooth curve in U such that y(0)=w, ahd
let 7(t) be the parallel displacement of 7 along the curve y(f). Suppose
W= (d/dt)l,=oy(t). We define (Va,a)(x; 7)) (W) by

(51) (Vo,a)(x; 77)(W)=—Z—t t=0(3,,a)(y(t); 7(t)) (covariant derivative) .

Then, we see easily that

. .

)
Z] o*a(zx; 7])+8“a{lj} 7],,) Wio, .

Vo,a(x; 7)= («%‘-a(x; 7+ { .
ik

Thus, Vod,a is a fiber preserving mapping of T*N—{0} into T*NQTN,
hence if one write Va,a(x; 7)=Aj0’®0;, then A! is a globally defined

function on T*N—{0}. Therefore, we have that dia+ { ?:’7} da+ad*a {Z} '/
is a globally defined function. Recall that { 73‘7} =0 by the assumption of

a local coordinate system (3!, - -, ¥"). Then, we get the desired result.
Set 2,8(a)=a:a+{£.}°7;,,aﬁa. Then, we see wa, b)=ds(a, b). Hence

the cocycle @, is in fact a coboundary of 3. Since 23 is given by V5%,
one can write this by using arbitrary local coordinate system, which is
obviously given as follows:

28(a)( X, -+ X" &y, ¢,y £4)
\ .\ . ,
~5xi lad 35l Snan
This completes the proof of Theorem A.
Now, ‘set

(62) V.=V —1(P;—V/=1P;,) (eV—=1&). |
Since“[[P:,, P;]=P;a_,,,+l/_—_TP,,',u(a,,,)¥i} -+, and w,=dg, we see easiiy tllaat”‘_

VTigp' (e, b)=[V., Vi]—Viuu € P . |
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By Jacobi’s identity in V' —17!, we see that .22'(a, b) satisfies the fol-
lowing Bianchi’s identity:

&(Vv., Z#'®, c)l— 2 ({a, b}, ¢))=0.
Let 2i(a, b)+2.(a, b)+ - - be the asymptotic expansion of the symbol of
F#'(a, b), 2i(a, b) e C*(S*N)r—*-». Then, by Bianchi’s identity, 2; must
be a 2-cocycle.
LEMMA 4.5. The cohomology class of 2; in H¥CZ(S*N)r, C=(S*N)r™)

18 independent of the choice of riemannian metric g, whenever the volume
element of § remains fixed.

Proor. Let ¢ be another riemannian metric such that |g|(z)=|g((2).
We use the same notations as in §3, and set

P;=P;+P;o(a)+P;_1(a)+ Tty

where

1 1) 8%
To(@)®; 7= —g 7= {]k} 5—1};577—"(%, 7).
Since B(a) depends on the choice of riemannian metric, we indicate this
by B'(a) or B’(a). Recall (52), and hence we have

(53) V;=V;+P:J'-Tlfo(a)+ﬁ‘(a)-—ﬁ°(a))+P._1(¢)+ ttt .

However, 1V —1v,(a) +8(a)— B'(a)=0 by the asgumed property of g, g. It
follows easily that 2.(a, 1)) is cohomologus to 2;(a, b).
Now, we consider 2;(a, b) on a coordinate pejghborhood U with a

local coordinate system (¢', ---, ¥*) such that 'l =0 (cf. Lemma 4.1).
i 1k
Let g=3 (dy*)*. Then, obviously {gk} =0 on U.

LEMMA 4.6. If we restrict 2, on U, then §;|U 18 cohomologus to 2,
given in Lemma 2.3.

PROOF. By the above lemma, we see that 2;|U is cohomo}ogus to
2;|U. However, it is easy to see that 2;|U=2,, because of {fk} =0.

PROOF OF THEOREM B. Suppose 2;(a, b)=dw(a,b). Since we are
considering Losik cohomology class, we may assume that @ is a linear
differential operator. Let U be an open coordinate neighborhood such as
in the above lemma. .Then, 2;(a, b)|U= 2;a|U, b|U), and w(a)|U=
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w(a|U). Therefore 2i(a|U, b|U)=dw(a|U, b|U). However, by Lemma 4.6
this contradicts the result of Proposition 2.6.
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