Toryo J. MATH.
Vor. 9, No. 2, 1986

On a Bernoulli Property for Multi-dimensional Mappings
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Introduction

In the previous paper [4], we considered ergodic properties of a
mapping T defined on a bounded domain XC R? satisfying a “local Renyi’s
condition”. The purpose of this paper is to prove that such a mapping
T is weak Bernoulli if it admits a finite absolutely continuous invariant
measure.

The mapping we consider is characterized by a certain type of parti-
tion Q={X,: a €I} of X and a finite number of subsets U,(=X), u, ---, Uy
of X satisfying some special properties (see §1 for precise definitions).
We shall call such a transformation 7 a multi-dimensional mapping with
a finite range structure. If such a T satisfies the Renyi’s condition, in
addition, then it is known that 7 has a finite absolutely continuous invariant
measure, and furthermore, under some additional conditions one can prove
that Q is a weak Bernoulli partition ([9], [18]). On the other hand, when
X is an interval of R!, Ledrappier established in [6] the weak Bernoulli
property for a transformation T having a similar characterization under
some further hypothesis, such as the existence of a finite invariant
measure with positive entropy, but without assuming that T satisfies the
Renyi’s condition (cf. [2]). The main ingredient of his proof, which is
patterned after the work of Sinai [15] (ef. [16]) and Ratner [12], is the
use of Rohlin’s formula for proving the absolute continuity of some
conditional measures.

In this paper we establish a sufficient condition for a multi-dimen-
sional mapping with a finite range structure to have the weak Bernoulli
property when they do not necessarily satisfy the Renyi’s condition. We
do need, however, to make several assumptions on the transformation;
some of these assumptions seem to be essential, while the others are seen
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to be purely technical (see §1). Under the assumptions explained in
detail in §1, we will show that 7T is exact (§2), and that “Rohlin’s
formula” holds for T (§8). In §4, we construct a natural extension for
T and consider conditional measures with respect to the extension. By
using Rohlin’s formula, we prove the absolute continuity of the conditional
measures, and this will lead us to the desired conclusion along the line
of argument used in [6] and [12]. Since the reasoning follows more or
less the same pattern we will only sketch the outline of the argument
used for this part.

The remainder (§5) of the paper is devoted to the discussion of three
examples of multi-dimensional mapping with a finite range structure.
One of these examples is a one parameter family of maps of an interval,
and the others arise from the number theory: an inhomogeneous
diophantine approximation problem and complex continued fractions. None
of these transformations satisfy the Renyi’s condition, but all of them
do satisfy a “local Renyi’s condition”. We will show that these trans-
formations satisfy all of the assumptions made in §1, and therefore weak
Bernoulli.

§1. Notations and results.

DEFINITION. A mapping 7T on a bounded domain X R? is called “a
multi-dimensional mapping with a finite range structure” if there exist
a countable partition Q={X,:a €I} of X and a finite number of subsets
{U, U, ---, Uy} of X satisfying the following Conditions (1)~ (4):

(1) Each X, is a measurable connected subset with piecewise smooth
boundary.

(2) Each U, has a positive measure.

(8) For each X, the mapping T}, restricted on X, is injective, of
class C', and det DT} 0.

(4) Ifint(X,)Nint(T7'X,,)N --- Nint(T-"1X, )*= @, then ™(X, N
T'X,n --- NT-"2X,)="U, for some ke{0,1, --., N}.

To state our results, we introduce some notations. If int(X,)nN
int(T'X, )N - - -Nint(T~"" X, )# @, we denote X NI X, N---NT-" VX, ,
by X, ..., and call it a cylinder of rank m with respect to 7. ™
denotes the family of all cylinders X.,...a, of rank n, and L =U2, F™.
If X,,...,€"™, we call the sequence (a, ---a,) T-admissible. Denote
the set of all T-admissible sequences of length n» by A(n). We write
¥, for (T,)™" and define inductively

Toposa=Yapcay_,° ¥,

- *



BERNOULLI PROPERTY 459

For a constant C=1, we call a cylinder Xa1 oy 8N “R.C-cylinder” if it
satisfies “Renyi’s condition”, i.e.

sup |det DY, .., (®)|=C- inf |det D¥,,...., ()] .

‘”eT"Xal---an 2eT"X g1e0eay

Let R(C.T) denote the set of all R.C-cylinders. We define for C=1

D= Xy, € L2 X, € P\RC.T) for 1=j<n},

D= U X,

Xal...dnegn

Ba=AXyn, € L Xy ow €Dy, X, € RIC.T)},
B,= U X,..a,- '

Xgy-oran€bn

Let \(-) be the normalized Lebesgue measure on X.
We now state some conditions to be used in our results.
(C.1) (generator condition)
Ve, T -"Q=e, 1.e. the partition into points.
Assume that there exists a constant C=1 such that
(C.2) (transitivity condition)
Sor each j with 0=j=<N, there exists a cylinder X,,...,,. contained
in U; such that X, .. “eR(C T) and T X,,...,;=X,
(C.3) if X, ..., € R(C.T), then X,,... ;. .a, € R(C.T) for any
(by -+ bra; - -+ a,) € A(k+n),
(C.4) o MD,)< + oo,
Under the above conditions, we have

THEOREM 1. T 48 exact.

REMARK 1. In previous paper [4], we showed that 7T is ergodic and
has a finite invariant measure ¢ equivalent to )\ under the same conditions
(C.1)~(C.4).

Assume further

(C.5) for all n>0,

w.=3, (., sw . detD¥,. ., 0)))
m=0 Xkl"'kme@m yeTkal..-kmﬂ(jngj)
<+ oo,

(C.6) ! <+ o0,
(C.7) there exists a positive integer 1 such that for all n>0 and all
X €,

@y*cay
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Sup |det DT, ..., ()]
ET 40 STV =O 1 ,
nf et Dl @ )
zeT"X g .ccqy
(C.8) log|det(DT(-))| € &£ X, \).
Then we have

THEOREM 2. Rohlin’s formula (R) 18 true.
R): M(T)= Sx log |det DT(@)|d(x) .

REMARK 2. In general, the density of ¢ is not bounded (for example,
see §5). For this reason, we need some technical Conditions (C.5) and
(C.6). These conditions allow us to have the following properties: The
density of # is bounded on (D,) for each »>0, and therefore for all
n>0, there exists M(n) such that

y(Xal..-a,) < M(’n) for any X,

—_— eag EL™ .
MX, . a,) toe

(This is proved in §3).

REMARK 3. (C.7) is a weaker Renyi’s condition. It is easy to see
that we can replace &2, by ™, and this condition allows us to have

in£ |det DT'(x)| >0 .

For main theorem, we also suppose

(C.4)* 37 MD,)log n< + oo,

(C.9) there exists a positive integer k, which satisfies the following;
Wf Xapoon, €27 and X,,...,, € Z,_,, then

THEOREM 3. Let T be a multi-dimensional mapping with a finite
range structure satisfying (C.1)~(C.9). Then Q 18 a weak Bernoulli
partition with respect to T.

§2. Proof of Theorem 1.

From a basic fact proved in Rohlin’s paper [13], it is sufficient to
show that for all measurable sets E of positive measure with measurable
images TE, T°E, .- -,
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lim @(T"E) = p(X) .

461

Let ¢ be a positive number. By Lemma 2.1 in §2 of [4], the reexists

X.,-a, € R(C.T) such that
MEN X, .0) > A —MX,,..0,) »

and therefore

2.1) & MXaoag) >N Xey o0, N E°) .
It follows from (2.1) and relation
MT"Xoyag V(T EN)S idet DT ()] dn(x)
ag+-an

that
(2.2) MT" X, o0, V(T"E))<CreMT"X,,...0,) «
From (C.2), for T"X, ...,,= U;, there exists Xal...wc U, such that

Xal...asjeR(C. T) and T'J'Xal...,sj=X ,
hence
(2.8) MXoy oo N(TE))<Cre-MT"X,,.a,)
Put D':minogjsN(K(Xal...a’j)/N( Uj)), then

ngney - C€

2.4) A,(Xal...,,sjn (T"E) )<—D-7\,(X,1...a”) .

By virtue of the properties of Xal...a”., it follows from (2.4) that

MT*( X0, N (T"E)))
<C{ inf |det DT*(z)[IM(X,

2 S

N(T"E)°)

1"'“8_4]

<C (X, ). inf |det DT*(x)|
D ayesgl T S
C*e
< D
Using the equality
MT*H (X0, V(T E))) =1=MT"(Xoy o, , N T"ED)

we obtain
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AT B) > MT4(Koyay N TEN)>1 -C—;—e :
From this and the fact that p~x, the theorem follows (cf. [4]). O

§3. The proof of Theorem 2.

We now prepare some lemmas to be used in the proof of Theorem 2.
We note that in [4] T-invariant ergodic measure ¢ such that pg~x\ was
given by

p#A)= 3 w(T~"AND,)
for any measurable set A, where v~) and there is a constant G>1
satisfying
< <G .

As we have announced in introduction, we first prove

LEMMA 38.1. There exists a monotone tncreasing sequence {M(n)}n>o
such that for any X,,...,,,<B.

M Xooensd) 1
- hlntkl o M(n) .
My < Mm)

Furthermore, we have for all n>0 and X,,...., € &,

3.1 ' —1 #(Xal---u,,)
3.1) G é—-———MXalm%) =M(n),

where

Moy =max{ e, | max {Egmesl]

PROOF. We note that the following equality is true.
X"l"”‘m"l"'“n =W',,1...,,m( TmX"l.'""m n X"L"'“n) .

From this, we have

P Xa ) SC S (S MEZipkmayonss)

M=0 Xpieoskoyy€Pm

-GS

m=0 (xkl"‘kmegm (Smekl“'kmnxd1"‘0n+k

det D,....,@)ldNw) ) )
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A
Ms

( 2 ( sup |det D,.....,,(@)| NT™Xiy. kg NV X))

0 Xk],"'kmegm xeTkal...kmﬂXal...a”_l_k

( X ( sup . |det D¥y,...,, (@) MXo, a0 1))) -

0 Xkl"'kmegm meT"‘Xkl...kmﬂ‘Xal-..gn_l_k

CB,, then
ﬂ(Xal-- '“n+k) é G ¢ Wn ‘ )\'(Xal'- 'a,._;.k) *

G
G

IA
Ms

3
Il

If X

a1°* Gtk

Taking G-W, for M(n), we obtain the first statement. Note that
X, 0, € 25 implies X, ...,, C Ul B;. Then, from (C.6) the second assertion
is verified immediately. O

The Conditions (C.7) and (C.8) allow us to have the following
properties: v

LEMMA 3.2. (3.2-a) log|det DT(x)| € &YX, p),
(3.2-b) for all n>0 and j€{0, --+, N}, put

c’(n)= ~—'( > ) MK, 0 )log M X, 0, N U
ageeGy);

Xal...anﬂU_.,'*@

Then ¢’(n)< + .
3.2-¢) H(Q)= —-2@1 (Xo)log p(X,) < + oo

REMARK 4. Since (C.2) implies Xe{U,, ---, Uy}, (3.2-b) allows us to
have for all n>0 —3)\X,,....,)log MX, )< 4 oo,

1"'en

PROOF. Here we denote Ty by T,. Since
SX max(0, log|det DT(x))du(x) =3, Sx max(0, log|det DT, (x))d(x) ,

and

sup (log|det DT, (x)|) glog(sgp |det DT, (x)|) ,
it follows from (C.7) and (3.1) that
Sx max(0, log|det DT(2)du(x) = 2. max(0, #(X,)log(sup|det DT,(x))))
=2, max(0, #(X,)log(C, inf |det DT.(z)))
<> max(0, M(1) -n(X)log C,+ M(1)n(X,)log( igrf |det DT, (x)|)
=31 MO\ (X,)log C;+ >’ max(0, M(1))\(X,)log( iel}ff |det DT,(x)))) ,
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where C, is a constant such that

sup |det DT ()|

z€e TX¢
inf |det D¥ ()| <G

zeTXq

for all X, e ¥".
On the other hand, using the inequality

log( jgcldet DT (x))) éaigfa(log |det DT.(x)]) ,
we have
; max(0, log(”ier}rf; |det DT, (x)|) MXL) = Sx max(0, log |[det DT(x)|)dx .
From this and (C.8), we obtain
[, max(, log det DT@))ds(x)
< M(1)log 01(24‘, MXL))+ M) Sx max(0, log |det DT(x)|)d\
<+oo .
Now we remark that E=inf,.y/det DT(x)|>0. In fact, the relation
MT.X,)= Sx, det DT.@)|dNSC, - inf |det DT (=) -1
allows us to have

inf |det DT,,(a:)lg—é’— for all X,e. 2%,
where L=minyg;<y MU;). This implies inf,.y|det DT(x)|>0. From this,
we have immediately

Sx min(0, log |det DT(@))du(x) = Sx min(0, log E)dp(x)> — oo .

Therefore, combining the above results, we conclude (3.2-a).
By the condition (C.7), we have for all >0 a constant C, such that

sup |det D¥, .., (#)|<C,- inf |det DT,.., ()|

2€TmXg1eeegqp 2eTPX g1eeegp

for any X, € "™, Using this and the equality

1°°"Cn
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Sm--m log|det DT"(@)ldn= Sx 1°g< det D¥ - (T"a)] )d’” ’

ay*ecay

we obtain

Sx log |det DT"(x)|d) ()

2 S X log(

@)

(ageeeay,) € 4(n) sup Idet Dw'al Gy
ZeTPX g1evegy
2 S MXepelog( L )-
= (apeeriedm 1 C,- inf |det DY,,....,(@)|

2eTMX g1eeegy

Note that for all Uj;, there exists X, .., such that
Tl.Xb ..Sj)—'—— Uj .

10°b1

Therefore, if X, N U,#® then we have the following;

1°°°an

M&Zeyman VU= SXa]_-.-anﬂTlel--.(ﬁ )
- S _|det DT,...,,@)ld\)
T“(Xal...anﬂTlelufg)l)
- S |det DT,...,, (®)|dA\@)
Tn+l(Xb1"'bla1'“an)

inf |det DT

2eT™H (X, h1a10 an)

=
=  inf |det D¥

ZeT™MX g eengy)

,,1...%(’.1:)| . N( Tn+lX51“'bl¢1"'¢n)
(@)|-L .

G1°* Qg

In particular, for U;=X, we have \(X,,...,,) =inf |det D¥ (x)|L similarly.

Using the above inequality, we obtain

gy

SX log |det DT"(x)| dn(a)

1
>
2log =+ 3 M Xy log

(ac)l>

» Fegmhoseo ceritt ‘dewq’% o
1
+ 2 MX, ....,n)log(_ )
Foanty o ' inf |det DY ,,....,(2)|

1 .
=log —+ 2 MXe,.wa,)l0g )
Cn §:i ::OU_1¢Z ' ()’(X"J tely n U)
‘ L
+ D M Xepeplog(——r——
Xai ::ﬂ U;=2 ' ( )\'(Xal""'“n.)
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L 1
=] MX,, .0 )]
e gy °g(>»(X,1-...,,.n o)
1
+ Y MXellog(———) .
Tevveniyo ( MXesa,) )
Thus
- s '7\‘( X, alog MX,, ..o, N U)
SN |
Co >, MXay.. o )log MX,...0,)

SS log|det DT™(x)|d\(x) +log \
x L Xgieecant

Xal...annt=®
C.

< S log|det DT*(x)| d\+log
x L

for all U;. Note that (d¢/dA\)=G™" and hence
L log [det DT"(x)|dA<G n L log|det DT(x)| dp(x) -

This implies the statement of (8.2-b).
From (38.1), we have

3 MX)log MX) S 3 MX.)(log G-+log #(X.)

1
= (X MXo))log G+W > MX,

og ;#(X,) .

Therefore, (3.2-b) and the inequality
— 3 MX)log M(X,) +log G= ——M% S i(X)log p(X.)
1

imply (3.2-¢).
From now on, using these lemmas we prove Theqrem 2. Since
1 inf |det DT.,...e, )| 1, (ldet DT,,.... w(T"2)|
1 1 » S——IO 1 [

{ sup [det D7,... ()] f= n e MK ) |

ue’!’"xal...a,l

n
1 sup|det DV, ..., .,[®)] }

<1
=% Og{L- inf _|det D7, ..., (0]

yeTﬂxu...a"

(where X, ..., denotes a cylinder of rank = containing z), by the

Condition (C.7) we have
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——l—logO(fn)S——l (IdetDZF,,l “"""(Tnx)[) —1—log-}-+-—1—-10g0(n),
n L n

N(Xal' . '“n(”))

and hence

1

lim —log—— 1

=lim L log L

e o A Xopapw) v N |det DUy (T2)]

Using the relation

1

—|det DT"(%)| ,
[det DT,..... o (1"0) de @

we obtain

. 1 .1
lim =lim — log |det DT"(x)| for a.e. x,
noe N Xgpvag@) e N

therefore by the ergodic theorem

1
lim ———
neo )'(Xal a,,,(z))

We remark that Lemma 8.1 allows us to have

(Xayeapm)
hm—logu 0 for a.e. € X.
noe MXy o)
This implies
.1 1
lim —log ——————=\ log|det DT(x)|dps(x) for a.e. xeX.
n—e 7 #(Xal---a”(z)) SX

—SX log|det DT'(x)|dp(x) for a.e. .

467

On the other hand, by Lemma 3.2, the Shannon-McMillan theorem

([1], [3]) allows us to conclude

lim -L log 1

=h(T) for a.e. x€X.
Ll (2 F(Xal---a”(a;)

Therefore we have

W(T)= SX Tog |det DT(x)| dyx(z) .

§4. Proof of Theorem 3.

In order to prove the main theorem, we construct an invertible



468 MICHIKO YURI

extension of T as follows; let Z be the set of sequences of I, z=
(Z_1y %95 ***y Z_ny **+). We call the system (Y, T') the extension of (X, T),
where Y is the subset of XxXZ composed of all pairs (x;2z) such that,
for all n>0, there exists x_, in X satisfying

Tx—1=x ’ Tx—n=x—n+1 ’ x—n € XI_,. ’
and T is defined by
Tx; 2)=@";2), with »'=Tx, 2 =2 a1

for all »>1 and 2., is the unique index for which ze X’ .

It is easy to see that the projection # onto X commutes with the map
T and that, for any invariant measure ¢ on X, there exists a unique
invariant measure Z on Y whose image by z is g#. If the measure y is
ergodic, so is ZZ. Many basic results about the natural extension of an
endomorphism were stated in Rohlin’s paper [13].

Now, we prepare some notations. Let X,=z"'X,, Q={X,}, ¢=
v, T'Q, and 7»=Qv¢. Then, we prove a property for conditional
measures in the Rohlin decomposition, with respect to 7, from which
weak Bernoulli property for 7T follows. Throughout this section, we
suppose the assumptions of Theorem 38 are valid.

LEMMA 4.1. The measurable partition 7P=QV¢ has the following
properties:

4.1-a) T'pz,

(4.1-b) VI_. T "p=s,

(4.1-¢) Ae_. T p=v,

4.1-d) WT)=H(Tn|7).

PROOF. From the definition of 7 it is immediate that 7 is a
measurable partition, and (4.1-a) and (4.1-b) hold. By Theorem 1, we
know that T is a Kolmogorov automorphism. From this and (3.2-c)
of Lemma 3.2, we have (4.1-¢). (4.1-d) is an immediate consequence of

(4.1-b). : O
Let

— min {MXa) d H= 1
H, x‘,ﬂ‘;‘l{ C. } and  H, inf|det DT()|

Then we have, for any X, e =,
4.1) H.,<\|det DT (x)|<H,, x2eTX,.
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Define for any y=(x;2) and ¥ =(«'; 2)

A(y, ¥)=limsup 1T g:': 3’11:((:((%:"5)))) '

Let

ﬁ"(’n) E{(a-—v a—2} ec a—n): Xa e gn} ’

—n@—n+1'"0—1

a”={a_, - a_): (@, ra_)eEF™ (a-+a_)e¢.F ™},

Fr= U (TX,_ nTX, ,n---nTX,_),
(@gerea_y) e & (n)
Ar= U (TX,_,.n --- nNT"X, ).

(a__l..-g,_n) ea(’n)

We note that, from the Condition (C.3), (a_, +--a_,) e & ™ implies
(@, ++-a_r)e % for all k(1<k=<n). With the above definitions, we
show the following lemmas.

LEMMA 4.2. If (a_, --- a_,) €a'™, then there exists an integer 1(0<i1<
k,—1) such that X, e R(C.T).

—n%—n+1"""0—n+1q

Proor. If n=<k, then it is trivial. Let n>k, and suppose that for
all :(0=1=5k,—1)

(4.2.1) Xy poa_py € RC.T) .

Then we have Xaposoniips € iy On the other hand, from (C.9) if
X

tmiray € Doy and X, .., €, then

This contradicts (4.2.1). ]
LEMMA 4.3. lim,_.. g(F")=0, and therefore Y= U3, A® (£ mod 0).
PrOOF. We note that g(F")=p(D,). From (C.4) and relations

p0)=3(, 5 (, 5 o Xewa))

m=0 Xa(”)egn

(=]

=2,

m=0 (Xk(m) €D SD”nTka(m)

we have lim,_. Z(F*)=0. (Here k(m)=(k, - k,), and a(n)=(a, *-- a,)).
And hence, the equality

det D¥ 0, @)|dN@))-G
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A((8,4))=+((5,2.))

implies the second assertion. ' O

For each k with 0<k<k,—1, we define for n>k

a={@a_ --a)ea: X, .., ,ERC.T)},
and
A2=( U) () (7—1‘)?“—1n e N T"Xa_”) .
G_j.B—p)Eay
Then by Lemma 4.2 we can easily see that
ko—l ko-—l
for n>k, a”=U af¥, A= U A}
k=0 k=0
_and
for n<k, a""zn_1 al® , A"=nljl1 Ay,
k=0 k=0

where the above unions are disjoint.

LEMMA 4.4. For [Z a.e. y € Y, there exists a positive integer K= K(y)
such that

for any Y’ € &(y) we have

% . g—:)x(") =4y, ¥)=C- (%:)M ,

and so

%( g: )Km va) dy’§8n(u) 4@, v)dy’

=o)L W

where &(y) and 7(y) denote the elements of & and 7 containing Y respec-
tively, and d denotes the natural Lebesgue measure on each element of 7.

PrOOF. For y € A2 from (C.8) and (4.1) we can easily see that for any
Y €&y)

-é—(%:)n-mé A(y, y’)éc(—g-f-)n_k_l :

Putting K(y)=n—k—1, we have the statement of Lemma 4.4 immediate-

ly. O
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As we have announced in introduction, our main goal of this section
is to prove

PROPOSITION 4.5. The conditional measures of K with respect to the
partition 7 are given by :

Ay, ¥)dy'

q(y, B)= L“”“”
A(y, y")dy'
72(¥)

for each ye Y and B a measurable subset.
To prove this proposition, we have to show the folloWing:
LEMMA 4.6. For each n>0, log q(y, [T-"9)(w)) is E-integrable.

REMARK 5. With this done, we can prove Proposition 4.5 as Ledrap-
pier did in [6]. Therefore, we only give the outline of the argument
used for this part. In fact, since the following equality is valid:

log ¢(y, [T~"9](y))= —log|det DT™(zy)| +log{k - T(y)}—log k(y) ,

where k(y)=§ 4(y, ¥')dy', Lemma 4.6 allows us to apply the next classical
(¢')]
lemma to our,7 ::ase;

LEMMA (cf. [6]). Let (Y, g, T) be a dynamical system and g, i=
1,2, 8, be functions related by g,=g,+g,o T—g, with g, and g, integrable.
Then we have

limlg,,o T"=§,—§,=0 Z a.e.,
o on

where § denotes the point-wise limit of ergodic averages of ¢.
Then we can see that the following relation is true:

— | 1og o, [7-"nw)apw) = togldet DT*@) dpuw)
=n S log |det DT(x)| dp(a) -

On the other hand, if »p(y, -) is the conditional measure of # with respect
to 7, then by Lemma 4.1, (4.1-d) we have

n - WT)=H(T~)|7)=~ log ptw, [T-"1]®))d7w) .
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Therefore, by the Rohlin’s formula we obtain

a@, [T-"01)) 170y —
S log (¥, [T‘”ﬂ](y))d#(y) 0.

By the concavity of the function log and from (4.1-b), the proposition
follows by letting » go to infinity (ef. [7], [11D.

PROOF OF LEMMA 4.6. Let yc AP, y=(%; a_y) Az *** A_miktrs Tomsr**°
a_, -++). Then a simple calculation gives

i — (m—k—1) ’ ’
a, [Tnlw)= S[F"("‘_""1'“"77](5-- (m—k—1)y) AT Y, ¥)dy

AT~ =%y, y)dy'

S[f—(M-k—l)y)](F—(m—k—l),)
Since (1/C) < A(T-"—*1y, ) <C on P(T~-""*y), this implies the following:

'

dy

o, [T-"7lw)= 1, S[F""““""H"’v](F—(m—k—-n,,
’ = C2 -
S[F-’(”‘_k—l)r}](F—(m—k—1)y)

1 . )‘«'(Xa_,,,+k+1---aoal---a,(z(F—("'_"-l)v)) n Ui(ﬂ))
c’ N(Xa_,”,,ﬂ---ao(u(%‘—(m'-"—l)v)) N U,-(,,)

1 . N(Xa_,,.“,ﬂ---aoal---u,.(n(T_‘("“"‘l)v)) N U:'m)
- C2 N(Xa_,'+k+1-"Go(it(i—(m_k_l)ﬂ)))

’

where n(T*y)e X,, (0<k<=n) and
Ujw Ejgo T"+1X¢_,,,+,,_,....¢_,,,_Lk .

Note that there exists X;, .., such that Uj, =T'X,..s and hence we can
Write Xa—m+k+1"‘°—1n U:'(‘Il)= Tl(Xbl---bga._.,,.+k+1-~-a._1)'
Then we can see that

T™ Xy pipsr-a1ag-an ) Uim)
=T (T Xs,...000—mirsra—s () T-m*0 X ag)
=UVwun nXao---u,(w
for some t(»)€{0, 1, ---, N}. Using this, we have

7\'(‘)(¢l-m+k+1'"‘7‘—1'10"'“» N Ui(v))
=7\,(w'a_m+k+l...,,_1 o Tm_k_l(Xa_m+k+1...a” n ij)))

|det DT, __,,. e, (&) dN()

SUt(') nxao...an(v)
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= inf |det DY

”'evt(y) ﬂXao...a”(.y)

@] « MUy N Xao---a,,(y)) .

G—mtlt1"""0—1

On the other hand, the following inequality is true:

— , ,
)\:(Xa—m+k+1'--¢-100) - SannTm—k—IXa—m+k+1-~-¢_lldet Dw‘a_m+k+1...a_1(w )ldh(m )
det @D 1
é’”'eX"o”T"'—"§‘il“gz_m+k+r--a_1‘ et D¥epiprsrens® )|
= sup |det D¥,_,,,,. o0, (@) -

weTm—k=lx, o o iira_t

Combining the above results, we obtain

a, [T"7)()

nf det Do syprees®)
z 12 z’eT k 1X¢_m+k+1"'d_1 7 X( Ut(ﬂ) mXﬂro"‘“n(w) y
C sSup det Dfa_pypiyeoay(® )|

gleTm=hkTlE, o kiira—g

and therefore by the Condition (C.7)

1

_C-—2>\'(Xa0"'a“n(7) m Ut(”)) if y c A](S

_ 1 1
Q('y, [T'"ﬁ](y)) =9 _Cv_z?"(Xao"'aﬂW) N Ut(v)) * O( (m —k— l)l)
g'Cl;)\J(Xao"-an(w n Ut(v)) * O(ﬁ) lf ) € Akm(mgz) .
From this and the equality

[ tog atw, IT-nlwnaEw)= 3. | _ tog atw, [T-n))dE) ,
it follows that
|, tog e, [T-miwndaw)
> SA%) {log —(:1,2—+log‘ MXogagr N Utw))}dﬁ(y)

+35,[ {log 2 +108 M(Xeyaq (1 Vi) +log O —257)|d7@)

m=2 C?
22 (log -3) X BN+ || 108 M-y N Ui IEW)]

1
(m—1)}

+ 5 Pamtos(0( 7 25))-
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Now, we estimate S log MXecann N Usiy)dfZ(y). For each ie
{0, --+, N}, let Z,={ye Y: U,,,= U}, where
Ut(ﬂ) == Tm—k—l( Uj(f—ﬂ+k+l') n X‘—ﬂ+k+1"'“‘—1) fOl' y (] Ar .

Then we have

|, 108 M(Xeyanir N Uii)dZ@)

N
'—Z - log M Xoq...anm N UDdE(y)

[\
iM= §

[IRCIYC AN /A% T )

=50 3 pXeyalog MZayan N UY)

i=0 (ag-+-a,) € A(n)

ZMRAD S (S XKoo log MXoyu, N TY)

1=0 (ao---a”) €A(n)

(the last inequality follows from Lemma 8.1). Therefore by (3.2-b) of
Lemma 8.2 S log MXoy.anun N U AE(Y) > — oo

Next, we estimate >3, Z(A™log(1/0{(m—1)"}). By Lemma 8.1, we
obtain

H(A™) = 2, (X ooy

(4_1-..0,_”) ea(ﬂ)

SMl) 3 Mgl

m—-l""’-—m)e“( )
= M)}

and by (C.7)
BAM=ME)Y 3 C,- inf |det D¥, ()| - MX._ ., ,a )}

(a_l...g_“)ea(’l) zeTXg ..

det DT, (=)ldr@)}

(@_jera_p)ealm) STXO_-‘('\X“_”_H_...“_I

<Mk -C. o er,_.. (det DF._, @)l - A Ke_nyyras)}

=£I(J’fo_) C{Z (3 Moy pora MK}

a_ (a_ a__y)s
n (d_:+1 ) €la ()

§_M_<'g>>_@_ MDa NS M)

M("")  C, MDay) ©

Therefore by (C.4)* we have 3x_, #(A™log{l/O((m—1))}> — . Conse-
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quently we have the conclusion of Lemma 4.6. O

Proposition 4.5 implies that the conditional measures of #Z with
respect to 7 are all absolutely continuous with respect to Z. Note that
by Theorem 2 T is a Kolmogorov automorphism and hence the Pinsker
partition AZ_. V2._. T*Q is trivial. Combining these results, we see
that the sufficient condition for the weak Bernoulli partition is satisfied,
i.e. the conditional measures of Z with respect to 7 must all coincide on
the remote past o algebra g(Aj-_. Vilt-» T*Q), and this property of the
conditional measures implies that Q is a weak Bernoulli partition. More
detailed proof may be found for example in [6] [12] (cf. [8] [10]).

§5. Examples.

v In this section, we present three examples to which we can apply our
theorem. First we consider the following one parameter family of maps
on an interval.

ExaMPLE 1. Let X=[0, 1], and for a with 0<a<1 define

x . —1-_ 1/
(l_wa)l/a ’ $<<2) e
So(X)= 1 1 ; w;(—2—> (see Figure 1) .
1 1/a @+ 1 1/a
(z)" - (=(3)")
2 2
1
Jfa
0 ..d,d,d d—(J_):f— 1=dy
4 U3 U2 1— 2
L [ | J
Xo X,

FIGURE 1
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Let X,=[0, 1/2)), X,=[(1/2)% 1], Ty@)=a/(1+a)"), T (x)={(1/2)"*—
1}x+1. Then simple calculation gives the following properties:

(1) (¥)'(x) is a positive and monotone decreasing function on [0, 1],

(2) ((F)"/(®,))(x) is a negative and monotone increasing function on
[0,1]. Let X,...,=[d,, d._,). From (1), we have

Td ) ST2)=T(d,) for any xe Xoo-e01 »
k

Therefore

(3) SUDPsex [(Foo--01) ()] < vid,) < Qiti/a
e | Tora) @] THD)

n

We remark that
(4) if

" 2[ 2(21/a . 1)«/(a+1) — 91/ (a+1) + 1]

- 1/(a+1) ___ (Ol/a___ 1 \a/{a+1)
2 7= —1)

(where [ ] denotes the integer part of a number), then

[Zil< inf [Ti=),

2€X00...01
~———

n

and

(5) for any sequence (a, --- a,) € A(n) such that a,=1 for some ke
{1,2, .-+, n—1}, we have d,,_lginf,exal,,,% {z}.

From the above properties, we can show that there exists a constant
C>1 such that for all >0 and any (a, --- a,) € A(n) with a,=1

SUP,ex |(T,....,) (@)l
e C.
It er (@, ) @)

In fact, by the mean value theorem for any 6, ¢’ €[0, 1] such that ' —6>0,
we have

(6)

Woo0)(O)] X
Fooen Y (0) | 22

n

Where 5"(0, 0’) e XOO"'OI’ 7]5(0, 0,) e X-

n=J

log (35 )(€x0, )] |(ua,Y (00, 010" —0)

\
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On the other hand, for any z, 2’ € [0, 1] Properties (1), (2), (3), (4), and
(5) allow us to have the following:

(7)

(Wal...%)’(x’) n vy, ' ~
e oo 1[G )(&(”’””l (@ asaran) @, @187 ]
<3 xez‘:?f |‘” @], int  ¥ite) -+ ing O CLE

n— _1—1

where

/e 1\a/la+1) __ 1/ (1)

oi/la+1) _ (21/« _ l)a/(a-i-l)

Combining (5) and (6), we can take for C 2¢+va2@/*-n_ T¢ i3 easy to see
that (C.8) is satisfied and B,=X,,.....,, and D":X?i';”' To verify (C.1), we

n n

remark that for all n=n,,
&3l \"
<=} ".
MEeye) SC( o 1)) M)
In fact, for any (a, - a,) € A(n), there exists &k with 0<k<mn such that
X0, € R(C.f,) and X, =D, _,. Therefore

k+1 " %n

MEnra)=| (@) @)

<C: inf  [(Wepna) @] M Xy )

2€X(ggeeep —
ik
<C(gza5) MEew int W) it i) o nf Wi@).
n—l n—2 n—k
"On the other hand
x(Xoo...o)=S @, ()| dw
= o0 T
n—k
=( lzl‘)lf llf{,(x) inf on(x) . 1nf wo(“’)) 7\:(‘X’o o) ’
#€Dypey z€Dyp Dyt

n—k

consequently the above assertion is valid. From this and the fact
lim,_., ).(Xw)=0, we have (C.1). The Conditions (C.2), (C.4)*, (C.6) and
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(C.9) are easily checked. Note that llf‘uo(x)=x/(1+mx“)1/“ and hence
,....) (®)=1/(1+mz=)'*V*, Then a direct calculation gives

- 1
Wn“" éo (1+m(1/(n+1)1/a)a)1+1/a

é(n+1)l+1/a<i __1__) ,

a0 (14 m)tve

and

sup, e x (F.-..0) () <@ 1+1/a
- . =(1+m) .
inf, .y (T,....) (%)

From these, (C.5) and (C.7) are satisfied. (C.8) and (C.9) are trivial.
Therefore this example satisfies all of assumptions of Theorem 3.

Next, we consider a skew product transformation which is associated
to Diophantine approximation in inhomogeneous linear class.

ExAMPLE 2. Let X={(x, ¥) e R: 0<y=<l, —y<ae<—y-+1} and define
T on X by

o =(D)-[5 {2} [-2£]2) e minwe .

This transformation is a multi-dimensional mapping with a finite range
structure and has a finite invariant measure whose density is unbounded

FIGURE 2
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(see [4] and [5]).
Let

o[ [-2], av=--L]

a.(2, ¥)=a(T*(x, ¥)) , bo(, ¥)=b(T*(, ¥)) ,
and ¢,=a,9,—1t - (%=1, ¢,=0). Then

1

det Dw‘ Qqeveq, w = ———,
(s ¥) (9. +2q,_,)°
Moreover, we can easily to see that

gn—_—{X 2 —22 —2ee0)9 X—zz—-zz.--)} ’

1—11—1ees —11—11e..

a, an‘
>\,(Dn)=O(—£2—> , lg.]=0(n) for (b b ) €7, .
Therefore
SUD, e rnx (31280 |det qu(zl...gn)(x, Y)|
el i =0n?®) f Xooan €2, ,
Y I At DT, o gy ) for any X, €,
(31:5m) (52255

and if we put 0. =8SUDq,yepe {|2]}, then W, =37, O1/m®)-(1/(1—p,)). Since
det DT(x, y)=1/2°, a direct calculation allows us to verify (C.8). Con-
sequently, all of conditions of Theorem 3 are satisfied.

Finally, we consider a complex continued fraction transformation
considered by S. Tanaka [17].

EXAMPLE 3. Let X={z=2za+ya: —1/2<z, y<1/2} (a=1+1) and define
the transformation 7 on X by

z 2

where [z], denotes [x+1/2]a+][y+1/2]@ for a complex number z=xa+y&.
Let I={na+ma: m, ne Z\{0}. The map T induces a continued fraction

expansion of z e X, ~
z='—1—J+r1—'+---+ L.
a, la, la,

where each a; is contained in I. In his paper [17], he obtained the den-
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sity function of the invariant measure which is unbounded, the ergodicity,
and some limiting values by his own method. His method cannot apply
to general case. Here, applying our theory we obtain further results,
i.e. exactness, Rohlin’s formula, and a weak Bernoulli property.
Define U; (0=j5=4) by
1 .

U=X, Us=lzeX: ‘z+£ 2'177} . Us=—ixU,

U3='—i>< U2 U4=_?:X Us-
From the above definitions it is easy to see that T is a multidimensional
map with a finite range structure, and Conditions (C.2) and (C.8) are

satisfied. For (C.1), the detailed proof may be found in [17]. Define
q.€I (n=-—1) inductively by

Q—1=0 ’ qo—:a ’ qn=a’nqn—l+q‘n—2 (n:>=1) .
Then a simple calculation gives the relation

1

a1+ (gas/@n)2l*
so that we can take Renyi’s constant, C=5% and immediately we also
verify (C.3) and (C.6) (see [17]). To examine (C.9), we show in Table 1,
the admissibility of sequences (a, - - - a,) for which X, ..,, € =,. This table
shows that k,=8 and *2,=4(4n—3).

To estimate \(D,), we remark that it is sufficient to estimate \(D,),
where

|det D?,,...,,(2)| =

/(_2@', Y Y S , _27;)\

(—2%, —2%, covovoreeces , —2%, @)
(—21:, —2f, e ,—2t, @ &)
(—271, — 2y e , —2i, @ —@)
(—2%, —2, coveeee ,—2i, ad& — @)
(—2i, —26, =+ ,—2i, & —& —a)

Dr={(—24, —2i, +++, =2, @aq@ —a —a))
(—2¢, —2%, «++, =2, —@X —A Q)
(—28, @y @y, — @y ~+oorveorseoss )
(—28, @, — @, —@, ~++vveosroens )
(@, @y —Qy — &)y +ovorrrrrernene )

(@) — @y — @y @y 2vovorrvrorenns )/
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TABLE 1
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ce— (1o

ee— X o4

cee — (Yo

sesose(y evve

o .'.OIEOD O_El.l'll—-al
—2 tesbeigeat!
B e e — T odoseremee
.
P .,‘“a/“ sonsell oo
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. . °d.
E s Yo (i desessl aahee
i &
L) * —_— —
% < jevto (Yoo focsciy soeee
'..2...:..._&' .;‘_'
H °'-—a o-o-a- sesse
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E Leees@ontas
1 .
A s ere— X iee
K Q
. R _
T S T I
— --.-.u.&'..g:
g enee
K
.
- ot—acpee
.. l.

beor - 77 doee
..l . -®
. .
*ee— D iee
-
27

AT
(%)

(2)

&, —&)» means
X, —2,7,7,~%,—& €.

™ The trees for 2¢ and —2i are
quite similar to trees for 2

and —2, and hence are omitted.

(1) In this table 1, the sequence
of symbols (—&, —a, &, a®

means X—3z,—%z3€Z,, in the
same way, the sequence (2, —2,
&, &, —&
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and
D= U X

alooua“ L
Xgy-eq, €2

Let O(a, b, ¢) be a disc centered at (a, b) with the radius ¢. Since

1 2n—1 V2 2n—1 1 V2 .
. [ ’ ’ ’ F o)y
DncO( o™ o o > U O( " ™ ™ ) (See Figure 3.)

we have \(D,;)~0(1/n*) and so A,(Dn)»'agO(l/fnz). Therefore (C.4)* is satisfied.
From the inequality

SupseT"Xal.-.-m. |det Dwal"'an(z)] S (1 + IQn—l/q'n[)4
infu—:z"'x,,,l...,lﬂ Idet Dwal---u”(z)l o (1 - lqn—l/Qn|)4 ’

to verify (C.7), it is sufficient to estimate |g,_,/q.|. A direct calculation
of |g,| seems to be very complicated, but the author has achieved to obtain

\§ FIGURE 3

Here typical cylinders of =, are

shown; (0)=Xa,-7,—&..9
1)=X(—2,%,~-&, —a--+)
2)=X(—21,-21,&,~&:+)

(B)=X(—21,—2i+s—24,&, —@-++)

: k

() =X(~2t,—26.0.—21)
Other types have the same forms as
these types and so are omitted.
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the following table:

TABLE 2
type |gal
(@, @, —a, —a, +++) |Qok-1] =2k , |@uel =V AT+ AE+2
(@, a —a&, —a, ) |@ois] =2V —2k+2 , |qul=+v2E*—2k+10
21,24, -+ )
@, -2,2 -2 ) |gal =+ 2 (n+1)
(—2¢, —2i, -++)
Since the type (:--, 2i, @, @, —@, —at, -+ -) is complicated, before we esti-

mate |g,| we give a table of g, as follows:

TABLE 3
type n=4] n=4l+1 n=41+2 n=41+38
o (41+1) . (—41—3) (—41—2)
22 Fi(—dl41) | Bi4+2 i) i(—4l—4)
=1 (=1 120) 120
(—41+3) L dl—1) N
o ora (—41—1) (—4l) (41+3) Al+2)
2 2ia—a Fidl—1) ri(—al—2) | 4i(—4l—1) i+
az1) az1 az1) 120)
i a2i—9) (—12142) (—121+3) (121+4)
2 ANax—a i(121—5) ri12i—6) | +i(—121—1) Ti(—120)
o (—41+3) (41+2) (41—1) I
2 Za—a—a Fi(—4l—1) i(—41+2) ril+g) | CU-D+id
(=1 a=1) az1) a=1)
o (—201-+15) (—121+10) (200—5) N
2 2Zica—a—a N 91-18) | +a(—20l410) |  +i(—12i+m | AR—HFE200
oo — (—41+3) (41+2) di—1) I
2 2ia—a—aa S i(—41—1) Li(—41+2) ridl+g) | (CU—D+d
122 az1 =1 =1
o o — (—201+19) (—201+20) 200— (201—10)
2 2iaa—a—aa T i201—25) | £i(—201+4) | +i—(201+15) £ (201—4)
i o (—41—1) (—4l+4) (41+3) “l—2)
20 2ia—a—aaa {i(41—5) S i(—4l—2) i—4+9) Fi(dl+4)

_1=2

L (1=2)

_a=D

_az1
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Therefore, we have the following:

(27;, 27:) A 2":) a, &, *° ') m=2k |q4;+,'| =1/{32(4m2+ 1)}l2+ O(l)
e
" m=2k+1 | ;|=V{82Cm+1P1E+0()
1=0,1,2,3)

(2'5’ 27:; 0y 27:’ a, —a, - ') m=2k |qnl=1/(n+1)z+(n—m+1)2

m— r——

™ m=2k+1 |g.|=V(n+1}*+(n—m)

Other types are quite similar to one of the above types, and so are omitted.
These allow us to verify (C.7).
Let p,=sup,ep¢{2[}. Then it is easy to see that

Wn§{§o '_@,,,O( 72,;4)}' (1—1‘01.)4 ={§o 0<'n1?,3)} (1—1.01;)4 )

This implies (C.5).
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