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\S 1. Introduction.

The antilocality (to all directions) of an operator $A$ states that, if
$f=Af=0$ in a domain $U$ then $f$ is identically zero on the whole space.
Goodman-Segal [2] and Murata [12] proved the antilocality in $R^{n}$ of the
operator $(m^{2}I-\Delta)^{\lambda}$ , where $\Delta$ is the Laplacian and $\lambda$ is a non-integral real
number. The interest of the former physicists lied in the non-relativistic
approximation of the relativistic quantum theory. Mathematically, both
of them used classical methods connected with the Hardy space in the
proof. Later, in his study on the complex powers of elliptic operators
with analytic coefficients, Liess [11] showed the property using the hyper-
functions in connection with the theory of pseudodifferential operators
with analytic symbols.

The notion of antilocality has been extended to that of the one-sided
antilocality by Ishikawa [4], [5], and he proved it for the sums of one-
dimensional stable generators. Recently, in connection with the potential
theory corresponding to the operators of L\’evy-Khintchin type, Kanda [8]
has treated a similar problem.

Here we propose an extended notion of a biased antilocality (called
$\Gamma$-antilocality). This states that if $f=Af=0$ in a domain $U$, then the
zero’s of $f$ propagates from $U$ to infinity only in some directions. This
implies that if $\Gamma$ is a (open or closed) convex cone in $R^{2}$ and if $Af_{1}=Af_{2}$

and $f_{1}=f_{2}$ in a domain $U$ for suitable functions $f_{1},$ $f_{2}$ , then $f_{1}=f_{2}$ in $ U+\Gamma$ .
Such an operator appears as an infinitesimal generator of a semi-group
$(T_{t})_{t>0}$ corresponding to a Markov process of iump type. In fact, the
generator $A$ of two-dimensional stable process Whose L\’evy measure is
supported on a closed convex proper cone $\Gamma$ has $\Gamma$-antilocality (Theorem
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2.4). Analytically, this phenomenon is closely connected with the propa-
gation of (micro-) analyticity in the theory of micro-functions, and $s^{r}$

Sato-Kashiwara-Kawai theory ([61, [71) will prove to be a powerful tool.
We first prove the localized version of F-antilocality, that is, Lemma

3.1, and then apply it at each point in $ U+\Gamma$ repeatedly to show the
$\Gamma$-antilocality. In the procedure of the proof, we use the so-called
”sweeping-out method”.

The outline of the present paper is as follows. In \S 2, we give some
definitions and explanations for notation necessary to state our main
result. In \S 3 we prove our key lemma (Lemma 3.1), whose proof is
divided into two cases according to the angle of the cone. \S 4 is devoted
to the proof of our sweeping-out method using the curve.

We restrict our study to a class of symbols of very simple form,

that of stable generators. The result is valid for two-dimensional more
general class of symbols. A sufficient condition for F-antilocality of a
class satisfying assumptions $(A1)-(A3)$ in \S 2 under the restrictions on
the angle of the corresponding convex cones is given in Appendix.

In conclusion, the author wishes to express his gratitude to Professor
M. Kanda, who led him to this problem. Also, the author thanks Dr.
N. Minami who read through the earlier manuscript and corrected the
writing.

\S 2. Notation and main result.

In this section, to state our main result, we introduce a class of
operators and a property connected with it which we shall study in this
paper. For details on the general theory of pseudodifferential operators
consult H\"ormander [3] or Kumano-go [10].

Let DcR2 be a domain and $\Delta$ be an open convex cone in $R^{2}-\{0\}$ .
Here and later we call $\Delta$ a cone if $ t\Delta\subset\Delta$ for any $t>0$ . For a compact
$K\subset\subset D$ , let us define the complex neighborhood $K_{\epsilon,K,\Delta}$ by $ K_{\epsilon,K,\Delta}\equiv$

$\{(z, \zeta)\in C^{2}\times C^{2};dist(z, K)<\epsilon, |\zeta|>M, {\rm Re}\zeta\in\Delta, |{\rm Im}\zeta|<\epsilon|{\rm Re}\zeta|\}$ where $M$ and
$\epsilon$ are positive numbers. Let $S_{A}^{l}(D, \Delta)(s\in R)$ be the set of all functions
$a(x, \xi)\in C^{\infty}(D\times\Delta)$ such that for every compact $K\subset\subset D$ and for every open
cone $\Delta’\subset\subset\Delta$ there are $\epsilon>0,$ $M>0$ and $C>0$ for which $a(x, \xi)$ extends to
an analytic function on $K_{\epsilon,H,\Delta^{\prime}}$ which satisfies $|a(z, \zeta)|\leqq C(1+|\zeta|)$ on $K_{e,K,\Delta^{\prime}}$ .
Here we use $\Delta^{\prime}\subset\subset\Delta$ for cones $\Delta$

’ and $\Delta$ in the sense that the closure of
$\Delta^{\prime}\cap S^{1}$ is contained in $\Delta\cap S^{1}$ .

By $S_{A}^{l}(D, R^{2}, \Delta)$ we denote the space of $a(x, \xi)\in S_{1,0}^{l}(D, R^{2})$ such that
the restriction $a|_{D\times\Delta}$ to $ D\times\Delta$ belongs to $S_{A}^{\epsilon}(D, \Delta)$ . Here $S1_{0}(D, R^{2})$ denotes
the set of all functions $a(x, \xi)\in C^{\infty}(D\times R^{2})$ such that for every multi-index
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$k,$ $l$ there exists $C_{k,l}>0$ for which $a(x, \xi)$ satisfies

$|(\partial/\partial x)^{l}(\partial/\partial\xi)^{k}a(x, \xi)|\leqq C_{k,l}(1+|\xi|)^{\epsilon-|k|}$ on $D\times R^{2}$ .
We denote by $SFA(D, \Delta)$ the set of all formal sums $\sum_{j\geqq 0}a_{j}(x, \xi)$ with

$a_{j}(X\xi)\in S_{A}^{s-j}(D, \Delta)$ , with the property below:

for every $K\subset\subset D$ and every open cone $\Delta\subset\subset\Delta$ there are $\epsilon>0$ ,
$M>0,$ $C>0$ and $A>0$ such that each $a_{k}(x, \xi)$ can be extended to
an analytic function on $K_{\epsilon,M,\Delta^{\prime}}$ and satisfies

$|a_{k}(z, \zeta)|\leqq CA^{k}k[(1+|\zeta|)^{\epsilon-k}$ on $K_{e,K,\Delta^{\prime}}$ .
For $\sum a_{j},$ $\sum b_{j}\in SF_{A}^{\epsilon}(D, \Delta)$ , we write $\sum a_{j}\sim\sum b_{j}$ in $SFA(D, \Delta)$ if for

every open cone $\Delta’\subset\subset\Delta$ there exist $\epsilon>0,$ $M>0,$ $C>0$ and $A>0$ such that

$|\sum_{j<t}(a_{j}(z, \zeta)-b_{j}(z, \zeta))|\leqq CA^{t}t\downarrow(1+|\zeta|)^{\epsilon-t}$ on $K_{\epsilon,M,\Delta^{\prime}}$

for every integer $t>0$ .
In case that symbols are independent of the variable $x$ , the classev

$S_{A}^{s}(D, \Delta),$ $S_{A}^{s}(D, R^{2}, \Delta),$ $SF_{A}^{s}(D, \Delta)$ are simply denoted by $S_{A}^{\epsilon}(\Delta),$ $S_{A}^{s}(R^{2}, \Delta)$ ,
$SF_{A}^{\epsilon}(\Delta)$ respectively.

REMARK 2.1. Let $\Delta_{1}$ be an open cone in $R^{2}-\{0\}$ such that $\Delta_{1}c\subset\Delta$ .
For $a\in S_{A}^{s}(D, \Delta)$ , there exists an $a^{\prime}\in S_{A}^{\epsilon}(D, R^{2}, \Delta_{1})$ such that $a^{\prime}-a$ vanishes
for $(x, \xi)$ with large $|\xi|,$ $\xi\in\Delta_{1}$ .

Indeed, choose non-negative $\omega\in C^{\infty}(R^{2})$ such that $\omega=1$ in $\Delta_{1}-\{|\xi|\leqq 1\}$

and $\omega=0$ in $(R^{2}-\Delta)\cup\{|\xi|<1/2\}$ . Then $a^{\prime}(x, \xi)=\omega(\xi)a(x, \xi)$ is in $S_{A}^{\epsilon}(D, R^{2}, \Delta_{1})$

and $a’-a$ has the desired property.

We define an operator $A$ corresponding to $a(x, \xi)\in S_{A}^{s}(D, \Delta)$ by

(2.1) $ Af(x)=\int\int e^{i\langle-y,\text{\’{e}}\rangle}xa(y, \xi)f(y)dyd\xi$

where $d\xi=(1/2\pi)^{2}d\xi_{1}d\xi_{2}$ and $a$ is defined to be zero outside of $ D\times\Delta$ .
We call the operator $A$ defined by (2.1) the operator corresponding

to the symbol $a\in S_{A}^{l}(D, \Delta)$ . (The operator $A$ may be considered as the
transposed ${}^{t}a(x, D)$ of the analytic pseudodifferential operator $a(x, D)$ as-
sociated with $a(x, \xi)$ in a natural way.)

In the following we fix a domain $D$ in $R^{2}$ .
Let $S$ be a simple (closed) analytic curve in $D$ . A real function $g$

on an open neighborhood of $x\in S$ is said to have an analytic extension
at $x$ with respect to the curve $S$ if there is a real analytic function $h$

near $x$ such that $g-h=0$ inside of $S$ near $x$ .
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DEFINITION 2.2. Let $A$ be a linear operator: $C_{0}^{\infty}(D)\rightarrow C^{\infty}(D)$ . Let $\Gamma$

be a (open or closed) convex cone in $R^{2}-\{0\}$ .
The operator $A$ has F-antilocality if the following holds: if $f=Af=0$

in an open non-empty set UcD and if $f\in C_{0}^{\infty}(D)$ then $f=0$ in $(U+\Gamma)\cap D$ .
In this case we simply say that $A$ has $\Gamma-[AL]$ . If $\Gamma=R^{2}-\{0\}$ in

the above definition, $A$ is simply said to have the antilocality ([AL] for
short).

Let $\Gamma\subset cR^{2}-\{0\}$ be a closed convex cone. Let $\Gamma^{*}$ be another open
convex cone given by $\Gamma^{*}=int(\Gamma^{o})$ ; the interior of the dual cone of $\Gamma$ .
Here the dual cone $\Gamma^{o}$ of $\Gamma$ is given by $\Gamma^{o}=\{y\in R^{2}$ ; $\langle y, x\rangle\geqq 0$ for every
$x\in\Gamma\}$ . The generator $A$ of two-dimensional stable process (called the
stable generator) with index $\alpha\in(0,1)\cup(1,2)$ whose L\’evy measure is
supported on $\Gamma$ is the operator corresponding to the symbol $a(\xi)$ given
by

(2.2) $ a(\xi)=-Ce^{-i\alpha\pi/2}\int_{S^{1}\cap\Gamma\cap\{\theta:\langle x,\text{\’{e}}\rangle>0\}}|\langle x, \xi\rangle|^{\alpha}d\theta$

$-Ce^{i\alpha\pi/2}\int_{s^{l}nr\cap\{\theta;\langle x,\xi\rangle<0\}}|\langle x, \xi\rangle|^{\alpha}d\theta$ ,

where $x=(x_{1}, x_{2})=$ ($\cos\theta$ , sin $\theta$ ) and $\xi=(\xi_{1}, \xi_{2})=$ ( $\rho$ cos $\varphi,$ $\rho$ sin $\varphi$) (see Komatsu
[9, sect. 11]).

We observe that the symbol $a(\xi)$ enioys the following three properties:
(A1) $a(\xi)\in S_{A}^{\alpha}(\Delta\cup-\Delta)$ for every open convex cone $\Delta\subset\subset R^{2}-\{0\}$ ,
(A2) $a(t\xi)=t^{\alpha}a(\xi)$ for $|\xi|>0,$ $t>0$ ,
(A3) $a(\xi)$ has a hyperfunction expression

$a(\xi)=A_{+}(\xi+i\Gamma^{*}0)-A_{-}(\xi-i\Gamma^{*}O)$ ,

where $A_{\pm}(\zeta)$ are holomorphic in wedges of type $R^{2}\pm i\Gamma^{*}0$ .
In fact, $A_{\pm}(\zeta)$ are given by

$ A_{\pm}(\zeta)=\mp C\int_{s^{1}\cap r\cap\{\theta;\pm\langle x.\text{\’{e}}\rangle>0\}}\exp\alpha\log\langle x, \zeta\rangle d\theta$

with the branch of logarithm so chosen that $\log\langle x, \zeta\rangle|_{\zeta=\xi}=\log|\langle x, \xi\rangle|-i\pi/4$

if $\langle x, \xi\rangle>0$ . Note that $A_{\pm}(\xi\pm i\Gamma^{*}O)$ does not vanish if and only $i$:
$\xi\in S^{1}-(\mp\Gamma^{o})$ .

The properties (A1), (A2) imply that $a(\xi)\in C^{\infty}(R^{2}-\{0\})$ with the growtl
order $\alpha$ at infinity. By choosing $\omega\in C^{\infty}(R^{2})$ such that $\omega=1$ in $\{|\xi|\geqq 1\}$ ant
$\omega=0$ in $\{|\xi|<1/2\}$ , we can rewrite the operator $A$ as

$ Af(x)=\int\int e^{i\langle-\nu,\text{\’{e}}\rangle}x\omega(\xi)a(\xi)f(y)dyd\xi+\int\int e^{i\langle x-y,\text{\’{e}}\rangle}(1-\omega(\xi))a(\xi)f(y)dyd\xi$ ,
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where $\omega\cdot a\in S_{1,0}^{\alpha}(R^{2})$ . Observe that, for $f\in C_{0}^{\infty}(D)$ , the first term is $C^{\infty}$ in
$D$ and that the second term is real analytic in $D$. Hence $A$ defines an
operator from $C_{0}^{\infty}(D)$ to $C^{\infty}(D)$ .

REMARK 2.3. In case $\Gamma=R^{2}-\{0\}$ in (2.2), the symbol $a(\xi)$ is reduced
to $-C_{1}\rho^{\alpha}$ , and so $A$ is the constant multiple of $(-\Delta)^{\alpha/2}$ . In this case
the antilocality (to all directions) is well known, cf. Goodman-Segal [2],
Murata [12].

Now we have our main theorem:

THEOREM 2.4. Let $\Gamma$ be a closed convex cone in $R^{2}-\{0\}$ and let $A$

be the stable generator with index $a\in(0,1)\cup(1,2)$ whose Livy measure
is supported on $\Gamma$ . If $\Gamma$ is proper then $A$ has $\Gamma-[AL]$ . If $\Gamma\neq R^{2}-\{0\}$

then $A$ does not have $[AL]$ .
An example which shows that $A$ is not antilocal in case $\Gamma\neq R^{2}-\{0\}$

is easily given: one has only to take $f\in C_{0}^{\infty}(D)$ such that $f\not\equiv O$ and
supp $ f\cap(U+\Gamma)=\emptyset$ . And so in the following we assume that $\Gamma$ is proper.

\S 3. Proof of the main result (I).

In this section we shall show the following

LEMMA 3.1. Let $x$ be a point in a simple (closed) analytic curve
$S=\{s(x)=0\}$ in D. Let $f\in C_{0}^{\infty}(D)$ be such that $V\cap suppfc\{s(x)\geqq 0\}(\equiv the$

outside of $S$) for some neighborhood $V$ of $x$ .
Let $A:C_{0}^{\infty}(D)\rightarrow C^{\infty}(D)$ be the operator given in Theorem 2.4. Assume

that the unit outer normal $\nu_{x}$ of $S$ at $x$ is in $S^{1}-(-\Gamma^{o})$ and that $Af$

has an analytic extension at $x$ with respect to the curve $S$, then
$x\not\in suppf$.

Before beginning the proof, we shall remark a special property of the
operators with symbols in $S_{A}^{\alpha}(D, R^{2}, \Delta)$ .

LEMMA 3.2 (cf. Liess [1, Theolems 2.6, 2.7]). The operator $A$ with
symbol $a(x, \xi)$ in $S_{A}^{\alpha}(D, R^{2}, \Delta)$ has $\Delta$-analytic pseudolocal property $(\Delta-[APL]$

for short), that is,

SS $Af\cap(D\times\Delta)c$ SS $f$ .
In view of Remark 2.1, the statement just above also holds for

operators with symbols in $S_{A}^{\alpha}(D, \Delta)$ .
The rest of this section is devoted to the proof of Lemma 3.1.
By performing a linear coordinate transformation, we may consider

the case $\nu_{x}=e\equiv(0,1)$ and $x=0$ . Choose an open cone $\Delta_{1}c\subset R^{2}-\{0\}-(-\Gamma^{o})$
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such that $e\in\Delta_{1}$ and that angle $(\Delta_{1})<\pi/2$ .
Let $V$ be an open connected neighborhood of $0$ and let $\Phi:x=\Phi(y)$ be

an analytic coordinate transformation on $V$ such that $\Phi(0)=0,$ $(d\Phi/dy)_{0}=I$

and $\Phi^{-1}(S\cap V)c\{y_{2}=0\}$ . Let $\varphi=_{def}\Phi^{*}f$. Then $\Psi=def\Phi^{*}(Af)$ can be written

(3.1) $\Psi(y)=\int\int e^{i\langle y-y^{\prime},\eta\rangle}b(y’, \eta)\varphi(y^{\prime})dy^{\prime}d\eta$

with $b(y^{\prime}, \eta)=a(((d\Phi/dy^{\prime})_{y}^{t},)^{-1}\eta)$ , where $((d\Phi/dy^{\prime})_{\nu}^{t},)^{-1}$ denotes the inverse of
transposed matrix $(d\Phi/dy^{\prime})^{t}$ evaluated at $y$

’ (cf. Kumano-go [10, Chap. 2,
Sect. 6]). Since $a(\xi)eS_{A}^{\alpha}(\Delta_{1}U-\Delta_{1}),$ $\Phi(0)=0,$ $(d\Phi/dy)_{0}=1$ and $y\mapsto(d\Phi/dy)_{\nu}$ is
analytic, $b(y, \eta)eS_{A}^{\alpha}(V_{1}, \Delta_{2}\cup-\Delta_{2})$ for some $V_{1}c\subset V$ and some open cone $\Delta_{2}$

such that $e\in\Delta_{2}\subset\subset\Delta_{1}$ .
We recall the hyperfunction expression of the symbol $a(\xi)$ :

$a(\xi)=A_{+}(\xi+i\Gamma^{*}0)-A_{-}(\xi-i\Gamma^{*}0)$ .
Here $A_{\pm}(\zeta)$ are holomorphic in wedges of type $R^{2}\pm i\Gamma^{*}0$ respectively.
Hence, denoting $\xi=\Psi_{y}\eta,$ $\Psi_{\nu}=((d\Phi/dy)_{y}^{t})^{-1},$ $b(y, \eta)$ has the expression

$b(y, \eta)=\Psi_{y}^{*}A_{+}(\eta+i\Psi_{y}^{-1}\Gamma^{*}0)-\Psi_{y}^{*}A_{-}(\eta-i\Psi_{\overline{\nu}}^{1}\Gamma^{*}0)$ .
Here $\Psi_{\nu}^{*}A_{\pm}(\zeta)$ are holomorphic in wedges of type $R^{2}\pm i\Psi_{y}^{-1}\Gamma^{*}0$ respectively.

In the sequel we divide the discussion into two cases according to
the angle of $\Gamma$ .

Case I. angle $\Gamma\leqq\pi/2$ .
In this case, we observe $\{x;\langle e, x\rangle>0\}\cap(\Gamma^{*})\neq\emptyset$ if $eeS^{1}-(-\Gamma^{o})$ .

Hence, since $\Psi_{0}=I$, and $y\mapsto\Psi_{\nu}^{-1}\Gamma^{*}$ is continuous,

(3.2) $\{x;\langle e, x\rangle>0\}\cap(\Psi_{\nu}^{-1}\Gamma^{*})\neq\emptyset$

for $y$ in a small neighborhood $V_{2}ccV_{1}$ of zero.
Fix $y\in V_{2}$ . Since $b(y, \eta)\in S_{A}^{\alpha}(V_{2}, \Delta_{2}\cup-\Delta_{2}),$ $b(y, \eta)$ can be extended to a

holomorphic function $d(y, \zeta)$ in a complex neighborhood $U^{0}$ of $\Delta_{2}:d(y, \zeta)=$

$\Psi_{\nu}^{*}A_{+}(\zeta)-\Psi_{y}^{*}A_{-}(\zeta),$ $\zeta\in U^{0}$ . Here we can use the analytic continuation of
$d(y, \cdot)$ along curves in wedges of type $W\equiv(\Delta_{2}U-\Delta_{2})-i(\{x;\langle e, x\rangle>0\}\cap\Psi_{\nu}^{-1}\Gamma^{*})0$

from $U^{0}$ to extend the domain of $d(y, )$ to $-\Delta_{2}$ . This is possible since
$d(y, \zeta)$ does not vanish on $W$ and $W$ is simply connected. Then, on $-\Delta_{2}$ ,
we have

(3.3) $d(y, \eta)=e^{-i\alpha\pi}\Psi_{y}^{*}A_{+}(-\eta+i\Psi_{\nu}^{-1}\Gamma^{*}0)-\Psi_{y}^{*}A_{-}(\eta-i\Psi_{\overline{\nu}}^{1}\Gamma^{*}0)$

$=e^{-i\alpha\pi}(\Psi_{y}^{*}A_{+}(-\eta+i\Psi_{y}^{-1}\Gamma^{*}0)-\Psi_{\nu}^{*}A_{-}(-\eta-i\Psi_{y}^{-1}\Gamma^{*}0))$

$=e^{-i\alpha\pi}b(y, -\eta)$ .
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Since $b(y, \eta)\in S_{A}^{\alpha}(V_{2}, \Delta_{2}\cup-\Delta_{2})$ , we see that $d(y, \eta)$ is also in $S_{A}^{\alpha}(V_{2}, \Delta_{2}\cup-\Delta_{2})$ ,
and hence

$b(y, \eta)-d(y, \eta)=\Psi_{y}^{*}A_{+}(\eta+i\Psi_{y}^{-1}\Gamma^{*}0)-e^{-i\alpha\pi}\Psi_{y}^{*}A_{+}(-\eta+i\Psi_{y}^{-1}\Gamma^{*}0)$

$=(e^{i\alpha\pi}-e^{-i\alpha\pi})\Psi_{\nu}^{*}A_{+}(-\eta+i\Psi_{y}^{-1}\Gamma^{*}0)$

defines a non-zero symbol in $S_{A}^{\alpha}(V_{2}, -\Delta_{2})$ , since $e\in S^{1}-(-\Gamma^{o})$ .
Let $\omega=\omega_{\Delta_{2}}$ be the cut-off function in Remark 2.1. Put $d^{\prime}(y, \eta)=$

$\omega(\eta)d(y, \eta)$ . Then we see that $d’\in S_{A}^{\alpha}(V_{2}, R^{2}, \Delta_{2}\cup-\Delta_{2})$ and that $\omega(b-d’)$

defines a non-zero symbol in $S_{A}^{\alpha}(V_{2}, R^{2}, -\Delta_{2})$ .
Here we prepare the following lemma. Let $\Delta$ be an open conic

neighborhood of $e=(O, 1)$ . Let Kcc $V$ be a compact set such that
$ 0\in$ int $K$.

LEMMA 3.3 (Liess [11, Proposition 4.1]). Let $b(y, \xi)\in S_{A}^{l}(V, R^{2}, \Delta\cup-\Delta)$ .
Suppose there are constants $\epsilon,$ $c,$ $A,$ $M$ such that $b$ is analytic on $K_{e,\Pi,\Delta\cup-\Delta}$

and that for every $(y, \xi_{1})\in K\times R$ the function $\xi_{2}->b(y, (\xi_{1}, \xi_{2}))$ can be ex-
tended analytically for $|\zeta_{2}|\geqq M(1+|\xi_{1}|),$ ${\rm Im}\zeta_{2}\leqq 0$ and satisfy the estimate

$|b(y, (\xi_{1}, \zeta_{2}))|\leqq cA(1+|(\xi_{1}, \zeta_{2})|)^{*}$

on that set.
Let $f\in C_{0}^{\infty}(V)$ , supp $f\subset\{x;x_{2}\geqq 0\}\cap K$. Then there are constants $\gamma$ and

$C$ such that for every $g\in \mathscr{G}(R)$ which satisfies $|\hat{g}(\xi_{1})|\leqq\exp(-\gamma|\xi_{1}|)$ , it follows
that

$|D_{x}^{\alpha}\int\int e^{i\langle x-y,\text{\’{e}}\rangle}\hat{g}(\xi_{1})b(y, \xi)f(y)dyd\xi|\leqq C(C|a|)^{|\alpha|}$

if $xeK$ and $x_{2}<0$ .
Set

$ G(x)d=ef\int\int e^{i\langle x-y,\text{\’{e}}\rangle}\hat{g}(\xi_{1})b(y, \xi)f(y)dyd\xi$

for the function $g$ in the lemma. Since $g$ is real analytic and

$ G(x)*\int\int e^{i\langle x-y,\text{\’{e}}\rangle}b(y, \xi)f(y)dyd\xi$ ,

where $*^{\prime}$ denotes the convolution in $x_{1}$ , the lemma implies that $G$ is real
analytic on $\{x_{2}<0\}$ and has an analytic extension at $0$ with respect to
$\{x_{2}=0\}$ .

Now we begin the proof in case I. In the following we assume that
$f$ is a function in $C_{0}^{\infty}(D)$ . We write $f=f_{1}+f_{2}$ with $f_{1},$ $f_{2}\in C_{0}^{\infty}(D)$ such that
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supp $f_{1}c\{|x|<\epsilon\}$ and supp $f_{2}c\{|x|\geqq\epsilon/2\}$ . Here $\epsilon>0$ is such that $V_{2}\supset\{|x|<\epsilon\}$ .
Put $\varphi_{1}=\Phi^{*}f_{1},$ $\varphi_{2}=\Phi^{*}f_{2}$ .

Now we shall decompose

$\int\int e^{i\langle y-\nu^{\prime},\eta)}(b(y’, \eta)-d’(y^{\prime}, \eta))\varphi(y’)dy^{\prime}d\eta$

$=\int\int e^{i\langle y-y^{\prime},\eta\rangle}(b(y^{\prime}, \eta)-d^{\prime}(y^{\prime}, \eta))\varphi_{1}(y^{\prime})dy’ d\eta$

$+\int\int e^{\langle y-y^{\prime},\eta\rangle}b(y^{\prime}, \eta)\varphi_{2}(y^{\prime})dy^{\prime}d\eta$

$-\int\int e^{\langle y-\nu^{\prime}.\eta\rangle}d^{\prime}(y^{\prime}, \eta)\varphi_{2}(y^{\prime})dy^{\prime}d\eta$

$:=u_{1}+u_{2}-u_{3}$ (say).

Since $d^{\prime}(y, \eta)\in S_{A}^{\alpha}(V_{2}, R^{2}, \Delta_{2}\cup-\Delta_{2})$ , in view of (3.2) the assumption
of Lemma 3.3 is satisfied with $V=V_{2},$ $K=\{|x|\leqq\epsilon\}$ and $\Delta=\Delta_{2}$ . Hence
$g*’(\int\int e^{i\langle r-y^{\prime},\eta\rangle}d’(y’, \eta)\varphi_{1}(y^{\prime})dy^{\prime}d\eta)$ is real analytic in $\{|y|<\epsilon’, y_{2}<0\}$ for some
$\epsilon^{\prime}>0$ and has an analytic extension at $0$ . Here $ge\mathscr{G}(R)$ is the function
in the lemma.

By the assumption that $Af$ has an analytic extension $h$ at $0$ with
respect to $S,$ $\psi=\Phi^{*}(Af)$ has an analytic extension $h_{1}=\Phi^{*}h$ at $0$ with
respect to $\{y_{2}=0\}$ which coincides with $\psi$ in $\{|y|<\epsilon^{\prime}, y_{2}<0\}$ . Hence

$ g*^{\prime}(\int\int e^{i\langle y-\nu^{\prime},\eta\rangle}(b(y^{\prime}, \eta)-d’(y’, \eta))\varphi_{1}(y’)dy^{\prime}d\eta$

$+\int\int e^{i\langle y-y^{\prime},\eta\rangle}b(y^{\prime}, \eta)\varphi_{2}(y^{\prime})dy^{\prime}d\eta-h_{1})$

has an analytic extension $w$ in $\{|y|<\epsilon^{\prime}\}$ .
On the other hand, it follows that

(3.4) $(0, iedx\infty)\not\in SSu_{1}$ and hence $(0, iedx\infty)\not\in SS(g*\prime u_{1})$ .
Indeed, take any closed conic neighborhood $\Delta^{o}cc\Delta_{2}$ of $e$ . Then, since
$b(y, \eta)-d’(y, \eta)=0$ on $V_{2}\times\Delta^{o}$ , the result follows from the Paley-Wiener $\cdot$

Schwartz theorem ([6, Corollary 8.5.6]).
By Lemma 3.2 we see

(3.5) $(0, iedx\infty)\not\in SSu_{2}$ , and hence $(0, iedx\infty)\not\in SS(g*\prime u_{2})$ .
From (3.4), (3.5) we observe that $v=defw-g*’(u_{1}+u_{2}-h_{1})$ vanishes for
$y_{2}\leqq 0$ near zero and satisfies $(0, iedx\infty)\not\in SSv$ . We apply the Kashiwara-
Kawai theorem (K-K theorem for short, [6, Theorem 4.4.1], [3, Chap.
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VIII]) to see that $v$ vanishes near zero. Hence

(3.6) $(0, -iedx\infty)\not\in SS(g*’(u_{1}+u_{2}))$ .
It also follows from Lemma 3.2 that

(3.7) $(0, -iedx\infty)\not\in SSu_{3}$ , and hence $(0, -iedx\infty)\not\in SS(g*\prime u_{3})$ .
Combining these we obtain

(3.8) $(0, -iedx\infty)\not\in SS(g*’(u_{1}+u_{2}-u_{3}))$

$=SS(\int\int e^{i\langle y-y^{\prime},\eta\rangle}\hat{g}(\eta_{1})(b(y’, \eta)-d^{\prime}(y’, \eta))\varphi(y’)dy^{\prime}d\eta)$ .
We see that $\omega(\eta)(b(y, \eta)-d’(y, \eta))$ defines a symbol in $S_{A}^{\alpha}(V_{2},$ $R^{2}$ ,

$-\Delta_{2})$ . Putting $R(y, \eta)\equiv(b(y, \eta)-d’(y, \eta))^{-1}\in S_{A}^{-\alpha}(V_{2}, -\Delta_{2})$ , this satisfies
$\omega(\eta)(b(y, \eta)-d’(y, \eta))\cdot R(y, \eta)\sim 1$ in $SF_{A}^{0}(V_{2}, \Delta_{2})$ . So applying the regu-
larity theorem ([11, Theorem 2.8], [7, Cor. 4.1.6]), we have

(3.9) $(0, -iedx\infty)\not\in SS(\int e^{i\langle y,\eta\rangle}\hat{g}(\eta_{1})\hat{\varphi}(\eta)d\eta)$

$=SS(g*’\varphi)$ ,

which in turn implies $(0, -iedx\infty)\not\in SS\varphi$ . It follows $O\not\in supp\varphi$ by the K-K
theorem, and hence $O\not\in suppf$. This establishes the proof in case I.

Case II. $\pi/2<angle\Gamma<\pi$ .
In this case, we divide $\Gamma$ into the direct sum of two closed cones

$\Gamma_{1},$ $\Gamma_{2}$ with each angle $<\pi/2$ : $\Gamma=\Gamma_{1}\oplus\Gamma_{2}$ .
Let $\Gamma_{\dot{f}}^{*}=_{def}int(\Gamma_{\dot{f}}^{o})$ $(j=1,2)$ . We then see $\Gamma^{*}=\Gamma_{1}^{*}\cap\Gamma_{2}^{*}$ and

angle $(\Gamma_{1}^{*}+\Gamma_{2}^{*})=\pi$ . Put the half space $H=_{def}\overline{\Gamma_{1}^{*}+\Gamma_{2}}^{*}$ . We divide
$R^{2}-\{0\}-(-\Gamma^{o})$ into disjoint three parts:

$R^{2}-\{0\}-(-\Gamma^{o})=H+CH-(-\Gamma_{2}^{o})+CH-(-\Gamma_{1}^{o})$

$:=H+J+K$ , here $CH=R^{2}-H$ .
As in case I, we observe that $\{x;\langle e, x\rangle>0\}\cap(\Psi_{\overline{\nu}}^{1}\Gamma_{\dot{f}}^{*})\neq\emptyset$ for

$e\in S^{1}-(-\Gamma_{j}^{o})(j=1,2)$ and for $y$ in a small neighborhood $V_{2}ccV_{1}$ of
zero. Choose the conic neighborhood $\Delta_{2}$ so small that $\Delta_{2}\subset R^{2}-\{0\}-(-\Gamma^{o})$

(resp. $\Delta_{2}cK,$ $J$) in case $e\in H$ (resp. $e\in K,$ $J$).
Let $a_{j}(\xi)$ be the symbol of the stable generator whose L\’evy measure

is supported on $\Gamma_{j}$ given by the expressions (2.2), (2.3) with $\Gamma$ replaced
by $\Gamma_{j}$ :

$a_{j}(\xi)=A_{j+}(\xi+i\Gamma_{\dot{f}}^{*}0)-A_{j-}(\xi-i\Gamma_{j}^{*}0)$ $(j=1,2)$ .



140 YASUSHI ISHIKAWA

Obviously $a(\xi)=a_{1}(\xi)+a_{2}(\xi)$ .
Let $b_{j}(y, \eta)$ denote the modification obtained from $a_{\dot{f}}(\xi)$ in an obvious

way. Fix $y\in V_{2}$ . Then as in case I, $b_{j}(y, \eta)$ permits a holomorphic ex-
tension to a complex neighborhood $U^{0}$ of $\Delta_{2}:d_{j}(y, \zeta)=\Psi_{y}^{*}A_{j+}(\zeta)-\Psi_{\nu}^{*}A_{\dot{f}-}(\zeta)$ ,
$\zeta\in U^{0}$ . Put $b=b_{1}+b_{2}$ and $d=d_{1}+d_{2}$ .

(i) In case $e\in H$, we can perform the analytic continuation of $d$

along curves in wedges of type $(\Delta_{2}\cup-\Delta_{2})-i(\{x;\langle e, x\rangle>0\}\cap\Psi_{y}^{-1}\Gamma^{*})0$ from
$U^{0}$ as in case I. On $-\Delta_{2}$ we have $d(y, \eta)=e^{-i\alpha\pi}b(y, -\eta)$ , and hence

$b(y, \eta)-d(y, \eta)=(e^{i\alpha\pi}-e^{-i\alpha\pi})(\Psi_{y}^{*}A_{1+}+\Psi_{y}^{*}A_{2+})(-\eta+i\Psi_{y}^{-1}\Gamma^{*}0)$

$=(e^{i\alpha\pi}-e^{-i\alpha\pi})\Psi_{\nu}^{*}A_{+}(-\eta+i\Psi_{y}^{-1}\Gamma^{*}0)$

defines a non-zero symbol in $S_{A}^{\alpha}(V_{2}, -\Delta_{2})$ , since $S^{1}\cap\Delta_{2}\subset S^{1}-(-\Gamma^{o})$ .
(ii) In case $e\in K$, we have $\{x;\langle e, x\rangle>0\}\cap(\Psi_{\nu}^{-1}\Gamma_{1}^{*})\neq\emptyset$ and

$\{x;\langle e, x\rangle<0\}\cap(\Psi_{\nu}^{-1}\Gamma_{2}^{*})\neq\emptyset$ for $y\in V_{2}$ . And we perform the analytic
continuation of $d_{1}(y, )$ (resp. $d_{2}(y,$ $)$) along curves in wedges of type
$(\Delta_{2}\cup-\Delta_{2})-i(\{x;\langle e, x\rangle>0\}\cap\Psi_{\nu}^{-1}\Gamma_{1}^{*})0$ (resp. $(\Delta_{2}\cup-\Delta_{2})+i(\{x;\langle e, x\rangle<0\}\cap$

$\Psi_{\overline{\nu}}^{1}\Gamma_{2}^{*})0)$ from $U^{0}$ . On $-\Delta_{2}$ we have $d_{1}(y, \eta)=e^{-i\alpha\pi}b_{1}(y, -\eta)$ and $d_{2}(y, \eta)=$

$e^{-i\alpha\pi}b_{2}(y, \eta)$ . And so
$b(y, \eta)-d(y, \eta)=(b_{1}(y, \eta)-d_{1}(y, \eta))+(b_{2}(y, \eta)-d_{2}(y, \eta))$

$=(\Psi_{\nu}^{*}A_{1+}(\eta+i\Psi_{\nu}^{-1}\Gamma_{1}^{*}0)-e^{-i\alpha\pi}\Psi_{\nu}^{*}A_{1+}(-\eta+i\Psi_{y}^{-1}\Gamma_{1}^{*}0)$

$-\Psi_{\nu}^{*}A_{1-}(\eta-i\Psi_{\overline{\nu}}^{1}\Gamma_{1}^{*}0)+e^{-ia\pi}\Psi_{y}^{*}A_{1-}(-\eta-i\Psi_{y}^{-1}\Gamma_{1}^{*}0))$

$+(\Psi_{y}^{*}A_{2+}(\eta+i\Psi_{\nu}^{-1}\Gamma_{2}^{*}0)-e^{-i\alpha\pi}\Psi_{\nu}^{*}A_{2+}(-\eta+i\Psi_{y}^{-1}\Gamma_{2}^{*}0)$

$-\Psi_{\nu}^{*}A_{2-}(\eta-i\Psi_{\nu}^{-1}\Gamma_{2}^{*}0)+e^{-i\alpha\pi}\Psi_{\nu}^{*}A_{2-}(-\eta-i\Psi_{y}^{-1}\Gamma_{2}^{*}0))$

$=\Psi_{\nu}^{*}A_{1+}(\eta+i\Psi_{\nu}^{-1}\Gamma_{1}^{*}0)-e^{-i\alpha\pi}\Psi_{y}^{*}A_{1+}(-\eta+i\Psi_{\nu}^{-1}\Gamma_{1}^{*}0)$

$-(\Psi_{y}^{*}A_{2-}(\eta-i\Psi_{\nu}^{-1}\Gamma_{2}^{*}0)-e^{-l\alpha\pi}\Psi_{\nu}^{*}A_{2-}(-\eta-i\Psi_{\nu}^{-1}\Gamma_{2}^{*}0))$

$=(e^{i\alpha\pi}-e^{-t\alpha\pi})(\Psi_{\nu}^{*}A_{1+}(-\eta+i\Psi_{\nu}^{-1}\Gamma_{1}^{*}0)-\Psi_{y}^{*}A_{2-}(-\eta-i\Psi_{y}^{-1}\Gamma_{2}^{*}0))$ ,

which also defines a non-zero symbol in $S_{A}^{\alpha}(V_{2}, -\Delta_{2})$ , since $S^{1}\cap\Delta_{2}c$

$(S^{1}-(-\Gamma_{1}^{o}))\cap(S^{1}-(\Gamma_{2}^{o}))$ .
(iii) In case $e\in J$, by the similar argument as in (ii), we see that

$b(y, \eta)-d(y, \eta)=(e^{i\alpha\pi}-e^{-l\alpha\pi})(\Psi_{y}^{*}A_{2+}(-\eta+i\Psi_{\nu}^{-1}\Gamma_{2}^{*}0)-\Psi_{\nu}^{*}A_{1-}(-\eta-i\Psi_{\overline{\nu}}^{1}\Gamma_{1}^{*}0))$

defines a non-zero symbol in $S_{A}^{\alpha}(V_{2}, -\Delta_{2})$ , since $ S^{1}\cap\Delta_{2}c(S^{1}-(-\Gamma_{2}^{o}))\cap$

$(S^{1}-(\Gamma_{1}^{o}))$ .
Let $\omega=\omega_{\Delta_{2}}$ be the cut-off function in Remark 2.1. In any case we

see that $b\in S_{A}^{\alpha}(V_{2}, \Delta_{2}\cup-\Delta_{2})$ , $d’=_{def}\omega\cdot d\in S_{A}^{\alpha}(V_{2}, R^{2}, \Delta_{2}\cup-\Delta_{2})$ and that
$\omega(b-d^{\prime})$ defines a non-zero symbol in $S_{A}^{\alpha}(V_{2}, R^{2}, -\Delta_{2})$ . The arguments
for the proof in case I are also valid in this case, and so we have the
desired result. This establishes the proof of Lemma 3.1. Q.E.D.



$\Gamma$-ANTILOCALITY 141

\S 4. Proof of the main result (II).

In this section we shall prove the theorem.
Let $U$ be an open non-empty set in $D$ . Let $f\in C_{0}^{\infty}(D)$ and assume

that $f=Af=0$ in $U$. We show $f\equiv 0$ in $(U+\Gamma)\cap D$. Since $U$ is open, for
$x_{0}\in U$ given, we can find $\epsilon>0$ with $B(x_{0}, \epsilon)\equiv\{x;|x-x_{0}|<\epsilon\}\subset\subset U$. We have
only to show

(1) for every $x_{0}\in U$ and any proper open convex cone $\Gamma^{\prime}\subset c\Gamma$ ,

$f\equiv 0$ in $(x_{0}+\Gamma’)\cap D$ .
Indeed, since $x_{0}\in U$ and $\Gamma^{\prime}cc\Gamma$ are arbitrary in (1) and since $f$ is $C^{\infty}$

in $D$ , we obtain
(2) $f\equiv 0$ in $(U+\Gamma)\cap D$.
Further we may assume $x_{0}=0$ for simplicity.
To ”sweep out” the first quadrant $(=span(\left(\begin{array}{l}1\\0\end{array}\right),$ $\left(\begin{array}{l}0\\1\end{array}\right)))$ , we choose a

family $(F_{\lambda})_{\lambda>0}$ of curves ‘folium cartesii” on it, which are defined by

$F_{\lambda}(x_{1}, x_{2})=x_{1}^{3}+x_{2}^{3}-3xx_{1}x_{2}$ $(x>0)$

$=0$ .
These curves can be expressed as

$\{(x_{1}(t), x_{2}(t))$ ; $x_{1}(t)=\frac{3xt}{1+t^{3}},$ $x_{2}(t)=\frac{3xt^{2}}{1+t^{3}}(0<t<+\infty)\}$

Let $T$ be the linear transformation which maps $\Gamma$
‘ to the first

quadrant. Such a transformation exists and can be represented by the
matrix $M=(_{b_{1}}^{a_{1}}a_{2)^{-1}}b_{2}$ where $(_{b_{1}}^{a_{1}}),$ $(_{b_{2}}^{a_{2}})$ are unit vectors on each edge of $\Gamma^{\prime}$ .
Let $G_{\lambda}(x_{1}, x_{2})=_{def}T^{*}F_{\lambda}(x_{1}, x_{2})$ . Then $G_{\lambda}=\{(x_{1}, x_{2})\in R^{2};G_{\lambda}(x_{1}, x_{2})=0\}$ is a
(closed) analytic curve in $\Gamma^{\prime}$ which fills $\Gamma$

’ as $\lambda$ runs from $0$ to $+\infty$ .
Moreover we observe that the set $\{((x_{1}, x_{2});dG_{\lambda}(x_{1}, x_{2}));G_{\lambda}(x_{1}, x_{2})=0\}$ of
outer normal vectors is contained in $G_{\lambda}\times(R^{2}-\{0\}-(-\Gamma^{o}))$ for every
$\rho e(0, +\infty)$ .

If $x>0$ is taken sufficiently small, the interior of $G_{\lambda}$ is contained in
$B(O, \epsilon)$ , and hence both $f$ and $Af$ vanish there by the assumption. We
may employ so-called ”sweeping-out method”: Now

(i) $\{G_{\lambda};0<\lambda<+\infty\}$ is a family of analytic curves in $\Gamma$
’ which

sweeps $\Gamma^{\prime}$ .
(ii) $f$ and $Af$ vanish in the closure of $\bigcup_{\lambda^{\prime}<\lambda}G_{\lambda^{\prime}}$ for small $x>0$ (since

$f$ and $Af$ are $C^{\infty}$).
Assume that $x_{0}=\sup$ {$x\in(0,$ $+\infty);f$ and $Af$ vanish in $U_{2^{\prime}<\lambda}G_{\lambda^{\prime}}$ } $<+\infty$ .
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Take arbitrary $z\in G_{2_{0}}$ . Then the assumption of Lemma 3.1 is satisfied
with $x=z$ and $dS(x)=dG_{\lambda_{0}}(z)=\xi\in R^{2}-\{0\}-(-\Gamma^{o})$ , and so $z\not\in suppf$. This
in turn implies $z\not\in suppAf$ in view of (A1) and Lemma 3.2.

Since $z$ is arbitrary in a compact set $KccG_{\lambda_{0}}-B(O, \epsilon/2)$ , and since
$f$ and $Af$ vanish in $B(O, \epsilon)\supset\supset B(O, \epsilon/2)$ , this implies that $f=Af=0$ in

$\bigcup_{\lambda^{\prime}<\lambda_{0}+\eta}G_{\lambda^{\prime}}$ for some $\eta>0$ . This contradicts the definition of $\lambda_{0}$ Hence
$x_{0}=+\infty$ . This proves (1) and the proof of the theorem is established.

Q.E.D.

Appendix.

Consider the pseudodifferential operator $A$ corresponding to the symbol
$a(\xi)$ which satisfies the assumptions $(A1)\sim(A3)$ in \S 2. Generalizing the
arguments in \S 3 and using the same argument as in \S 4, we can prove
the following

PROPOSITION. Assume that the open convex cone in (A3) satisfies
angle $\Gamma^{*}\geqq\pi/2$ . If $a$ satisfies the condition

(AP1) $a(-\xi)-e^{-i\alpha\pi}a(\xi)\neq 0$ for all $\xi\in S^{1}-(-\overline{\Gamma}^{*})$ ,

then $A$ has $(\Gamma^{*})^{o}-[AL]$ . Here $(\Gamma^{*})^{o}$ denotes the dual cone of $\Gamma^{*}$ .
Indeed the symbol $a(\xi)$ of stable generator with index $\alpha\in(0,1)\cup(1,2)$

whose L\’evy measure is supported on $\Gamma=(\Gamma^{*})^{o}$ (in this case angle $(\Gamma^{*})^{o}\leqq$

$\pi/2)$ satisfies the condition (AP1), since

$e^{-i\alpha n}a(\xi)$

$=-Ce^{-i3\alpha\pi/2}\int_{s^{1}\cap\Gamma\cap\{\theta;\langle x,\text{\’{e}}\rangle>0\}}|\langle x, \xi\rangle|^{\alpha}d\theta-Ce^{-i\alpha\pi/2}\int_{s^{1}\cap\Gamma\cap\{\theta;\langle x,\text{\’{e}}\rangle<0\}}|\langle x, \xi\rangle|^{\alpha}d\theta$

$\neq-Ce^{i\alpha\pi/2}\int_{s^{1}\cap r\cap\{\theta;\langle x,\text{\’{e}}\rangle>0\}}|\langle x, \xi\rangle|^{\alpha}d\theta-Ce^{-i\alpha\pi/2}\int_{s^{1}\cap\Gamma\cap\{\theta;\langle x,6)<0\}}|\langle x, \xi\rangle|^{\alpha}d\theta$

$=a(-\xi)$ $(\xi\in S^{1}-(-\overline{\Gamma}^{*}))$ .
When the angle of $\Gamma^{*}<\pi/2$ , the sufficient condition for $(\Gamma^{*})^{o}-$

antilocality will be more complicated.
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