Tokyo J. Math. Vol. 13, No. 2, 1990

Properties of Topological Dynamical Systems and Corresponding C*-Algebras

Shinzô KAWAMURA*' and Jun TOMIYAMA

Yamagata University and Tokyo Metropolitan University

Abstract. We show the equivalence of a certain property of topological dynamical systems $\Sigma = (X, G)$ and a particular structure of ideals in the corresponding crossed product $A(\Sigma) = C(X) \rtimes G$, where X is a compact set and G is a discrete group. As an application, we give a complete characterization for $A(\Sigma)$ to be simple.

§1. Introduction.

Throughout this paper, X is a compact Hausdorff space, which is not assumed to satisfy the second axiom of countability, and G a discrete group acting on X as a group of homeomorphisms. We denote by $A(\Sigma)$ the transformation group C*-algebra associated with the topological dynamical system $\Sigma = (X, G)$.

In the theory of transformation group C^* -algebras, we are interested in the relationship between the structure of ideals in the C^* -algebra $A(\Sigma)$ and the property of the dynamical system Σ . In this paper we prove the following: if each non-zero ideal in $A(\Sigma)$ has an intersection with the subalgebra C(X) of $A(\Sigma)$, then $\operatorname{Int} X^i$ is empty for all $t \neq e$, and the converse implication holds if G is amenable, where C(X) is the algebra of all continuous functions on X and X^i is the set of fixed points for the action t on X. In the theory of C^* -algebras, Olesen and Pedersen [6: Theorem 2.5, (i) \leftrightarrow (iv)] proved a result corresponding to the equivalence mentioned above for the C^* -dynamical systems consisting of general C^* -algebras and actions of locally compact abelian groups. We here note that this equivalence first appeared in O'Donovan [4; Theorem 1.2.1] (cf. [6; Remark 4.8]). In contrast with theirs, the present proof is rather elementary and self-contained

As an application of our equivalence result, we can give a complete Received September 9. 1989

*) The first author would like to thank the Department of Mathematics of University College of Swansea for its hospitality during the course of this investigation. characterization for $A(\Sigma)$ to be simple; that is, $A(\Sigma)$ is simple if and only if (1) the action of G on X is minimal, (2) Int $X^t = \emptyset$ for all $t \neq e$, and (3) G is amenable. In the case of abelian groups, this characterization for simplicity is derived from the results by Olesen and Pedersen [5: Theorem 6.5], [6: Theorem 2.5]; besides, the sufficiency of these conditions for $A(\Sigma)$ to be simple is essentially derived from the results by Elliott [1: Theorem 3.2] and Kishimoto [3: Theorem 3.1].

§2. Transformation group C^* -algebras.

For each t in G, its action on X is denoted by $x \to t(x)$. The orbit of x in X and the isotropy group for x are denoted by O(x) and G_x respectively. Let α_t be the canonical *-automorphism of C(X) induced by the action of t; that is, $\alpha_t(f)(x) = f(t^{-1}(x))$ for all x in X. The transformation C*-algebra (=C*-crossed product) $A(\Sigma)$ contains a dense *-algebra K(G, C(X)) of those functions of G into C(X) which vanish outside a finite subset of G. The element $f\delta_t$ in K(G, C(X)) means the function defined by $(f\delta_t)(t) = f$ and $(f\delta_t)(s) = 0$ for $s \neq t$. Using this notation, every function a in K(G, C(X)) is written as follows:

$$a = \sum_{t \in F} a_t \delta_t$$
, $(a_t \in C(X))$,

where F is a finite subset of G. The multiplication and *-operation in K(G, C(X)) are given by $f \delta_t g \delta_s = f \alpha_t(g) \delta_{ts}$ and $(f \delta_t)^* = \alpha_{t^{-1}}(\overline{f}) \delta_{t^{-1}}$, where the bar means the complex conjugate. The C*-algebra C(X) is regarded as a subalgebra of $A(\Sigma)$ by means of the embedding: $f \to f \delta_s$, where e is the identity in G. If G is amenable, $A(\Sigma)$ coincides with the reduced crossed product $A_r(\Sigma)$. In this case, every element a in $A(\Sigma)$ has a formal expansion with Fourier coefficient;

$$a \sim \sum_{t \in G} a_t \delta_t$$
, $(a_t \in C(X))$.

With E, we mean the conditional expectation: $a \rightarrow a_{e}$.

§3. Irreducible representations of $A(\Sigma)$.

Since we shall make use of algebraic induced covariant representations of $A(\Sigma)$ induced by isotropy groups, we briefly sketch their structures. Let u be a unitary representation $s \rightarrow u_s$ of a subgroup K of G on a Hilbert space \mathfrak{S}_u . We write the left coset space $G/K = \{r_\alpha K: \alpha \in \Gamma\}$ for a set of representatives $R = \{r_\alpha: \alpha \in \Gamma\}$ where $r_0 = e$. Let \mathfrak{F}_0 be the Hilbert space with dim $\mathfrak{F}_0 = \operatorname{card}(G/K)$. We put $\mathfrak{F} = \mathfrak{F}_0 \otimes \mathfrak{F}_u$. Then each vector

 ξ in \mathfrak{F} is expanded as $\sum_{\alpha \in \Gamma} e_{\alpha} \otimes \xi_{\alpha}$ with respect to a fixed complete orthonormal basis $\{e_{\alpha} : \alpha \in \Gamma\}$ in \mathfrak{F}_{0} . We define a unitary representation L^{R}_{u} of G induced by u in the following way:

$$L^{\scriptscriptstyle R}_{\scriptscriptstyle u}(t)(e_{\alpha}\otimes\xi)=e_{\beta}\otimes u_{s}\xi$$
,

where $tr_{\alpha} = r_{\beta}s$ for s in K. It is easy to show that L_{u}^{R} is a unitary representation of G. We here remark that the underlying Hilbert space for L_{u}^{R} depends only on \mathfrak{H}_{u} and the cardinal number of G/K, whereas in the case of usual induced representation the underlying Hilbert space depends more heavily on the unitary representation of K.

Now take a point x in X with the isotropy subgroup $G_x = \{t \in G: t(x) = x\}$. Taking G_x as the above subgroup K, we may write $O(x) = \{r_{\alpha}(x): \alpha \in \Gamma\}$. Let π_x^R be the representation of C(X) on \mathfrak{F} defined by

$$\pi_x^R(f)(e_\alpha \otimes \xi) = f(r_\alpha(x))e_\alpha \otimes \xi , \qquad (f \in C(X)) .$$

Let L_u^R be the representation of G defined above for a unitary representation u of G_x on \mathfrak{F}_u . Then we can see that the pair (π_x^R, L_u^R) is a covariant representation of the C^* -dynamical system $\{C(X), G, \alpha\}$. We denote by $\rho_{x,u}(=\pi_x^R \times L_u^R)$ the representation of $A(\Sigma)$ defined by π_x^R and L_u^R . It can be shown that the representation $\pi_{x,u}^R$ as well as L_u^R does not depend on the choice of the representatives $R = \{r_\alpha : \alpha \in \Gamma\}$ within unitary equivalence (cf. [7: Proposition 4.1.2]).

A representation $(\rho, \tilde{\wp})$ of $A(\Sigma)$ is said to be discrete if there exists a common eigenvector in $\tilde{\wp}$ for all $\rho(f)$ $(f \in C(X))$. In [7: Proposition 4.1.6], it was proved that an irreducible representation ρ of $A(\Sigma)$ is discrete if and only if ρ is unitarily equivalent to $\rho_{x,u}$ for a point x in Xand an irreducible representation u of G_x . For x in X, a representation u of G_x and a unit vector ξ in $\tilde{\wp}_u$, we put

$$\psi_{x,u,\xi}(a) = (\rho_{x,u}(a)(e_0 \otimes \xi), e_0 \otimes \xi), \quad (a \in A(\Sigma)).$$

Since the representation of $A(\Sigma)$ associated with a state extension of the evaluation state μ_x of C(X) for a point x is discrete, one can prove the following proposition similar to [7: Proposition 4.1.6].

PROPOSITION 3.1. A state ψ of $A(\Sigma)$ is an extension of a pure state μ_x of C(X) if and only if ψ is of the form $\psi = \psi_{x,u,\xi}$.

§4. Ideal structure and orbit structure.

In this section, we prove the main result stated before.

THEOREM 4.1. The following condition (A) implies the condition (B). If G is amenable, the converse implication holds.

- (A) $I \cap C(X) \neq \{0\}$ for each non-zero ideal I in $A(\Sigma)$,
- (B) Int $X^{i} = \emptyset$ for all $t \neq e$, where Int X^{i} means the interior of X^{i} .

PROOF. $((A) \to (B))$. Suppose that $\operatorname{Int} X^t \neq \emptyset$ for some $t \neq e$. Then there exists a continuous function f with $\operatorname{supp}(f)$ contained in X^t . Let I be the ideal generated by the element $f - f \partial_t$ in $A(\Sigma)$. We shall show that $I \cap C(X) = \{0\}$. For each x in X, we take a state extension φ_x to $A(\Sigma)$ of the point measure μ_x such that $\varphi_x(\partial_s) = 1$ if s belongs to G_x and $\varphi_x(\partial_s) = 0$ if s does not belong to G_x . Let h and g be continuous functions on X. Since $\varphi_x(f \partial_t) = \varphi_x(f)\varphi_x(\partial_t)$ for f in C(X), we have

If $r^{-1}(x)$ does not belong to X^{t} , then $f(r^{-1}(x))=0$. Otherwise we have $(rt)^{-1}(x)=r^{-1}(x)$. Thus we have $g(r^{-1}(x))=g((rt)^{-1}(x))$, and $(rts)^{-1}(x)=(rs)^{-1}(x)$, namely $(rs)(rts)^{-1}$ belongs to G_x . Hence $\varphi_x(\delta_{rs})=\varphi_x(\delta_{rts})$. Therefore it follows that (*)=0. Since each element a in I is approximated by the finite combinations of the elements mentioned above, $\varphi_x(a)=0$ for all x in X. Thus, if the element a in I belongs to C(X), then a=0.

 $((B) \to (A))$. Suppose that $\operatorname{Int} X^{t} = \emptyset$ for all $t \neq e$ and G is amenable. Let I be an ideal in $A(\Sigma)$ such that $I \cap C(X) = \{0\}$. Let a be an element in I. Since G is amenable, a has the expansion $a \sim \sum_{t \in G} a_t \delta_t$ in $A(\Sigma)$. First we shall show that $a_e = E(a) = 0$, that is, E(a)(x) = 0 for all $x \in X$. Let q be the quotient map of $A(\Sigma)$ onto the quotient C^* -algebra $B = A(\Sigma)/I$. The restriction of q to C(X) is then a *-isomorphism of C(X)onto q(C(X)). Let ν_{y} be the pure state on q(C(X)) associated with a point y in X, that is, $\nu_y(q(f)) = f(y)$ for f in C(X). Let Ψ_y be a pure state extension to B of ν_y . Put $\psi_y = \Psi_y \cdot q$. Then ψ_y is a pure state of $A(\Sigma)$ with $\psi_y(f) = f(y)$ for f in C(X) and

$$\psi_{\mathbf{y}}(a) = (\Psi_{\mathbf{y}} \cdot q)(a) = 0$$
. $\cdots \cdots (i)$

Let $x (\in X)$ and $\varepsilon (>0)$ be given. Then there exist a neighbourhood U of x such that

$$|E(a)(x)-E(a)(y)| < \varepsilon$$
 for all y in U(ii)

TOPOLOGICAL DYNAMICAL SYSTEMS

and an element $b = \sum_{t \in F} b_t \delta_t$ in K(G, C(X)) such that

$$\|a-b\| < \varepsilon$$
(iii)

where F is a finite subset in G. For the subset F and the neighbourhood U, there exists a point y in U such that $t(y) \neq y$ for all t in $F - \{e\}$. In fact, if U were contained in $\bigcup_{t \in F - \{e\}} X^t$, one of the sets X^{t} 's should have an interior point, and this contradicts the assumption. Next let us consider the following inequality:

$$|E(a)(x)| \leq |a_s(x) - a_s(y)| + |a_s(y) - b_s(y)| + |b_s(y) - \psi_y(b)| + |\psi_y(b) - \psi_y(a)| + |\psi_y(a)|.$$

We need to estimate only the third term of right hand side. For the pure state ψ_y , by Proposition 3.1 there exists an irreducible representation of $A(\Sigma)$ of the form $\rho_{y,u} = \pi_y^R \times L_u^R$ on $\mathfrak{H}_0 \otimes \mathfrak{H}_u$ such that

$$\psi_y(c) = (
ho_{y,u}(c)\xi_e, \xi_e)$$
, $(c \in A(\Sigma))$,

where ξ_{ϵ} is a unit vector in $e_0 \otimes \mathfrak{F}_u$. Since $L^R_u(t)\xi_{\epsilon}$ and ξ_{ϵ} are orthogonal for $t \in G_y$, we have the following:

$$\psi_{y}(b) = (\rho_{y,u}(b)\xi_{s}, \xi_{s}) = ((\sum_{t \in F} \pi_{y}(b_{t}))L_{u}(t)\xi_{s}, \xi_{s})$$
$$= (\sum_{t \in G} b_{t}(t(y))L_{u}(t)\xi_{s}, \xi_{s}) = (b_{s}(y)\xi_{s}, \xi_{s}) = b_{s}(y) .$$

Therefore, combining this with (i), (ii) and (iii), we have

 $|E(a)(x)| \leq 3\varepsilon$.

Since ε is arbitrary, it follows that E(a)(x)=0, thus E(a)=0. For each t in G, since $a\delta_{t-1}$ belongs to the ideal I, we have $a_t = E(a\delta_{t-1}) = 0$. Hence a=0.

REMARK 4.2. By virtue of [8: Proposition 4.1.4], we have that, when G is amenable, the condition (A) is equivalent to the fact that C(X) is a maximal abelian subalgebra of $A(\Sigma)$.

REMARK 4.3. Suppose that G is amenable and the action of G is topologically transitive. Then, in some cases, e.g., when the set $\{t^n: n \in \mathbb{Z}\}$ is infinite, the ideal I generated by $f - f\delta_t$ in the proof of the implication $(A) \rightarrow (B)$ turns out to be an essential ideal.

By Theorem 4.1, we get a complete characterization for $A(\Sigma)$ to be simple.

THEOREM 4.4. The C^{*}-algebra $A(\Sigma)$ is simple if and only if (1) the action of G on X is minimal, (2) Int $X^t = \emptyset$ for all $t \neq e$, and (3) G is amenable.

As for the reduced transformation group C^* -algebra $A_r(\Sigma)$ for a nonamenable group, it is to be noticed that in some cases the minimality of the dynamical system is enough to imply its simplicity (cf. [2: Theorem 1]).

REMARK 4.5. In the case of abelian group, by Theorem 4.1 we can get a complete characterization for $A(\Sigma)$ to be prime. Namely it follows that $A(\Sigma)$ is prime if and only if (1) the action of G is topologically transitive, and (2) Int $X^t = \emptyset$ for all $t \neq e$. This characterization is of course well known in the general theory of C^* -crossed product (cf. [5: Theorem 5.8]). Now applying the above characterization, we can get a prime group C^{*}-algebra $C^*(G)$ associated with an amenable group G, in contrast with the fact that no group C^* -algebra of an amenable group is simple. In fact, let G be the semi-direct product $Z^2 \times Z$ associated with an action $\alpha = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \in \operatorname{Aut}(\mathbb{Z}^2)$; i.e., $(a, m)(b, n) = (a + \alpha^m(b), n + m)$ for (a, m), (b, n) $\in \mathbb{Z}^2 \times \mathbb{Z}$. Let $\tilde{\alpha} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$ be the dual action on $\mathbb{T}^2 = \hat{\mathbb{Z}}^2$ and Σ the topological dynamical system $(T^2, G = \{ \tilde{\alpha}^n : n \in Z \})$. The group C^* algebra $C^*(G)$ is then *-isomorphic to the transformation group C*-algebra $A(\Sigma)$. Since the action $\tilde{\alpha}$ on T^2 is topologically transitive and the interior of the set of fixed points for $\tilde{\alpha}^n$ $(n \neq 0)$ is empty, $A(\Sigma)$ is prime, thus $C^*(G)$ is prime, too.

ACKNOWLEDGMENT. The authors are indebted to the referee for advising to choose more appropriate title than the original one "An equivalent condition between topological dynamical systems and corresponding transformation C^* -algebras".

References

- [1] E.G. ELLIOTT, Some simple C*-algebras constructed as crossed products with discrete outer automorphism groups, Publ. R.I.M.S., 16 (1980), 299-311.
- [2] P. DE LA HARPE and G. SKANDALIS, Power's property and simple C*-algebras, Math. Ann., 273 (1986), 241-250.
- [3] A. KISHIMOTO, Outer automorphisms and reduced crossed products of simple C*-algebras, Comm. Math. Phys., 81 (1981), 429-435.
- [4] D. P. O'DONOVAN, Weighted shifts and covariance algebras, Trans. Amer. Math. Soc., 208 (1975), 1-25.

- [5] D. OLESEN and G. K. PEDERSEN, Applications of the Connes spectrum to C*-dynamical systems, J. Functional Analysis, **30** (1978), 179-197.
- [6] D. OLESEN and G. K. PEDERSEN, Applications of the Connes spectrum to C*-dynamical systems II, J. Functional Analysis, 36 (1980), 18-32.
- [7] J. TOMIYAMA, Invitation to C*-Algebras and Topological Dynamics, World Scientific, 1987.
- [8] G. ZELLER-MEIER, Produits croisés d'une C*-algèbre par un groupe d'automorphismes, J. Math. Pures Appl., 47 (1968), 101-239.

Present Address: Shinzô Kawamura Department of Mathematics, Faculty of Science, Yamagata University Yamagata 990, Japan

JUN TOMIYAMA

DEPARTMENT OF MATHEMATICS, TOKYO METROPOLITAN UNIVERSITY SETAGAYA-KU, TOKYO 158, JAPAN