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Introduction

Our concern is a quasilinear hyperbolic equation of the form
(1) wa@, —a( | uty, Oldy)duta, t)=1e, 1)

for (x,t)e 2x[0, T], 2cR", which arises in mathematical physics as a
limit case of nonlinear vibration of an elastic string (cf. Nishida [17]).

In this paper we treat the initial-boundary value problem with null
Dirichlet condition (in this case 2 is a bounded domain with smooth
boundary 4£2) and also the Cauchy problem for the equation of type (1)
where a(-) is defined on [0, ), locally Lipschitz continuous and bounded
from below by a positive constant. In many previous works a(:) has
been assumed to be in C'-class. Our results are obtained under a less
restrictive condition on the regularity of a(-) that is merely locally
Lipschitz continuous.

Pohozaev showed in [21] that the mixed problem above mentioned
has a unique global solution u € C*([0, T']; H*(2)) with u,, being a generaliz-
ed derivative under some qualitative conditions on smoothness for the
data. Actually, if £ is analytie, Pohozaev’s conditions say equivalently
that v

(i) the initial data are real analytic in 2

(ii) the forcing term f is continuous in ¢ with values in the space

of real analytic functions
satisfying the appropriate compatibility conditions (cf. Lions [14], Lions
and Magenes [15]).

Our main purpose is to show existence and uniqueness of a classical
solution to the problem which values for each ¢ in some function space
P when the initial data belong to P and the forcing term f to C([0, T1; P).
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P is the space lying between the analytic class and N.,>: G,, where G, is
the Gevrey class of order s, which will be specified later. This generalizes
Pohozaev’s results.

For the Cauchy problem, Perla [19] proved existence and uniqueness
of a local classical solution to the equation (1). Also Yamada [23] obtained
a unique global solution to (1) in Ni-, C‘([0, T']; H*) with f=0 under the
more restricted data than Perla’s, which are rather similar to Pohozaev’s
one. Here we shall show global existence of a unique solution to (1)
under some conditions on the data weaker than Yamada’s but stronger
than Perla’s.

Finally we mention about the related works by the other authors.
Dickey [6, 9] and Revera [22] proved the local existence and uniqueness
theorem for the mixed or the Cauchy problem. See also Greenberg and
Hu [10]. Dickey [7, 8], Medeiros [16] Perla [20], Brito [4], Yamada [24],
Nishihara [20] and others investigated the equation (1) with such an
additional term as 4*x or Au, and proved the global existence and
uniqueness of solutions of some regularity to the mixed or the Cauchy
problem.

§1. Formulation of the problem and the main theorem.

Let H be a real, separable Hilbert space with norm ||-|| and scalar
product (-, -) and also A be a linear operator with a dense domain D(A)
in H.

We consider a differential equation

(2) %u(t)+a(nA“=u<t)n=)Au<t> =ft) in H

with the ‘boundary’ condition
(8) u(t)e D(A) for any te[0, T]

and the initial conditions
(4) u(0)=u, € D(A*) , %(0)=u1 €EH,

where T>0 and feC([0, T]; H) are given.
We assume the followings on a(-) and A:

A is a self-adjoint, positive definite operator with discrete spectrum

H1
(H1) and A~ is compact.
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a(8) is a real-valued, locally Lipschitz continuous defined on s=0,

H2
(H2) and that a(s)=a, for some constant a,>0.

The condition (H1) implies that A has an infinite sequence of eigenvalues
{\i} with

O<MS - SM=-++, limMj=oo

j—roo

and that there exists a complete orthonormal system (C.O.N.S.) {w;} in
H, each w; being an eigenvector corresponding to A%

We use the method of Fourier series expansion with respect to the
C.O.N.S. {w;}. Let u;t), =1, 2, ---, be the Fourier coefficient for u(t) € H.
Then we have an expansion:

oo o 1/2
=3 unw, with |uoll=(Eur) .
Let u(t) be in D(A*?), then there holds
Aty =3 Mutw;  with HA"’Zu(t)H=(§‘,1 7\.§ku,(t)2)1/2.

Now let M()\) be a nonnegative continuous function, strictly increasing,
defined on A=0, such that M(0)=0 and the mapping » — M(\'??) is convex.
Let F(\)=v"M(») /». Then to the function F there corresponds a linear
operator F(AY?) in H, defined by

F(A™yu(t) =3 FOv)uy(tyw,;
for u(t)=>.7, u(t)w; provided that

) 1/2
IF )| = (F Forue?)
( 5 ) o_ol 1/2
=(E MO 7)<+ .
The domain of F(A*?) is the set of all functions w(t)=2%,wu;(t)w;e H
satisfying the condition (5).
We assume further on the data u, u, and f that
F(AY)Au,e H , F(AV)AYy, e H and
D1) T
[ I anfi)ds < + oo
0

and
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(D2) t—F(AY®)f(t) is continuous from [0, T'] to H.
EXAMPLE. For M(\)=A\**% so that F(A)=\*, we have F(AY*) = A",

THEOREM 1. Under the assumptions (H1), (H2), (D1) and (D2), there
exist a positive constant Ty and a unique solution u(t) on [0, T.] to the
problem (2), (3) and (4) such that

u € C¥([0, Ty]; H)
and
F(A™Au , FAY™MA™ , FA™»u" eC(0, T.]; H),

where '=d/dt.

REMARK 1. The constant T, depends on the function M and so on
F. However, if

(6)

S“ ds — o
e s(1+d,M7(s))
for some positive constants ¢ and d,, then we can take T,=T, so that

in this case our solution is a global one. The condition (6) holds for
M(\)=O0(exp(dr/log \)), O(exp(dn?)), p=1, as A— o and etec..

§2. Approximate equations and a priori estimates.

We first define an approximation a,(-) to a(:) for small ¢>0. Since
a(-) is absolutely continuous by (H2), there exists the derivative a’(s) for
a.a. =0, which is finite, locally integrable and has the representation

a(s)=a(0)+ S. a'(z)dz .
0
Also for each constant K>0 there is a constant L>0 such that

ess. sup{la’(s)|; 0=s< K}< L, which implies a’ € L{3.(0, ). We shall fix a
constant K so that '

(1) Kz@e"fa)( ] +adl 4w+ Ll A+ | 1At

where &(s):S' a(t)dr. We note K=|A"u,|>. Let
0

0 s=K
p(s)=4a'(s) 0<s<K
L0 s=0
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and

p.<s>=p.*p(s>=§°°

_ O(s—7)p(r)dr
where p, is the’ Friedrichs mollifier. Thus we define a.(-) by
(8) a.(s)=a(0)+ So p(T)dr .

For the properties of a,(:) we have

LEMMA 1. Let K and a.-) be defined above. Then a/(:) i8 in
C>(— o, =) and there is a positive constant &, such that for any & with
0<e=gs,

(9) a(8)<a(s)+a,/2 for sel0, K]
(10) _ a(8)=a,/2 for se€l0, )
and

(11) max |a.(8)| < ess. sup la’(s)|=L .

PROOF. Since it holds that
max|a,(s) —a(s)| =max | S (p.(7)—a’(7))dz
0S8ssK 0sssK | Jo
=\ le.+p@—p@|de—0 as e—0,
0

both (9) and (10) for s<K are valid for ¢>0 sufficiently small because
a(s)=a,. When s>K, '

a(=a(K)+| pio)dr

implies (10). Also we have (11) as follows:

max |a.(s)| =max l S‘ p(s— r)p,(z')drl
0sesK 0sssK —t

<ess. sup|p(s)|=ess. supla’(s)|=L .
—s<8<K+se 0<s<K

Thus the lemma is proved. Q.E.D.
Now we consider the initial value problems for 0<e=e¢, in H:

(12), v"(8) +a.(|| A" (@) ) Av () =f(t)
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13) v(t) e D(A) -
(14) v0)=u%,, Y (0)=wu,,

which approximates the problem (2), (8) and (4).
We shall employ the Galerkin method. Define for each m and ¢

Vnal8) =3 Gima (D0,
(we may drop the suffix ¢ of v,, and g,,,. without confusions) as the
solution of
(15) (Va(®) +a.([| A0 (D)) Ava(t), w)=(f(t), w) for we V,
v.(0)=§ aw;=Pyu,

(16) -
va(0) =,§{ Biw;=Puu,

where V,, is an m-dimensional vector space spanned by {w, ---, w,} and
P, denotes the orthogonal projection in H onto V,. Then (15) with
(16) turns to certain nonlinear differential system for the g,,’s, which
guarantees a unique solution defined on some interval [0, £,.,). Note that
each g,, is in C* provided fe C([0, T]; H).

Putting w=2v,(t) in (15) and integrating both sides over [0, ¢],
0<t<ta. we have

|om(@)||?+8.(]| A0 (E)]]*)
an = ?; ,3;-4-&.(3}":1 Aad)+2 S: (F(3), v.(8))ds

T t
<lwlr+aarul)+ | Ifirds+ llveids
where c’i,(s):S' a(z)dr. Hence, by (9), (10) and Gronwall’s inequality,
lom@ e+ A oae)|
T 2y~ 1729, 112y 1 Do)l A1/, (12 kT 2
<o« (Il +atl A+ 247w+ [ 11£(8)I1ds)
0

which yields the inequalities

(18) lva®l*=3; giu(t) Sa.K/2
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and

(19) |4 ou@®)| =3 MBS K -

Those estimates (18), (19) ensure that all the intervals [0, ¢,,.), on which
the v,(t) are defined, can be extended to the whole interval [0, T].

For further a priori estimates we need two lemmas.

Let ¢ be a nonnegative, strictly monotonic, continuous function
defined on [0, =), and fix 2m nonnegative constants \; and ¢,(;=1,2,++-,m)
with 3%, ¢;=1. Then for the quantity IR, defined by

My= ¢_1(ji=1 Qi¢(7\':i)> ’

the following lemma holds:

LEMMA 2 (Hardy, Littlewood and Polya [11], p.p. 75-76). Let ¢ and
o be both strictly monotonic, continuous and + increasing. Then a
necessary and suffictent condition that WM;=WMy for all A=(\;), ¢=(q,),
>,q;=1, s that X(-)=ooog7'(-)=4(¢7*(+)) should be convex. Moreover sup-
pose that X(-) possesses a second derivative X'(-) in the open interval
(0, ). Then a mecessary and sufficient condition that X(-) should be
convex in the interval s that X''(-)=0.

Also the generalized Gronwall inequality, due to Bihari and Langenhop,
is needed (cf. Beckenbach and Bellman [3]).

LEMMA 3. Let f:[0, c0)—[0, o) be continuous, g: (0, co)—(0, o) be
continuous and nondecreasing and let ¢ be a positive constant. Then
the inequality '

f(t)§c+§:g(f(s))ds, 0<t< oo
wmplies that
FOSGH(GY<+ o, 0Zt=G,

Jor any fixed number G, less than G(eo), where

_ (¢ ds
G(t)——SGEG)— for tze.

Moreover, tf G(oo)=co, then the inequality

FfO=G(?)
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18 valtd for all t=0.
PROOF. Set h(t)=c+§' g(f(8)ds. Then

—9(f?) -
( &)= (h(t))"

and hence G(h(t))<t because G(h(0))=G(c)=0. Thus it follows
SO=ShE)=G(t) for any t<G()
which means
FOSGHG)  for t=<G,<G()
since G is monotonically increasing. Q.E.D.

Since 4o g '(N)=M(\"*) is convex by our assumption, Lemma 2 for
#(t)=t* and +(s)=M(8) implies M, <M., that is,

" 1/2 m
(20) (o) sm (3 a00)) .
j=1 i=1
Substitute 2 3%, M(\,)gin()w; for w in (15). Then we have

d pmis) = 3 y
on B ®) —-2<f(t), pY M(M)as.(t)w;)

+201( 35 X050 (8)")( 51305000500 ) (2 MO0, 87
where
(22)  EE0)= 3, MO+ a2 05m )2 NMO)50 (0

We proceed to estimate the last term in (21). From (11) and (19) it
follows that

(23)

a:(g x.ig,-,,(t)‘) <L

Also combining the Schwarz inequality with (19) yields
(24) |35 M0.m005.0) | S (S gimter)

When D7, 9;.(t)*=1, since M is increasing, by using (18) and (20) we
have



~ HYPERBOLIC EQUATION 445

3 o) =(3 0ty (Z L=\ "
()"~ (5 £

i=1

(25) g(aoKm)mM—*(i f"?ﬁ)LM@,-))
=3 gty

S (@K/2"M( 3 (M) -

On the other hand, when >\%, ¢i.(£)’<1, putting ¢;=g;.(t)* (=1,2, -+, m),
2%=1—>%,4q9; and N,=0, we also have
m \ 1/2 m 1/2
(2 gimrns) = (3 a3)
(26) = =
= M3 0,M0) ) =M (3 giut) MO )
. j=0 i=1
since M(0)=0. From the estimates (23)-(26) it follows
|the last term in (21)]
<2LK" max((@,K/2)", DM EXD)) - =E5(1)
0
=d B3O M (E%())

(Note the constant d, is independent of ¢). Thus we have from (21)

@) L B2(6)S 3, MOS8+ BHO+ M (BE(E)

where each 7,(t) is the Fourier coefficient of f(t) corresponding to w;.
Integrating (27) over [0, ] and using (D1) we get

t
(28) Ex(h)<c+| Be)(1+dM(Ex(s)ds

0

(Note the constant ¢ is independént of ¢ by virtue of (9)).
Here we can apply Lemma 3 to (28) for g(s)=s(1+d,M~'(s)) and

G(t):S’(1/s(1+doM—1(s)))ds. Taking a number T, (cf. Remark 1) so that
0 .
T,=T if G(co)>T
and
Ty <G(0) if G(e0)=T,

we have for each ¢t €0, T]
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E3(t)<GH(Ty)< + o

which gives the a priori estimates

3, MO8 S G(To)

(29) -
’Z=1 MMM im() = (2/a0)G(Tw) ,
that is,
(30) | F(A?) A oa(t)|| =C | F(A") Ava (D)l =C

(We shall often use the same C for various constants, independent of m,
¢ and te[0, T\D).
Finally substituting > 7%, M(\)AN7gm(t)w; for w in (15), we have
12.:1 MO )N 5m(t): =’Z=1 V()M INTGim(t)
—a(|| A" v (D)) ,§1 NiGim() - MOMNT G m(2)
[ 1/2/ m ”
<(Z Mo rer) (2 Monsginer)

+1( 3 xj-M(x,-)g,-,.(t)’)lﬂ(jZ; MO g5u(t))

1/2

1/2

Hence it follows from (D2) and (30) that

(31) i MO (@ <C ,
than is,
(32) I F(A" i) <C .

§3. Passage to the limit and proof of theorem 1.

For any ¢, é (0<e, 6=¢, and positive integers m, k (k=<m) we have
the approximate solutions v, .(t) € V, to (12), and v, ,(¢) € V, to (12), under
the same conditions (13), (14). We observe that those solutions satisfy
the apriori estimate (18), (19), (29) and (31) from the preceding section.

We put

Un ()= A0, (D), L a(B)=|| A v, 4(B)]|*

and
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dt)=dri () =vp, () —vis(t) = ,Z'=1 d;Qw; € V, -

where g;,,=0 for j=k+1, ---, m. Then
Oéﬁmv,e(t)’ #k,a(t)éK

and

f‘, Bw; .

J=k+1

dO)= 3 aw;, dO)=
; J=k+1
Equations (12), and (12), lead to

(@) + 0 ttn () Ad(t), w)=( 5} s(tyw,, w)
—{@(ttm, (1)) — as(tt,s(1))}(Avs o(t), w) for weV,.
Taking w=2 >\, M(\)\7°di(t)w; in (33)’ we get

(33)

3

= 3 INT2Y - ’ i . 3 Nd.; 2
dtl)(t)—zi;kl+1 MY (0 d3(E) + 7 ta;(#m,s(t)) ?:‘1 M(n;)dy(t)

(@ (£)) — @t o(E))} - i M0, diE)

where
D(t)= 3} MOWNTd(0)'+ 0ol o8)) 5 MOS0 -
Since
L (Pt (8))| 210Ut ()] [ 470 ()] [ 47000 (B)
=2LKC
and since '

|G (L, () — as(2s,5(L)))]
S:"'em (P.(s) — Ps(s))ds + S:

,e(®) '
- py(8)ds ’
t)

ks 3

< | 18— pu(8)| ds+ L 1, ()~ p1.a(8)
=oa(e, 0)+2LK|Ad®)| ,

we obtain
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G%D(t) < :% MO8 + g, MONTdE)+C g M)A, ()

(34) +(ote, )+Cll4deD(E, MON,a0r) (5 MO dier)

=a(e 0y+ 3 MO N7t +C- D) ,

i=k+1

where o(¢, 0) >0 as ¢, 6 —0. Integrating (84) from 0 to t<T, we have
D(t) < p(m, k)+ Tyo(e, 3*+C S: D(s)ds
where

otm, )= 3, MOp781+ a4 uas+35* | 7, (ords)

—0 as k,m—r oo

uniformly in ¢ and 0 by virtue of (9). This means {F(AY*)A*, .} and
{F(A*)v,, .} are the Cauchy sequences in C([0, T'.]; H). Hence there exists
some % € C'([0, Tx]; H) such that

(85) Vg —— U in CY[0, T.]; H)
(36) F(A™ Ay, , — F(AV?) AV in C([0, T\]; H)

(87 F(A") V. — F(A”)W  in C([0, Ty]; H)

as m— o~ and ¢—0.
We shall prove the stronger results in convergence than (85), (36),
(87), that is, as m— «~ and ¢—0,

(38) F(A'™)Av,,,,— F(A")Au
(39) F(A™) Ay ,— F(AYH AV’
and

(40) F(A)vn,.— F(A")u”

in C([0, Tx]; H). In fact, the convergence (35) means for each j

in C[0, T\] as m— o and e—0, where each u,(t) is the Fourier coefficient
of u(t). Putting w=2M(\;)gjn.t)w; in (15), integrating both sides from
0 to t, taking (9), (10), (11) and (29) into consideration and then using
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Gronwall’s inequality we get
M\)Gim(8) + M N9;m(t) = C85
where
T
$5=MODBI+ MO Nas+ MO || 7(eds .
For an arbitrary positive number 6§ we fix an integer N such that
D v+ 85=6, which is possible by (D1). The estimates in (80) imply that

F(A")Au(t) € H and F(AY") A/ (t) € H for almost all ¢ € [0, Ty]. Therefore,
for m>N,

| F(AY?) Av,, o(t) — F(AY") Au(t)]]?
=(3+,3 ) MO 950 O~ 2O

J=1 4j=N+1

SN 32 MO 0,0, — 0O +4C 3% 83

j=N+1

and

Tm || F(A")Av,, ,(£)— F(A™) Aut)|P < 4C8

m—co, -0

which concludes (38) as §—0. Similarly we have (39). It holds (40) from
the equation

F(A") = F(AY) P, f—a(|| A", .(*)|[) F(A") A, ,

and (38).

By (38), (39) and (40) this u satisfies (2), (3) and (4) and this com-
pletes the existence part in Theorem 1.

The uniqueness of solution to the problem (2), (8), (4) shall be shown
in the class of functions # such that Auw, AY?4’ and «” belong to
C(0, T]; H). Let «' and u* be two solutions to the problem (2), (8), (4).
Then w=u'—u? satisfies the equation

w"(t)+a(|| A¥*u'(®)|") Aw(t)

41
“ = —{a(|| A" ®)|*) — a(l| A**w(®)[|)} Au’(t)

with null initial data: w(0)=w,0)=0. We fix a constant K larger than
max{||AV*u*®)||* 0=t T} (¢=1, 2), and define the approximating functions
a.(+) of a(-) for K, as in section 2. Then b,(s)=a.(s)—a(s) satisfy

lim max |b,(s)|=0 .
e—0 058K
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Since a(:) is locally Lipschitz continuous,

la([|A*u'(@)(|*) —a({| A *u*@)|?)] -
= L(||A"*u' (@) ||+ [| A*u*@®)]]) || A *w(t) ||
<2LK||A”w(t)| .

Taking scalar product of 2w'(f) and each term of (41) and integrating it
from 0 to ¢ we obtain for small ¢>0

[ @I+ @u/2) | A w @)
< lw @l +a. (47w @9 40|
<| [2LEI4 @) [w @] + | Lol 4w @I |4 wG)

+[b.(|| A ()| (Aw(s), w’(s»l]ds

<C | (lw @I+ 114" w0(s)|)ds+CT - max b.(s)
Hence
[w @I+ | 4@ ' SCT - max b.(s) —0 as &0

which implies w=0.
Thus the proof of Theorem 1 is completed.

COROLLARY 1. Let a€C'0, ) and FQ\)/A—¢c, or + o as A— oo,
where c, is some positive constant. We assume A~V*F(A*)f' € C([0, T); H).
Then the solution u(t) in Theorem 1 satisfies

A™PF(AY " e C([0, Ty); H) .

PROOF. Since F(A'*) A is in C([0, Ty]; H), A’ is in C([0, T\]; H).
Differentiating (2) in ¢ and applying A-*F(A'*) to it, we have
A—1/2F(A1/2)ulll=A—1/2F(A1/2)f’__a(llA1/2u(.)IIZ)F(AI/Z)A1/2uI

—20/(| A" u(- )| AV (), AV () FA) A

Since, by Theorem 1, each term in the right hand side belongs to

C([0, Tx]; H), so does A'2F(AV%)u'. Q.E.D.

COROLLARY 2 (Local existence of solutions)T. Assume (H1) and (H2).

Let u,€ D(A), u,€ DAY, feC(0, T); H) and S ||A”’f(t)||’dt<+ o, Then

0

there exist a positive constant T, and a unique solution wu(t) on [0, T,] to
the problem (2), (3), (4) satisfying
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u € C¥([0, Ti]; H)N CX([0, T,]; D(A))NC([0, To]; D(A4)) .
PROOF. Take M(\)=»)\? or F(AY*)=1I, and apply Theorem 1. Q.E.D.

COROLLARY 3 (Regularity of loTcal solutions). Assume u,€ D(A*), u, €
DA%, A*'feC([0, T]; H) and S |A%=2f(2)||*dt < + oo, in addition to the
assumptions of Corollary 2. Thenothere exist a positive constant T, and
the solution u(t) on [0, T,] to the problem (2), (3), (4) satisfies

we (1 CHIO, T.J; D(A*) .

PrROOF. Take M(\)=\*"*k=1) or F(A"*)=A*", and apply Theorem
1. ~ Q.E.D.

§4. Convex function and global solution.

We use the properties of N-functions (ef. Krasnoselskii and Rutickii
[13]). A function M(\) is called an N-function if it admits ‘the
representation ‘

MO = Sl“ m)dt

where the function m(t) is right-continuous for ¢=0, positive nondecreasing
for t>0 and satisfies the conditions

m(0)=0, m(oo)=}1111 m(t)=oo .

Then M(\) is an even, continuous, increasing and convex function satis-
fying the properties '

lim M(\)/A=0, lim M(\)/A=o0 .
iA—0 »l—voo

We write M,(\) > M,(\) for two N-functions M,(\), M,(\) if lim,... M,(N)/M,(\)
exists and positive or . We also write M,(\)~M(\) if M,(\)>M,(\)
and M,(\)>M,\). Q) is called the principal part of the N-function
MQ) if Q\)=M(O) for large values of \. Note that for a convex
function Q(\) satisfying the lim;..QX\)/A=c, there exists some N-
function M()\) such that Q(\) is its principal part. '

LEMMA 4. Let Q()\,)=exp(57\./log(7\.+1)) for a positive constant 0.
Then there are positive constants \,, ft and o(>2) such that am N-func-

tion M(\) defined by
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A (0NN
42 M) =
(42) ) {Q(x)+(pM-—Q(M)) =)

belongs to C*[0, ) and a mapping »— M(\'?) is convex.

LEMMA 5. For the N-function M(\) defined in Lemma 4, the function

N ds
G()= S. s(1+d,M~(s))

satisfies G(o)=co, Here both ¢ and d, are positive constants.

The proofs are elementary and are omitted.

THEOREM 2. Let M(\) be given im Lemma 4. Then the wunique
solution u(t) in Theorem 1 is global.

REMARK 2. The same assertion as Lemma 4 is valid for many other
Q(\)’s, for Q(\)=exp(or), exp(d\’), exp(6r*), s>1, and ete.. If Q(\)is a
monomial of order k=2, then we can take as M(\)=Q() for all A=>0.

When M(\)>exp(orn/log(n+1)), Lemma 5 and hence Theorem 2 are
valid. However for M(\) such as M(\)<exp(drn*), s>1, Lemma 5 does

not hold and we do not know whether the global solutions exist or not
in this case.

§5. Application to the mixed problem.

We shall now apply the results obtained above to the equation
(1) uae O—a(|_Puy, HPdy)due@, H=fe, )  in 2x[0, T]

with the initial conditions

(43) w(x, 0) =wu,yx) , U (2, 0)=u,(x) in Q2
and the boundary condition

(44) u(z, t)=0 on 02x[0, T].

Here 2 is a bounded domain with the analytic boundary 4£2. Let an
operator A in L*R2) be (—4) with D(A)=H*Q)N HR2). Then we know
A satisfies (H1). Thus we have the eigenvalues {A\} and the corresponding

eigenfunctions {w,}, 7=1,2, :--. Then Theorem 2 for A=—4 simply
gives
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THEOREM 3. Let

(45) (@)= i’: Ui (@) ) U= (Ue(®)y W (@) 12car »
satisfy
(46) | g [u,;]2 exp(On;/log(h;+1)) < + oo

for 2=0,1 and let
f@, =37, @wi®) . T0)=(f@ 1, wl@Dia, ,

satisfy the conditions

(i) 3 (ST I'Y,-(t)Izdt)exp(ﬁx,,-/log(x,-+1)) <4oo,
(i) S@F and 31,0 exp@X,/log(+1)

are convergent and both continuous on [0, T] .

Then under the assumption (H2) there exists a wumique global solution
u(xz, t) on 2x[0, T] of 1), (48) and (44) which is a C*-function in @, t
and a C>-function in x for each fixed t. ‘

By Theorem 3 combined with Corollary 1 we immediately have

COROLLARY 4. Let a(-) be in C'0, ). If

3, YOI exp(dn,/log(hy+1)

is continuous on [0, T], then the solution im Theorem 3 belongs to
C@2 %[0, T).

REMARK 8. As is well known, the fact that » can be expanded as
(47) v(x)=§: v; exp(—on)w;(x) , 12}1& v, <+ oo,
is equivalent to that v(z) is analytic in 2 when the domain 2 is analytic
or parallelepiped (cf. Kotake and Narashimhan [12], Arosio [1]). It is

also known that v(x) is in Gevrey class of order s>1 if

'v(ac)=i v; exp(—on; " )w,(x) , sup [v;| <+ oo
i=1 15§<e0
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(cf. Colombini, De Giorgi and Spagnolo [56]). Therefore our class of the
initial data in Theorem 8 includes the analytic class and is included in
the Gevrey class G, for any s>1 with the compatibility conditions.

§6. Cauchy problem.

In this section we consider the Cauchy problem on R":

48) wa@, 0—a(|_ Putw, Ol dy)dute, = fiz, 0

(49) u(®, 0) =u,(x) , U (2, 0)=u,(x)

where data are complex-valued.

When a(-) is in C'[0, ), under the appropriate conditions on u,, wu,
and f, Perla [19] has showed that existence and uniqueness of the clas-
sical solutions for (48), (49) in a small time interval [0, ,], ¢,>0, employing
the Fourier transformation and the energy method. Now we shall extend
the theory of Perla to the global one by imposing some stronger condi-
tions on u%,, u, and f than his.

Denote # by

4y, t)=2r) "2 Sm u(z, t)e **vdx .

‘Then we have

THEOREM 4. Let a(-) satisfy (H2), M(\) be given in Lemma 4 and
assume the conditions: ' |
1) f: R*"XR—C (the set of all complex numbers) is continuous and
J(-, t) e LXR™) for each te[0, T
2) w,eCR"N L*R"), u, € C(R")N L*R")
38) a map t—f(-,t)e L*(R") is continuous on [0, T] and

S Sm [l Ay, O+ M(y) | Ay, ) 1dydt < + oo

4) each one of the mappings
t— || s Dl
t—— 11 A5 Dl
t—s |||+ |™*2F (-, 8)]|e
=11 1A, Dllee
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t—— |- 6)]lze

is continuous for te[0, T]

K Snn |y[2M(|yD Iao(y)lzd’y< + oo

and

|, M IR @)Pdy <+ .

Then there exists a unique solution u € C*(R*x [0, T1) satisfying (48), (49).

REMARK 4. We may say that there exists a global solution for the
Cauchy problem (48), (49) (with f=0) when the initial data wu,, «, belong
to the class

{u € L}(R"); A(y) =0(e~?1v\/ice1+D)  ag  |y|—— oo
for some positive constant 4} .

In order to obtain a priori estimates we need the following lemma
corresponding to Lemma 2.

LEMMA 6 (Hardy, Littlewood and Polya [11], p. 169). Let ¢ and
be continuous and strictly increasing. We define D (f) by

(1) =9 | s(FNa@de)

where f and q are the nonnegative functions such that Sq(x)dx=1 and
Sgs(f(x))q(ac)dac exists. Then in order that M;,(F)SWMy(f) for all f, it is
necessary and sufficient that +ro¢~* should be convex.

Along the proof of Perla we transform (48), (49) to the problem
By, +a(|_ leriac, Hrds)uraw, o=Fu, 0

a(y, 0)=14,(y) , a,(y, 0)=4,(y) ,

and consider the following approximate and truncated problem for |y|<r:
(50) vu, O+a| _ lePloe DPde)luPow, H=Fa, 0

(51) (Y, 0)=0y) , vy, 0)=7(y)
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letting v=w,,=0 for |y|>r. The constant K appeared in the definition
of a.(-) be taken as in (7). Because of our conditions on fand a.(-), the
sequence of Picard’s successive iteration for (50), (561) converges. Thus
we have a local solution v to the problem (50), (61). A priori estimates

(52) | o oraysk, | o orasc
lylse lylse

are easily derived and these imply that the intervals of the existence
of v are extended to the whole [0, T]. (We denote by C each constant
independent of », ¢ and t€[0, T].)

We shall prove the estimate

S lyl*|[ve(y, D)Pdy=C
lylse
for any t€[0, T]. Adding the equation obtained by multiplying (50) by

M(ly|)v, to the one obtained by taking a complex conjugate to (50) and
multiplied by M(|y|)v,, we have

2 Bu(t)=2 | M(uDRel ftw, 7,3, )ldy

53) +2a( | o 1ow, Ordy)(| lvRelotw, 7,0, D1dy)

x| a0y, iy

where
Eu(t)=| M) 0w, O dy+a.({ 1o ow, O1dy) | 1y MO loty, dy .

(For simplicity here and below we abbreviate denoting the domain in
integral sign.) Schwarz’s inequality and (52) imply

|| 1w Relovay | < (| 1w ordw) (] 1wr 1o, ay)

zc(| weirdy)” .

172

(54)

If Slv,lzdygl, then from Lemma 6 and M~ being increasing it follows

that
(S lylzlvtl"dy)”z____(s I'Utl’dy)mo S_l::_l,;lymy)m
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(55) gcwM-l(S—'”*—'z—M(lyndy)
| 2R

scnb(| o M(ydy) -

While, in the case glv,lzdy<1, we use Friedrichs’ mollifier p, (0<6<
min(l, 7)) on Re = Putting gy, t)=(1—§ o2, t)l’de)pg(y) we have
0<S 0y, dy=1 and | (v, O+, )dy=1. Then we obtain

(S lylzlvtlzdy)m_s_(s |yI*(lvel* +qo(vs tt))dy)”2
< m(| MwD (vl + gy, D))
<m-(| Moy +M®)

by Lemma 6 and by the fact M(A) is increasing and suppq,C{y; |¥y|=6}.
Letting 6 —0, we obtain

(56) | witosray=ar-+(| mawdioay) -
From the estimates (563)-(566) it follows
E<E«0)+| | M) fw, 9rdyds
+ [ B+ M Eds .

Making use of Lemma 1, 8, 5 and the conditions on %, %, and f we
conclude

SI IS M(\yD|ve(y, t)Pdy=C
(67) yisr
Slylsf ly*M(lyDlv(y, Idy=C.

The inequality (57) combined with (52) gives

|, .. Wilodw, Hidy=C.

Thus we obtained the boundedness on [0, '] for second derivatives of
the original solution u. We need to show that the sequences of the
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truncated solutions v=wv,, tends to some w as r—c and e—0, whose
Fourier inverse transform is the solution w on [0, T'] to (48), (49). For
the details of the proof see Perla [19].
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