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\S 1. Introduction and notation.

Let $R$ be a (commutative integral) domain with quotient field $K$.
One has often studied $R$ by analyzing properties of its overrings (that
is, the rings contained between $R$ and $K$). This article contributes to
“dual” analyses via underrings. (We shall say that $B$ is an underring
of $R$ in case $B$ is a subring of $R$ also having quotient field $K.$ ) Some
studies of domains via underrings have already been done in [3], [4]. For
instance, [4, Theorem 2.2] characterized the $R$ such that each underring
of $R$ is seminormal. (It turned out that the same class of rings is
characterized if “underring” is replaced by “subring“ $and/or$ ”seminormal”
is replaced by “a Euclidean domain.” The rings $R$ in question are the
overrings of $Z$ (up to isomorphism) and the fields algebraic over a finite
field.) This work completed earlier studies such as [5], [1, Proposition
2.11], and [3].

The domains characterized in [4, Theorem 2.2] may also be viewed
as the domains each of whose underrings (resp., subrings) is integrally
closed. One would nevertheless expect, rather generally, that requiring
prescribed behavior of the underrings of $R$ would be less restrictive than
requiring analogous behavior of all the subrings of $R$ . To test this in-
tuition and seek results with different flavor, we move to the ”other
extreme” from [4, Theorem 2.2]: we now ask to characterize the $R$ such
that $R$ is integral over each of its underrings. It should be noted that
the answer to this question changes if ”underrings“ is replaced by “sub-
rings.” The answers are given in Proposition 2.2, our main results
(Theorem 2.3 and Corollary 3.6), and Remark 2.4 $(a)-(c)$ . It will be seen
that consideration of underrings leads to certain global fields of positive
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characteristic. Section 3 illuminates the positive characteristic case by
developing a suitable “relative” theory.

$R,$ $K$ retain the above meanings throughout, all subrings contain the
1 of the larger ring, ch denotes characteristic, $F_{p}$ denotes the prime field
of characteristic $p>0$ , and $A$ denotes the ring of all algebraic integers.
Any unexplained material is standard, as in [6], [8].

\S 2. The domains of the title.

In any study of domains via behavior of their underrings, certain
domains are catalogued by default. These are the domains having no
proper underrings. They are characterized in Proposition 2.1, whose
proof follows immediately from [3, Corollary] or [4, Theorem 2.2]. Recall,
by way of contrast, that $R$ has just $R$ and $K$ as overrings if and only
if $R$ is a valuation domain of (Krull) dimension at most 1.

PROPOSITION 2.1. The following conditions on $R$ are equivalent:
(1) $R$ is the only underring of $R$ ;
(2) Either $R\cong Z$ or $R=K$ is a field algebraic over some $F_{p}$ .
The next three results serve to vindicate our intuition. One of their

morals is that, by focusing on underrings rather than subrings, we
produce a catalogue of domains which features at least some global fields
of positive characteristic. (Dually, note that each overring of $R$ is in-
tegral over $R$ if and only if $R=K$; but $no$ domain $R$ has the property
that each domain containing $R$ is integral over $R.$ )

PROPOSITION 2.2. The following conditions on $R$ are equivalent:
(1) $R$ is integral over each subring of $R$ ;
(2) Either $R$ is isomorphic to a subring of $A$ or $R=K$ is a field

algebraic over some $F_{p}$ .
PROOF. Proposition 2.1 easily yields (2) $\Rightarrow(1)$ , while the converse

follows easily from [8, Theorem 48]. We leave the details to the reader.
We next present the main result of this section.

THEOREM 2.3. (i) The following two conditions on $R$ are equivalent:
(1) $R$ is integral over each underring of $R$ ;
(2) One of the following two conditions holds:
(a) $R$ is isomorphic to a subring of $A$ ;
(b) $ch(R)=p>0$ , and $R$ is contained in each valuation ring $V$ of $K$

such that $K$ is the quotient field of $V\cap R$ .
(ii) The above condition (b) holds if $K$ is algebraic over $F_{p}$ (in
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which case, $R=K$).
(iii) Suppose that the above condition (b) holds and that $K$ is not

algebraic over $F_{p}$ . Then $t.d.(K/F_{p})=1$ . Indeed, there exists a singleton
transcendence basis {X} of $K$ over $F_{p}$ such that $R$ is integral over $F_{p}[X]$ .

PROOF. (i) (2) $\Rightarrow(1)$ : By Proposition 2.2, it is enough to show that
$(b)\Rightarrow(1)$ . Deny. Then there exists an underring $B$ of $R$ so that $R$ is
not integral over $B$. Hence (cf. [6, Theorem 19.8]), $R$ fails to be contained
in some valuation overring $V$ of $B$ . As $B\subset V\cap R,$ $K$ is the quotient field
of $V\cap R$ , contradicting (b), as desired.

(1) $\Rightarrow(2)$ : Assume $ch(R)=0$ . There are two cases, determined by
whether $K$ is algebraic over $Q$ .

Suppose that $K$ is algebraic over $Q$ . We claim that (a) holds. It
will suffice to show that $R$ is integral over $Z$. To this end, let $T$ denote
the integral closure of $Z$ in $K$. By clearing denominators, one sees as
usual that $K$ is the quotient field of $T$. By algebraicity of $K/Q,$ $[7$ ,
Corollary 1.7] yields that $K$ is the quotient field of $D=R\cap T$; in other
words, $D$ is an underring of $R$ . Thus, by (1), $R$ is integral over $D$ . Since
$D\subset T,$ $D$ is integral over $Z$ , whence $R$ is integral over $Z$ , as asserted.

Next, we shall show that the assumption that $K$ is not algebraic
over $Q$ leads to a contradiction. Choose a transcendence basis $\{X_{i}\}$ of
$K$ over $Q$ such that $\{X_{i}\}\subset R$ ; let $X$ denote one of the $X_{l}$ . Let $S$ denote
the intersection of $R$ with the integral closure of $Z[\{X_{i}\}]$ in $K$. As
$K/Q(\{X_{i}\})$ is algebraic, the above reasoning yields that $K$ is the quotient
field of S. (More specifically: clear denominators and apply [7, Corollary
1.7].) As $S$ is then an underring of $R$ , so too is $E=Z+2S$ ; hence, by
(1), $R$ is integral over $E$. As $X\in R$ , one infers an equation

$X^{n}+(m_{1}+2s_{1})X^{n-1}+\cdots+(m_{n}+2s_{n})=0$ ,

with $m_{i}\in Z$ and $s_{i}\in S$ for all $i$ . Setting

$f=2^{-1}(X^{n}+m_{1}X^{n-1}+\cdots+m_{n-1}X+m_{n})$ ,

we find $f=-(s_{1}X^{n-1}+\cdots+s_{n})\in Q[X]\cap S\subset Q(\{X_{i}\})\cap S=Z[\{X_{i}\}]$ . Accordingly,
the leading coefficient of $f$, namely 1/2, is an integer: this is the desired
contradiction.

We next consider the case $ch(R)=p>0$ , and must infer (b) from (1).
The contrapositive is easy to see: if $V$ is a valuation ring of $K$ such that
$R\not\subset V$ and $K$ is the quotient field of $V\cap R$ , then $R$ is not integral over
its underring $V\cap R$ .

(ii) If $K$ is algebraic over $F_{p}$ , then $R=K$ (cf. [8, Theorem 48]).
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In this case, (b) holds trivially. (Alternately, apply Proposition 2.2 or
Proposition 2.1).

(iii) Let {X,} denote a transcendence basis of $K$ over $F_{p}$ such that
$\{X_{i}\}\subset R$ . Let $X$ be one of the $X$ ; and if possible, let $Y$ be a different
one of the $X$ . We proceed to adapt the methods used to prove the
characteristic-zero case. Let $S_{1}$ denote the intersection of $R$ with the
integral closure of $F_{p}[\{X_{i}\}]$ in $K$. One shows as above that $S_{1}$ is an
underring of $R$ ; hence, $E_{1}=F_{p}+YS_{1}$ is too. By (1), $X$ is integral over $E_{1}$ .
Manipulating an integrality equation as above, we find a monic polynomial
$geF_{p}[X]$ such that

$Y^{-1}geF_{p}(\{X,\})\cap S_{1}=F_{p}[\{X,\}]$ .
As $g\in YF_{p}[\{X,\}]$ is nonzero, $\deg_{Y}(g)\geqq 1$ , contradicting $g\in F_{p}[X]$ . Thus, nc
such $Y$ exists; in other words, $t.d.(K/F_{p})=1$ . It remains only to show
that $R$ is integral over $F_{p}[X]$ .

To this end, let $B$ denote the integral closure of $F_{p}[X]$ in $R$ . By
clearing denominators, each $r\in R\backslash \{0\}$ can be expressed as $r=bc^{-1}$ for
suitable $beB,$ $c\in F_{p}[X]\backslash \{0\}$ . In particular, $R$ is an overring of $B$; that
is, $B$ is a underring of $R$ . By (1), $R$ is integral over $B$. As $B$ is integral
over $F_{p}[X],$ $R$ is thus integral over $F_{p}[X]$ . The proof is complete.

It seems difficult to give a neat list of the domains satisfying (b) in
the statement of Theorem 2.3. In particular, not all $R$ of transcendence
degree 1 over $F_{p}$ satisfy (b). The first three parts of the next result
elaborate on these points.

REMARK 2.4. (a) The following result will be useful. If $L\subset F$ is
an algebraic field extension and $S$ is an underring of $F[X]$ which containf
$L$ , then $F[X]$ is integral over $S$.

For a proof, it is enough to show that $X$ is integral over $S$ , since
each element of $F$ is integral over $S$. Now, since $S$ is an underring of
$F[X]$ , we can write $X^{-1}=ab^{-1}$ , with $a,$ $b\in S\backslash \{0\}$ . As aeF[X], we have
$a=\alpha_{0}X^{n}+\cdots+\alpha_{n},$ $\alpha_{i}eF,$ $\alpha_{0}\neq 0$ . Replace $a$ with $bX^{-1}$ , multiply throug}
by $X$, and solve for $X^{n}$ . We see that $X$ is integral over $T=S[(\alpha_{0})^{-1}$

$\alpha_{1},$ $\cdots,$ $\alpha_{n}$]. Since each element of $F$ is integral over $S,$ $T$ is integra
over $S$ , and the assertion follows.

As an application of the above result, we have the following: if $X$ if
transcendental over $F_{p}$ , then $F_{p}[X]$ is integral over each of its underrings
Thus, the domains characterized via underring behavior in Theorem $2_{t}^{c}$

include rings not catalogued via the analogous subring behavior in Prop.
osition 2.2.
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For another application of the above result, this time with $K$ infinitely-
generated over $F_{p}$ , let $F$ denote an algebraic closure of $F_{p}$ , and note that
$R=F[X]$ is integral over each of its underrings.

(b) Let $X$ be transcendental over $F_{p}$ , and let $K=\overline{F_{p}(X}$), an algebraic
closure of $F_{p}(X)$ . Suppose that $R$ is integral over $F_{p}[X]$ . Then $R$ fails
to be integral over some underring of R. (In particular, the necessary
conditions in Theorem 2.3 (iii) do not imply (1).) Indeed, by using
Riemann’s theorem, Gilmer and Heinzer [7, Remark 3.2] showed that
under these conditions, $V\cap R$ has quotient field $K$ for each valuation
ring $V$ of K. (In applying [7], one must also note that $\dim(V)\leqq 1$ : see
[6, Theorem 20.9]; and that $F_{p}\subset V.$ ) Since the intersection of all the
valuation rings of $\overline{F_{p}(X}$) is algebraic over $F_{p},$ $R$ does not lie in this in-
tersection. Accordingly, Theorem 2.3 (i) yields the assertion about $R$ .

(c) The situation for global fields of positive characteristic is just as
varied as for the infinitely-generated cases studied in (a), (b). On the one
hand, let $n$ be any positive integer, let $F_{p^{n}}$ replace $F$ in the final paragraph
of (a), and let $R(=F_{p^{n}}[X])$ be the resulting integral closure of $F_{p}[X]$ in
$K=F_{p^{n}}(X)$ . As above, one shows that $R$ is integral over each of its
underrings. By taking $n\geqq 2$ , we have examples not subsumed under the
first application in (a), since Luroth’s theorem shows that $K$ is then not
purely transcendental over $F_{p}$ .

On the other hand, not all global fields lead to rings of the type
characterized in Theorem 2.3. To see this, let $K$ be a global field algebraic
over some $F_{p}(X)$ such that $R$ , the integral closure of $F_{p}[X]$ in $K$, is
contained in all but two valuation rings, say $V_{1}\neq V_{2}$ , of K. (This can
be guaranteed by arranging that the $(X^{-1})$-adic valuation splits in $K$,
where $[K:F_{p}(X)]=2$ . For instance, take $p\neq 2$ and $K=F_{p}(X, y)$ , where
$y^{2}+X^{-1}-1=0$ . The key points are that if $T$ denotes the integral closure
of $F_{p}[X^{-1}]$ in $K$, then both $y+1$ and $y-1$ are nonunits of $T$; and no
maximal ideal of $T$ can contain both $y+1$ and $y-1.$ ) Then, by Riemann’s
theorem (cf. [7, Remark 3.1], with $D=V_{2}$), $K$ is the quotient field of
$V_{1}\cap R$ . As $V_{1}\cap R\subsetneqq R$ , Theorem 2.3 (i) yields that $R$ is not integral over
at least one of its underrings.

(d) This section’s theorem suggests numerous related questions about
underrings. In closing, we mention one of these. Which domains $R$ have
the property that $R$ is flat over each of its underrings? Since a domain
cannot have a proper overring which is both flat and integral, this
question is at “the other extreme” from that of Theorem 2.3. By the
theory of normal pairs [2, Theorem 3] or by [4, Theorem 2.2], if each
underring of $R$ is integrally closed, then $R$ is flat over each of its un-
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derrings. It would be interesting to find other sufficient conditions.

\S 3. The relative theory.

Corollary 3.6 will augment Theorem 2.3 by giving a new charac.
terization of the domains of positive characteristic which are integra:
over each of their underrings. It will be convenient to say, given domains
$S\subset R$ , that $R$ is S-linear in case $R$ is integral over each of its underrings
that contains S. (The terminology is suggested by the role of the affine
line, in the guise of $F_{p}[X]$ , below.) Notice, if $S$ denotes the prime ring
of $R$ , that $R$ is S-linear if and only if $R$ is integral over each of its un $\cdot$

derrings. We begin our study of S-linearity with a result that reworkf
part of section 2.

LEMMA 3.1. Let $S\subset R$ be domains. Then:
(i) If $R$ is S-linear, then $t.d.(R/S)\leqq 1$ .
(ii) Suppose that $R$ is algebraic over S. Then $R$ is S-linear if $ano$

only if $R$ is integral over $S$.
(iii) If $R$ is S-linear and $X\in R$ is transcendental over $S$ , then $R$ i$

integral over $S[X]$ and $S$ is a field.
PROOF. (i) Replace $F_{p}$ with $S$ in the first paragraph of the proo]

of Theorem 2.3 (iii).
(ii) The “if” assertion is trivial. Conversely, replacing $Z$ with $S$

adapt the second paragraph of the proof that (1) $\Rightarrow(2)$ in Theorem 2.3 (i)

(iii) Replace $F_{p}$ with $S$ in the last paragraph of the proof of Theoren
2.3, to show $R$ integral over $S[X]$ . Moreover, if $S$ is not a field, $choos\langle$

a nonzero prime ideal $P$ of $S$ and find a prime $J$ of $R$ such that $J\cap S[X]=$

$PS[X]$ . By S-linearity, $R$ is integral over its underring $S+J$; hence, $ R/\circ$

is integral over $(S+J)/J\cong S/J\cap S=S/P$. However, $R/J$ contains the $S/P$

algebra $S[X]/PS[X]\cong(S/P)[X]$ , which is not integral over $S/P$. This
contradiction completes the proof.

As usual, it will be convenient to let $A$’ denote the integral closur $($

of a ring $A$ .
PROPOSITION 3.2. Let $S\subset R$ be domains. Then $R^{\prime}$ is S-linear if an $($

only if $R$ is S-linear.

PROOF. The “only if” assertion holds since integrality is transitive
Conversely, assume that $R$ is S-linear, and let $D$ be any underring $0$

$R^{\prime}$ that contains $S$. It will suffice to find $X\in D$ such that $R^{\prime}$ is integra
over $S[X]$ , for $R^{\prime}$ will then be integral over $D$ , as desired. Thus, $b\urcorner$
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Lemma 3.1 (iii) and the transitivity of integrality, it will suffice to find
$XeD\cap R$ which is transcendental over $S$. Hence, we need only prove
that $t.d.(D\cap R/S)=1$ .

As Lemma 3.1 (ii) makes the assertion clear in case $R$ is algebraic over
$S$ , Lemma 3.1 (i) reduces us to $t.d.(R/S)=1$ . Hence $t.d.(D/S)=1$ , and we
may pick Ye $D$ which is transcendental over $S$. Thus $t.d.(D\cap R[Y]/S)=$
$1$ , and so $K$ is algebraic over (the quotient field of) $D\cap R[Y]$ . Hence,
by [7, Corollary 1.8], $K$ is that quotient field. Now, since $Y$ is integral
over $R$ , the conductor $(R:R[Y])$ is nonzero, and an application of [7,
Proposition 2.2] yields that $D\cap R$ has quotient field $K$. In particular,
$t.d.(D\cap R/S)=t.d.(R/S)=1$ , completing the proof.

PROPOSITION 3.3. Let $S\subset R$ be domains. Let $L$ be a subfield of $K$

which contains S. Assume that $R$ is S-linear, $R$ is integrally closed,
and $t.d.(R\cap L/S)=1$ . Then $R\cap L$ is S-linear and $R\cap L$ has quotient
field $L$ .

PROOF. Choose $XeA=R\cap L$ , transcendental over $S$. By Lemma 3.1
(iii), $R$ is integral over $S[X]$ , and so $R$ is the integral closure of $S[X]$

in $K$. Hence, $A$ is the integral closure of $S[X]$ in $L$ . Moreover, Lemma
3.1 (i) and the hypotheses yield $t.d.(R/S)=1$ , and it follows easily that
$L$ is algebraic over $S[X]$ . Then, by clearing denominators, $A_{s[x]\backslash \{0\}}=L$ ;
in particular, $L$ is the quotient field of $A$ .

It remains to show that if $D$ is an underring of $A$ which contains
$S$ , then $A$ is integral over $D$ . As $t.d.(D/S)=t.d.(L/S)=1$ , we may pick
$YeD$ , transcendental over $S$ . By Lemma 3.1 (iii), $R$ is integral over
$S[Y]$ . As $S[Y]\subset D\subset A\subset R$ , the proof is complete.

We come next to this section’s main result, motivated in part by
Remark 2.4 (b), (c).

THEOREM 3.4. Let $S\subset R$ be domains whose corresponding extension
of quotient fields $F\subset K$ is not algebraic. If $R$ is S-linear, then precisely
one valuation ring of $K/F$ does not contain $R$ .

PROOF. A valuation ring of $K$ contains $R$ if and only if it contains
$R^{\prime}$ . Thus, in view of Proposition 3.2, we may replace $R$ with $R^{\prime}$ ; that
is, suppose $R$ integrally closed. Moreover, since the intersection of all
valuation rings of $K/F$ is algebraic over $F$ and $K/F$ is not algebraic, at
least one valuation ring of $K/F$ does not contain $R$ .

Case 1: $K$ finitely generated over $F$. If the assertion fails, choose
distinct valuation rings $V_{1},$ $V_{2}$ of $K/F$ , neither of which contains $R$ . By
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Lemma 3.1 (i) and the hypothesis, $t.d.(R/S)=1$ . Now, let $D$ denote the
intersection of all valuation rings of $K/F$ other than $V_{2}$ . By Riemann’s
theorem (cf. [7, Remark 3.1]), $K$ is the quotient field of $D$ . We claim
that $A=V_{1}\cap R$ also has quotient field $K$. Indeed, it is enough to show
that $B=A_{s\backslash \{0\}}$ has quotient field $K$. Note that $B=V_{1}\cap R_{s\backslash \{0\}}$ contains $F$. As
$R_{s\backslash \{0\}}$ is integrally closed, it is an intersection of a family $\{W\}$ of valuation
rings of $K/F$. As $R\not\subset V_{2}$ , no $W$ is $V_{2}$ , and so $D\subset\cap W=R_{s\backslash \{0\}}$ . As $D\subset V_{1}$ ,
it follows that $D\subset B$ , whence $K$ is the quotient field of $B$ , proving the
claim. Since $R$ is S-linear, $R$ is integral over $A$ , although $R$ is not
contained in the valuation overring $V_{1}$ of $A$ . This (desired) contradiction
settles case 1.

General case. Once again, suppose the assertion fails, and choose
distinct valuation rings $V_{1},$ $V_{2}$ of $K/F$ , neither of which contains $R$ . As
above, $t.d.(R/S)=1$ . Pick $XeR$ , transcendental over $F$. Since $K$ is
algebraic over $F(X),$ $E_{i}=V\cap F(X)$ is a nontrivial valuation ring of
$F(X)/F$. Hence, $E_{i}$ is a DVR. In particular, $\dim(E_{i})=1$ , and so (cf.
[6, Theorem 19.16 $(c)$]) $\dim(V)=1$ . Thus $V_{1}$ and $V_{2}$ are incomparable,
yielding an element $\alpha$ in the maximal ideal of $V_{1}$ but not in the maximal
ideal of $V_{2}$ . Put $L=F(X, \alpha)$ and $R_{1}=R\cap L$ . By Proposition 3.3, $R_{1}$ is
S-linear and has quotient field $L$ . As $S[X]\subset R_{1}$ and Lemma 3.1 (iii) yields
that $R$ is integral over $S[X],$ $R$ is integral over $R_{1}$ . Since $D=V\cap L$

is a valuation ring of $L/F$, one has $R_{1}\not\subset D_{i}$ (lest $R\subset D\subset V$ , an absurdity).
By case 1, $D_{1}=D_{2}$ , contradicting $\alpha^{-1}\in D_{2}\backslash D_{1}$ . This completes the proof.

As a partial converse to the above result, we next offer

PROPOSITION 3.5. Let $S\subset R$ be domains whose corresponding extension
of quotient fields $F\subset K$ is not algebraic. Then $R\dot{\tau}s$ S-linear if and only
if at most one valuation ring of $K/S$ does not contain $R$ .

PROOF. The “if” assertion follows by combining Theorem 3.4 with
Lemma 3.1 (iii). As for the converse, by Proposition 3.2, we may suppose
that $R$ is integrally closed. If the assertion fails, there exists an un-
derring $D$ of $R$ such that $S\subset D$ and $R$ is not integral over $D$ . The lattex
condition gives a valuation overring $V$ of $D$ such that $R\not\subset V$. Then, by
hypothesis, $D$ is contained in each valuation ring of $K/S$ and, a fortiori,
in each valuation ring of $K/F$. Hence $D$ is algebraic over $F$, although
$K$ is not. This contradiction completes the proof.

Our next result is the promised characteristic $p$ result. In conjunction
with Theorem 2.3, it gives the final result.

COROLLARY 3.6. Assume that $ch(R)=p>0$ and that $R$ is not algebraic



DOMAINS INTEGRAL OVER UNDERRING 325

over $F_{p}$ . Then $R$ is integral over each underring of $R$ if and only if
precisely one valuation ring of $K$ does not contain $R$ .

PROOF. Set $S=F_{p}(=F)$ . As each domain of characteristic $p$ contains
$F_{p}$ , the assertion follows by combining Theorem 3.4 and Proposition 3.5.

COROLLARY 3.7. $R$ is integral over each underring of $R$ if and only
if one of the following three conditions holds:

(1) $R$ is isomorphic to a subring of $A$ ;
(2) $R=K$ is an algebraic field extension of some $F_{p}$ ;
(3) $ch(R)>0$ and precisely one valuation ring of $K$ does not contain

$R$ .
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