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Introduction

Let $f:(R^{2}, O)\rightarrow(R^{2},0)$ be a smooth map germ. By the theorem of
Whitney [Wh], $f$ can be approximated (in the semi-local sense) by a $C^{\infty}$

stable mapping. In other words, $f$ is a ”degeneration” of neighboring
stable mappings, which we call stable perturbations of $f$. Then it will
be natural to expect that stable perturbations have several properties in
common reflecting the structure of the ”generating” map-germ $f$.

In this paper we concentrate on investigating the number of cusps
of stable perturbations of a generic plane-to-plane singularity. For
instance, we observe that the number $\kappa(\tilde{f})$ modulo 2 of cusps of a stable
perturbation $\tilde{f}$ of a generic map-germ $f:(R^{2}, O)\rightarrow(R^{2},0)$ is a topological
invariant of $f$ (Theorem 2.4). In fact $\kappa(\tilde{f})$ mod 2 is determined by the
number of branches of the locus of critical points of $f$ and the mapping
degree of $f$ (Theorem 2.1). Thus if two generic map-germs $f,$ $ g:(R^{2},0)\rightarrow$

$(R^{2},0)$ are topologically equivalent, then the parities of $\kappa(\tilde{f})$ and $\kappa(g\sim)$

are coincident for any stable perturbations $\tilde{f}$ of $f$ and $ g\sim$ of $g$ .
This observation is obtained as an application of a global formula for

singularities of maps between oriented 2-manifolds with boundary
(Theorem 1.1), which is a modified form of Quine’s formula [Q]. The
topological invariant $\kappa(\tilde{f})$ mod 2 is algebraically calculable from $f$

(Theorem 2.2).
In \S 1, our global formula is proved from Quine’s formula. In \S 2,

the genericity condition is explained and $\kappa(\tilde{f})$ mod 2 is investigated for
stable perturbations $\tilde{f}$ of a generic map-germ $f:(R^{2}, O)\rightarrow(R^{2},0)$ . Another
restriction for the number $\kappa(f_{t})$ of cusps near the origin for a deforma-
tion $\{f_{t}\}$ of $f$ is obtained in \S 3, using complex analytic geometry.
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Throughout this paper we use the following notations:
$C(f)$ ; the set (resp. set-germ) of critical points of a smooth mapping

(resp. map-germ) $f$. (A point $x$ is a critical point of $f$ if the
tangent mapping $T_{l}f$ is not surjective.)

deg $f$; the mapping degree of a mapping (or map-germ) $f$.
$D_{\delta}^{2}=\{(x_{1}, x_{2})eR^{2}|x_{1}^{2}+x_{2}^{2}\leqq\delta^{2}\}$ .
$E_{n}=$ {$smooth$ function germs: $(R^{n},$ $O)\rightarrow R$}.
$E(n, p)=$ {$smooth$ map germs: $(R^{n},$ $O)\rightarrow(R^{p},$ $0)$}.
$Jf=J(f_{1}, f_{2})$ ; the Jacobian determinant of a map-germ

$f=(f_{1}, f_{2}):(R^{2}, O)\rightarrow(R^{2},0)$ .
$\kappa(f)$ ; the number of cusps of a $C^{\infty}$ stable mapping $f$.
$\chi(X)$ ; the Euler-Poincar\’e characteristic of a topological space $X$.
$\langle a, b, \cdots\rangle$ ; the ideal generated by $a,$ $b,$ $\cdots$ .
$\# X$; the cardinal number of a set $X$.
The authors would like to thank S. Izumiya for turning their atten.

tion to the paper of Quine [Q].

\S 1. A global formula.

On the number modulo 2 of cusps of a stable mapping $f$ of a closec
surface $M$ into another surface $N$, there is a classical result that $\kappa(f)\equiv$

$\chi(M)+\deg f(mod 2)\chi(N)$ modulo 2 ([Th], [Wh], [L]). In this section wt
investigate the number modulo 2 of cusps of a stable mapping between
compact oriented surfaces with boundary.

Let $M$ (resp. $N$) be a compact oriented connected surface witf
boundary $\partial M$ (resp. $\partial N$) and $f:M\rightarrow N$ be a $C^{\infty}$ stable mapping such thal
$f^{-1}(\partial N)=\partial M$ and that $f|\partial M:\partial M\rightarrow\partial N$ is a $C^{\infty}$ stable mapping (i.e., 01
Morse type).

After Quine [Q], we denote by $M^{-}$ the closure in $M$ of the set $0l$

regular points at which $f$ is orientation-reversing, and, for each $cus$]

point $qeM$ of $f$, denote by $\mu(q)$ the local degree of $f:(M, q)\rightarrow(N, f(q))$

We set

cusp deg $f=\sum\mu(q)$ ,

where the summation runs over all cusp points of $f$.
THEOREM 1.1. Let $M,$ $N$ and $f$ be as above with $\partial M\neq\emptyset$ . Then
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$\chi(M)-2\chi(M^{-})+\frac{1}{2}\#(C(f|\partial M))+cusp$ deg $f=(\deg f|\partial M)\chi(N)$ .

As cusp deg $f$ is congruent to the number $\kappa(f)$ of cusps of $f$ modulo
2, we have

COROLLARY 1.2. Let $M,$ $N$ and $f$ be as in Theorem 1.1. Then

$\kappa(f)\equiv x(M)+\deg(f|\partial M)\chi(N)+\frac{1}{2}\#(C(f|\partial M))$ mod 2.

Especially $\kappa(f)$ mod 2 depends only on the topology of $M,$ $N$ and $f|\partial M$.
PROOF OF THEOREM 1.1. As $f|\partial M$ is of Morse type, there exist

collars

$i:\partial M\times[0,1)\rightarrow M$ , $j:\partial N\times[0,1$ ) $\rightarrow N$

such that $f(i(\partial M\times[0,1)))\subset j(\partial N\times[0,1))$ and that $j^{-1}\circ f\circ i:\partial M\times[0,1$ ) $\rightarrow$

$\partial N\times[0,1)$ is equal to $(f|\partial M)\times id_{\mathfrak{k}0,1)}$ .
Take two copies $M_{1},$ $M_{2}$ (resp. $N_{1},$ $N_{2}$) of $M$ (resp. $N$), and make the

double $\tilde{M}$ of $M$ (resp. $\tilde{N}$ of $N$);

$\tilde{M}=M_{1}\bigcup_{1d_{\partial H}}M_{2}$ with respect to the collar $i$

(the same for $\tilde{N}$ with respect to $j$).
Define the double $\tilde{f}:\tilde{M}\rightarrow\tilde{N}$ of $f$ by $\tilde{f}|M_{1}=f$ and $\tilde{f}|M_{2}=f$. Then $\tilde{f}$

is $C^{\infty}$ stable. Denote by $(\partial M)^{-}$ (resp. $M_{l}^{-},\tilde{M}^{-}$ ) the closure of the set of
points $x\in\partial M$ (resp. $M_{i},\tilde{M}$) such that $x$ is a regular point of $f|\partial M$ (resp.
$f,\tilde{f})$ and that $f|\partial M$ (resp. $f,\tilde{f}$) is orientation-reversing at $x$ . By [Q],
we have

$(*)$ $\chi(\tilde{M})-2\chi(\tilde{M}^{-})+cusp$ deg $\tilde{f}=(\deg\tilde{f})\chi(\tilde{N})$ .
As $\tilde{M}^{-}=M_{1}^{-}\cup M_{2}^{-},$ $M_{1}^{-}\cap M_{2}^{-}=(\partial M)^{-}$ , we see

$\chi(\tilde{M})=2\chi(M)$ , $\chi(\tilde{N})=2\chi(N)$ and $\chi(\tilde{M}^{-})=2\chi(M^{-})-\chi((\partial M)^{-})$ .
On the other hand, we see

$\chi((\partial M)^{-})=\#(C(f|\partial M))$ , deg $\tilde{f}=\deg(f|\partial M)$

cusp deg $\tilde{f}=2$ cusp deg $f$ .
Substituting these quantities in $(*)$ and dividing by 2 the both sides of $(*)$ ,
we have the required formula.
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\S 2. A topological invariant.

Our main purpose is to show Theorems 2.1, 2.2 and 2.4 as an appli.
cation of Theorem 1.1.

First we explain our genericity condition. Let $J^{r}(n, p)$ denote the
space of r-jets of map-germs in $E(n, p)$ . Define $\pi_{r}:E(n, p)\rightarrow J^{r}(n, p)$ anc
$\pi_{f}..:J^{f}(n, p)\rightarrow J(n, p)(r>s)$ by $\pi_{f}(f)=j^{f}f(O)$ and $\pi,,.(j^{r}f(O))=jf(O)$ respec $\cdot$

tively.
Generic map-germs in $E(n, p)$ mean map-germs in a fixed subsel

$G\subset E(n, p)$ with a system of semi-algebraic subset $\Sigma_{r}\subset J^{r}(n, p)(r=1,2,$ $\cdots’\backslash $

satisfying

$\pi_{fl}^{-1}(\Sigma.)\supset\Sigma_{r}$ , $r>s$ ,

codim $\Sigma_{f}\rightarrow\infty$ as $ r\rightarrow\infty$ ,

and

$\cup\pi^{-1}(J^{r}(n, p)-\Sigma_{r})\subset G$ .
In this paper, we fix $G$ as the set of $f\in E(2,2)$ which has a represen.

tative $f:D_{\epsilon}^{2}\rightarrow R^{2}$ satisfying
(0) $f^{-1}(O)=\{O\}$ ,
(i) $f|(C(f)-\{0\})$ is injective and transverse to $\partial D_{\delta}^{2}$ for sufficient13

small $\delta>0$ ,
(ii) each $xeC(f)-\{0\}$ is a fold point,
(iii) $C(f)$ is transverse to $\partial D_{*}$ , for sufficiently small $\epsilon’>0$ .

Then $G\subset E(2,2)$ has the required property for ”genericity”: the set of
map-germs which does not satisfy (0)$-(iii)$ is an $\infty$ -codimensional subset
of $E(2,2)$ (cf. [F]). Thus we call $f\in E(2,2)$ generic if $f$ has a representa.
tive satisfying (0), (i), (ii) and (iii).

Let $f\in E(2,2)$ be a generic smooth map-germ. Take a representative
$f:D_{e}^{2}\rightarrow R^{2}$ of $f$ such that $f^{-1}(O)=\{O\}$ . For a sufficiently small $\delta>0,$ $se\{$

$\tilde{D}^{2}=f^{-1}(D_{\delta}^{2})\cap D_{\epsilon}^{2}$ . Then $\tilde{D}^{2}$ is diffeomorphic to $D^{2}=D_{1}^{2}$ . Furthermort
$f=f|\tilde{D}^{2}:\tilde{D}^{2}\rightarrow D_{\delta}^{2}$ is $C^{\infty}$ stable outside the origin, and $f|\partial D^{2}:\partial\overline{D}^{2}\rightarrow\partial\overline{D}_{\delta}^{2}$ is
also $C^{\infty}$ stable. Note that the $C^{\infty}$ right-left equivalence class of $f|\tilde{D}^{2}$ is
independent of $\delta>0$ provided that $\delta$ is sufficiently small.

Let $\tilde{f}:\tilde{D}^{2}\rightarrow D_{\delta}^{2}$ be a perturbation of $f$. Assume that the closure of
$\{x\in\tilde{D}^{2}|\tilde{f}(x)\neq f(x)\}$ is contained in the interior of $D^{f}$ and that $\tilde{f}$ is $C^{\circ}$

stable. We call such perturbation $\tilde{f}$ of $f$ a stable perturbation of $f$.
THEOREM 2.1. Let $f:(R^{2}, O)\rightarrow(R^{2},0)$ be a generic smooth map-germ

Let $\tilde{f}:\tilde{D}^{2}\rightarrow D_{\delta}^{2}$ be a stable perturbation of $f$. Then the number $\kappa(\tilde{f})oj$
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cusps of $\tilde{f}$ satisfies

$\kappa(\tilde{f})\equiv 1+\frac{1}{2}\#$ { $b\gamma anches$ of $C(f)-\{O\}$} $+\deg f$ mod 2.

PROOF. By Theorem 1.1,

$\kappa(\tilde{f})\equiv x(\tilde{D}^{2})+\frac{1}{2}\# C(\tilde{f}|\partial\tilde{D}^{2})+\deg(\tilde{f}|\partial\tilde{D}^{2})\chi(D_{\delta}^{2})$ mod 2.

Since
$\chi(\tilde{D}^{2})=x(D_{\delta}^{2})=1$ ,
$\# C(\tilde{f}|\partial\tilde{D}^{2})=\#$ {$branches$ of $C(f)-\{0\}$},
$\deg(\tilde{f}|\partial\tilde{D}^{2})=\deg f$ ,

we have the result. Q.E.D.

THEOREM 2.2. Let $f$ and $\tilde{f}$ be as in Theorem 2.1. Then
$\kappa(\tilde{f})\equiv 1+\deg f+\deg(Jf, \Delta f)$ mod 2.

Furthermore

$\kappa(\tilde{f})\equiv 1+\dim_{R}Q(f)+\dim_{R}Q(Jf, \Delta f)$ mod 2,

provided that the right hand side is fnite. Here

$Jf=J(f_{1}, f_{2})$ is the Jacobian determinant of $f$ ,
$\Delta f=J(Jf, x_{1}^{2}+x_{2}^{2})$ , $ Q(f)=E_{2}/\langle f_{1}, f_{2}\rangle$ ,
$ Q(Jf, \Delta f)=E_{2}/\langle Jf, \Delta f\rangle$ .

PROOF. We use the following lemma.

LEMMA ([FAS]). Let $g:(R^{2}, O)\rightarrow(R, 0)$ be a function-germ such that
$0$ is a common isolated critical point of $g$ and $J(g, x_{1}^{2}+x_{2}^{2})$ . Then

$\#$ {$branches$ of $g^{-1}(O)-\{0\}$} $=2|\deg(g, J(g, x_{1}^{2}+x_{2}^{2}))|$ .
$C(f)$ is the zero-locus of $Jf$. Applying the lemma to $Jf$, we have

$\#$ {$branches$ of $C(f)-\{0\}$ } $=2|\deg(Jf, \Delta f)|$ .
By Theorem 2.1, the first half is shown.

Since deg $f\equiv\dim_{R}Q(f)$ mod 2 (see [EL]), we have the second half of
the theorem. Q.E.D.
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EXAMPLE 2.3. Consider $f=z^{n}:(C, O)\rightarrow(C, 0)$ as $feE(2,2)$ . Then $f$

is generic. We see deg $f=n$ and $\deg(Jf, \Delta f)=0$ because $Jf\geqq 0$ . Thus, by
Theorem 2.2, we see that the number of cusps of a stable perturbation
of $z^{n}$ is congruent to $n+1$ modulo 2. This can be seen also using the
explicit perturbation $z^{n}+\epsilon\overline{z}$ (cf. [Q], p. 312).

THEOREM 2.4. Let $f$ and $\tilde{f}$ be as those in Theorem 2.1. Then
$\kappa(\tilde{f})$ mod 2 is a topological invariant of $f$: If generic smooth map-germs
$f$ and $g:(R^{2},0)\rightarrow(R^{2},0)$ are topologically (i.e., $C^{0}$ right-left) equivalent,
then for any stable perturbations $\tilde{f}$ and $g\sim of$ $f$ and $g$ respectively,

$\kappa(\tilde{f})\equiv\kappa(g\sim)$ mod 2.

PROOF. Since generic map-germs $f$ and $g$ are topologically equivalent,
there exists a homeomorphism-germ $h$ of $(R^{2},0)$ such that $h(C(f))=C(g)$

(note that singular points of $f$ and $g$ are fold points except for the
origin). Thus we have

$\#$ {$branches$ of $C(f)-\{O\}$} $=\#${$branches$ of $C(g)-\{0\}$}.

Furthermore, since $f$ and $g$ are topologically equivalent, we have deg $f=$

deg $g$ . By Theorem 2.1, we have the result.

\S 3. Estimates.

In this section we consider only analytic map-germs. For $f=(f_{1}, f_{2})e$

$E(2,2)$ , set
$J_{1}f=J(Jf, f_{2})$ , $J_{2}f=J(f_{1}, Jf)$ ,
$ K(f)=\langle Jf, J_{1}f, J_{2}f\rangle$ in $E_{2}$ ,
$Q=E_{2}/K(f)$ .

Let $FeE(3,2)$ be an analytic deformation of $f$. Set

$f_{t}=F( t)$ , $teR$ .
THEOREM 3.1. Let $F$ be an analytic deformation of an analytie

map-germ $f$ as above. Assume $f_{l}$ is $C^{\infty}$ stable near the origine $0$ for a
sufficiently small $t\neq 0$ . Then the number $\kappa(f_{t})$ of cusps of $f_{t}$ near $0$

satisfies
$\kappa(f_{\iota})\leqq\dim_{R}Q$ ,
$\kappa(f_{t})\equiv\dim_{R}Q$ $(mod 2)$ ,

provided $\dim_{r}Q<+\infty$ .
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REMARK 3.2. (i) The condition that $\dim_{R}Q<\infty$ is a generic con-
dition in the sense that the set of map-germs which do not satisfy the
condition is an $\infty$ -codimensional subset of $E(2,2)$ .

(ii) If $\dim_{R}Q<+\infty$ , then the Thom-Boardman singularity $\overline{\Sigma^{1,1}}f\subset\{O\}$

as germ. For a representative $F:D_{\epsilon}^{2}\times R\rightarrow R^{2}$ and for any $\epsilon’>0$ , there
exists $\delta>0$ such that if $|t|<\delta$ , the cusp points of $f_{t}|D_{l}^{2}$ are contained in
$D_{e}^{2},$ .

EXAMPLE 3.3. Consider again $f=z^{n}\in E(2,2)$ . Then $\dim_{R}Q=3$ if $n=2$ ,
and $\dim_{R}Q=+\infty$ if $n>2$ .

PROOF OF THEOREM 3.1. We use the same notation $ F:(C^{2}\times C, (0,0))\rightarrow$

$(C^{2},0)$ for the complexification of $F$. Here we need some results in
complex analytic geometry. Denote by $J^{2}(C^{2}, C^{2})$ the space of 2-jets of
holomorphic mappings of $C^{2}$ into $C^{2}$ . Define polynomial functions

$J,$ $J_{1}$ and $J_{2}$ : $J^{2}(C^{2}, C^{2})\rightarrow C$

by

$J(j^{2}f(x))=Jf(x)$ , $J_{1}(j^{2}f(x))=J(Jf, f_{2})(x)$ ,

$J_{2}(j^{2}f(x))=J(f_{1}, Jf)(x)$ .
The following lemma is a special form of results in [B], [Mo, p. 15],

[M].

LEMMA 3.4. (i) $J^{-1}(O)\cap J_{1}^{-1}(O)\cap J_{2}^{-1}(O)=\overline{\Sigma^{1,1}}$, where $\Sigma^{I}$ is the Thom-
Boardman singularity of type $I$.

(ii) At each point of $\Sigma^{1,1}\subset J^{2}(C^{2}, C^{2})$ , locally

$\langle J, J_{1}, J_{2}\rangle=\langle J, J_{1}\rangle$ or $\langle J, J_{1}, J_{2}\rangle=\langle J, J_{2}\rangle$ .
(iii) At each point of $\Sigma^{1,1},$ $(J, J_{1}, J_{2}):J^{2}(C^{2}, C^{2})\rightarrow C^{a}$ is of constant

rank 2.

LEMMA 3.5. $ A=P_{J^{2}\{C^{2},C^{2})}/\langle J, J_{1}, J_{2}\rangle$ is Cohen-Macaulay for any $ze$

$J^{2}(C^{2}, C^{2})$ .
PROOF. Let $M_{0},$ $M_{1},$ $M_{2}$ be the $2\times 2$-minors of

$\left(\begin{array}{ll}x_{01} & x_{02}\\x_{11} & x_{1l}\\x_{21} & x_{22}\end{array}\right)$ .
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Then $ B=P_{C^{0},w}/\langle M_{0}, M_{1}, M_{2}\rangle$ is Cohen-Macaulay for any $we$ C’ ([H], [Ful
p. 419]).

Define $\Phi:J^{2}(C^{2}, C^{2})\rightarrow C^{6}$ by

$\Phi(j^{2}f(x))=(|_{Z_{1}^{2}}^{Z_{11}^{1}}$ $z_{2}^{2}z_{22|+|_{Z_{11}^{2}}^{Z_{1}^{1}}}^{1}z_{1}^{2}z_{1}^{1}$

$\ovalbox{\tt\small REJECT} z_{21}^{1}$ $|_{Z_{1}^{2}}^{Z_{12}^{1}}$

$Z_{221+|_{Z_{12}^{g}}^{z_{1}^{1}}}^{1}z_{2}^{2}\not\in z_{2}^{1}$ $z_{22}^{2}z_{21)}^{1}$

where $z_{\dot{f}}=(\partial f_{i}/\partial x_{\dot{f}})(x),$ $z_{jk}=(\partial^{2}f_{l}/\partial x_{\dot{f}}\partial x_{k})(x)(i, j, k=1,2)$ .
For the pull-back $\Phi^{*}:$ $P_{C^{0},\mathcal{O}(*)}\rightarrow p_{J^{2}(C^{2},C^{2})}$ , we have

$\Phi^{*}(\langle M_{0}, M_{1}, M_{2}\rangle)=\langle J, J_{1}, J_{2}\rangle$ .
Set

$ C=\rho_{J^{2}(c^{2},c^{2})\times c^{\mathfrak{g}},(*,\Phi(e))}/\langle M_{0}, M_{1}, M_{2}\rangle$ .
Then as $B$ is Cohen-Macaulay, $C$ is also Cohen-Macaulay. Set

$ I=\langle x_{\iota j}-\Phi_{j}|i=0,1,2;j=1,2\rangle$ in $C$ .
Then $C/I\cong A$ . Now dim $C-$ dim $A=6$ . Hence

the height of $I=6$ .
Therefore $A$ is also Cohen-Macaulay ([Ma], (16; a $,$

$b)$). Q.E.D.

Let us denote by $i(j^{2}f(O);\overline{\Sigma^{1,1}}\circ j^{2}f(C^{2}))$ the intersection multiplicity
of $\overline{\Sigma^{1.1}}$ and $j^{2}f(C^{2})$ at $j^{2}f(O)$ . Then by [Ful; Proposition 7.1] and our
Lemma 3.5,

$i(j^{2}f(O);\overline{\Sigma^{1,1}}\circ j^{2}f(C^{2}))=\dim_{c}\tilde{Q}$ ,

where
$\tilde{Q}=\beta_{c^{2}.\circ}/(j^{2}f)^{*}\langle J, J_{1}, J_{2}\rangle$

$=\rho_{c^{2},0}/\langle Jf, J_{1}f, J_{2}f\rangle$ .
On the other hand

$i(j^{2}f(O);\overline{\Sigma^{1,1}}\circ j^{2}f(C^{2}))=\sum i(j^{2}f_{t}(x);\overline{\Sigma^{1,1}}\circ j^{2}f_{t}(C^{2}))$ ,

where the summation runs over points $x$ in $\overline{\Sigma^{1,1}}f_{t}=(j^{2}f_{t})^{-1}(\overline{\Sigma^{1,1}})$ . If $f_{t}$ is
$C^{\infty}$ stable, then by Lemma 3.4 (iii), the right hand side is equal to the
number $\tilde{\kappa}(f_{t})$ of (not necessarily real) cusp points of the holomorphic
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mapping $f_{t}$ . Thus we see that

$\tilde{\kappa}(f_{t})=\dim_{c}\tilde{Q}$ .
Now

$\dim_{c}\tilde{Q}=\dim_{R}Q$ , $\kappa(f_{t})\leqq\tilde{\kappa}(f_{t})$ ,
$\kappa(f_{t})\equiv\tilde{\kappa}(f_{t})$ $(mod 2)$ .

This completes the proof of Theorem 3.1.

REMARK 3.6. Let $f:(R^{2}, O)\rightarrow(R^{2},0)$ be an analytic map-germ with
$\dim_{R}Q=E_{2}/\langle Jf, J_{1}f, J_{2}f\rangle<+\infty$ . Then $d{\rm Im}_{R}Q(f)<+\infty$ , where $Q(f)=$
$ E_{2}/\langle f_{1}, f_{2}\rangle$ . Then $f$ has a stable unfolding $F:(R^{2}\times R^{\prime}, (0, O))\rightarrow(R^{2}\times R^{\prime}$ ,
$(0,0))$ . Set $f_{u}=F( , u),$ $u\in(R‘, 0)$ . Then for generic $u,$ $f_{u}$ is $C^{\infty}$ stable.
Set

$\kappa_{u}=\#$ {$cusps$ of $f_{u}$}, $k=\min_{g:eneric}\kappa_{u}$ , $K=\max_{u:generic}\kappa_{u}$ .
Then

(i) $k\equiv K\equiv\kappa_{u}(mod 2)$ .
(ii) For any $p$ with $p\equiv k$ (mod2) and $k\leqq p\leqq K$, there exists a pa-

rameter $u\in(R^{f}, 0)$ such that $p=\kappa_{u}$ .
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