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1. Introduction and summary. $b$

In the study of $C^{\infty}$ -manifolds by means of mappings, the following is a primary
and deep problem: To what extent can we simplify mappings between manifolds? We
study this problem in the present paper for a certain class of stable mappings from
closed simply connected 4-manifolds into the plane. It is the class such that the associated
quotient mapping $q_{f}$ from $M$ onto the closed 2-disc $D^{2}$ of each member $f:M\rightarrow R^{2}$

has only tori and spheres as regular map-fibres. For example, $S^{4},$ $C^{2}P,$ $C^{2}P\#\overline{C^{2}P},$ $ S^{2}\times$

$S^{2}$ and their finite connected sums admit such stable mappings (see Examples in
Appendix 1).

Let $f$ be a stable mapping from $M$ into $R^{2}$ . We call a point $p$ in $M$ a singular
point of $f$ if $df_{p}$ is not of maximum rank. The set of the singular points of $f$ is denoted
by $S(f)$ , which is a l-dimensional closed submanifold of $M$ consisting of fold points
and a finite number of cusp points ([4]). For $x$ and $y$ in $M$, we define $x\sim y$ by the
conditions that$f(x)=f(y)(=a)$ and that $x$ and $y$ are in the same connected component
of $f^{-1}(a)$ . The quotient space of $M$ by this equivalence relation is called the quotient
space associated with $f$ and is denoted by $W_{f}$ . The quotient mapping is denoted by $q_{f}$ .
Let $f:W_{f}\rightarrow R^{2}$ be the mapping which satisfies $f\circ q_{f}=f$ . Then $q_{f}$ is a local
homeomorphism when it is restricted to $S(f$] and $f$ is a local homeomorphism outside
$q_{f}(S(f))$ ([5], [6]). For points in $W_{J}$ , the topological types of their neighborhoods in
$W_{f}$ are listed in [6].

We call a stable mapping $f;M^{4}\rightarrow R^{2}$ simple, if (i) $f$ has at most one cusp, (ii) $W_{f}$

is homeomorphic to $D^{2}$ , and (iii) $q_{f}$ is an embedding when it is restricted to $S(f)\backslash \{cusps\}$ .
If $M$ is oriented, all the regular fibres of $q_{J}$ are oriented closed surfaces. Let the maximum
genus of all the regular $q_{f}$-fibres be denoted by $q_{f}$ . Let $R$ be a connected component
$ofW_{f}\backslash q_{f}(S(f))$ . $WesayRisa0$-region if the regular fibre overa point inR isasphere,
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and a l-region if it is a torus.
Now we state our theorems.

THEOREM A. Let $f;M^{4}\rightarrow R^{2}$ be asimple mapping with $g_{f}\leq 1and\pi_{1}(M)=1$ . Then

$\# S(f)\geq\frac{1}{2}b_{2}(M)+3$ (if $b_{2}(M)$ is even and non-zero),

$\# S(f)\geq\frac{1}{2}(b_{2}(M)+5)$ (if $b_{2}(M)$ is odd) ,

where $\# S(fJ$ denotes the number of connected components of $ s\omega$ and $b_{2}(M)$ the secon
Betti number of $M$.

THEOREM B. Let $g:M^{4}\rightarrow R^{2}$ be a simple mapping with $g_{g}\leq 1$ and $\pi_{1}(M)=1$ . The’
by a finite iteration of the S- and C-operations, which are defined in section 6, we $co$

change the pair $(M, g)$ to $(N, f)$ such that $N$ is homeomorphic to $M$, and that $f:N\rightarrow R$

is a simple mapping with $g_{J}\leq 1$ which satisfies the following conditions.

(1)
$\# S(f)=1$ $(ifb_{2}(M)=0)$ ,

$\# S(f)\leq\frac{3}{2}b_{2}(M)+1$ (if $b_{2}(M)$ is even and non-zero) ,

$\# S(f)\leq\frac{3}{2}(b_{2}(M)+1)$ (if $b_{2}(M)$ is odd).

(2) The pair $(N, f)$ has a decomposition

$(N, f]=(N_{1}, f_{1})\#(N_{2}, f_{2})\#\cdots\#(N_{k}, f_{k})$

such that $f_{i}$ : $N_{i}\rightarrow R^{2}$ is a simple mapping with $g_{f_{1}}\leq 1$ and has at most one l-regioi

The notation $(M, f)=(M_{1}, f_{1})\#(M_{2}, f_{2})$ means that $M=M_{1}\# M_{2}$ and that $q_{f}$

right-left equivalent to $q_{f_{1}\$ f_{2}}$ , where the connected sum of simple mappings is define
precisely in section 6. If a pair $(M, f)$ has a decomposition as in the second conditic
in Theorem $B$ , we say $(M, f)$ is configuration trivial.

THEOREM C. Let $g:N\rightarrow R^{2}$ be a simple mapping with $g_{g}\leq 1$ and $\pi_{1}(N)=1$ . The
for $M=N\# S^{2}\times S^{2}$ and $N\# C^{2}P\#\overline{C^{2}P}$, there exists a simple mapping $f:M\rightarrow R^{2}wi$

$g_{f}\leq 1$ which satisfies the following conditions.

(1)
$\# S(f)=4$ $(\iota fb_{2}(M)=2)$ ,

$\# S(f7\leq\frac{3}{2}b_{2}(M)-1 (ifb_{2}(M)isevenandnotequalto0,2)$ ,
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$\# S(f)\leq\frac{1}{2}(3b_{2}(M)-1)$ ($\iota fb_{2}(M)$ is odd).

(2) The pair $(M, f)$ is configuration trivial.

The basic tools used in this paper have been prepared in [3], [4], [5]. Local
properties of the quotient spaces have been studied in [2], [6].

A REMARK ON CONFIGURATION TRIVIALITY. If a pair $(M, f)$ is configuration trivial,
then the location of $q_{f}(S(f))$ is very simple: The region adjacent to the boundary of $W_{f}$

is a O-region, since $f$ has the normal form $(u, x, y, z)\rightarrow(u, x^{2}+y^{2}+z^{2})$ near the points
in $q_{f}^{-1}(\partial W_{f})\cap S(f)$ . Therefore if $(M, f)$ is configuration trivial, then the location of
$q_{f}(S(f))$ in $W_{f}$ is simple as illustrated in Figure 1.1.

FIGURE 1.1

Throughout this paper, the symbol $\cong$ between two manifolds means that the
manifolds are diffeomorphic.

The author would like to express his gratitude to the referee for correcting many
errors in early versions of this paper.

2. Preliminaries.

A stable mapping $f:M^{4}\rightarrow R^{2}$ is characterized by the following local and global
conditions ([4]).

Local condition: For a given point $p\in S(f)$ , there are local coordinate systems centred
at $p$ and $f(p)$ such that in a neighbourhood of $p,$ $f$ has the normal form $(L_{1})$ or $(L_{2})$ ;

(L) $f:(u, z_{1}, z_{2}, z_{3})\mapsto(u, Q(z))$ , where $Q(z)=\sum\epsilon_{i}z_{i}^{2}$ , $|\epsilon_{i}|=1$ ,
or

(L) $f:(u, x, z_{1}, z_{2})\mapsto(u, Q(z)+aux+bx^{3})$ ,
where $Q(z)=\sum\epsilon_{i}z_{i}^{2}$ , $|\epsilon_{i}|=|a|=|b|=1$ .

We call $p$ a fold point, or simply a fold if it is of type $(L_{1})$ , and a cusp
point oracusp if it is of type $(L_{2})$ .
Global conditions:

(G) if $p\in S(f)$ is a cusp point, then $f^{-1}(f(p))\cap S(f)=\{p\}$ ,
and
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(G) $f|_{S(f)\backslash \{cusps\}}$ is an immersion with normal-crossings.

For a fold point $p$ , we can choose local coordinates so that the index of $Q(z)$

even, which we call the index of the fold point $p$ . Thus the index of a fold point
either $0$ or 2. A fold point is called definite if its index is $0$ , and indefinite if it is 2.

For the quotient spaces associated with stable mappings, one should refer to $[$

and [6]. We give only two remarks here.

REMARK (1). For a stable mapping $f:M\rightarrow R^{2}$ , assume that the quotient $spa|$

$W_{f}$ is a topological manifold possibly with boundary. Then one can give a $C^{\infty}$ -structu
to $W_{f}$ with respect to which $f:W_{f}\rightarrow R^{2}$ is an immersion, since the mapping $f$ is
local homeomorphism (see Fig. 2, [6]). With respect to this $C^{\infty}$ -structure, $q_{f}$ is $C^{\infty}$ .

REMARK (2). For the same $f$ as in Remark (1), fix the $C^{\infty}$ -structure of $W_{f}giv($

above. Then for any generic immersion $h:W_{f}\rightarrow R^{2}$ , the composed mapping $g=h\circ q_{f}$

a stable mapping such that $W_{f}=W_{g}$ and $q_{f}=q_{g}$ .

3. Basic tools.

Let $f:M^{4}\rightarrow R^{2}$ be a simple mapping with $g_{f}\leq 1$ , and let $S_{i}$ be a $connect|$

oomponent of $S(f)$ consisting of indefinite folds. Then $q_{j}\langle S_{i}$) separates $W_{f}$ into tv
regions. We say $S_{i}$ is positive (resp. negative) if the inside region of $q_{j}\langle S_{i}$ ) is a O-regit
(resp. l-region).

. NOTATION. $S_{\pm}(f)=\{S_{i}|S_{i}$ is a positive (resp. negative) connected component
$S(f)$ consisting of indefinite fold points}.

DEFINITION (type of a simple mapping). Let $f:M^{4}\rightarrow R^{2}$ be a simple mappi
with a cusp and $g_{f}\leq 1$ . Let $S$ be the connected component of $S(f)$ with the unique cus
Then $q_{j}\langle S$) separates $W_{f}$ into two regions. We say $f$ is of type $A$ (resp. type $B$) if $t$

inside region of $q_{j}\langle S$) is a l-region (resp. O-region).

LEMMA 3.1. For a simple mapping $f:M^{4}\rightarrow R^{2}$ with $g_{f}\leq 1$ , we have

$\chi(M)=2(\# S_{+}(f)-\# S_{-}(f))+2$ $\iota f\chi(M)$ is even ,

$=2(\# S_{+}(f\gamma-\# S_{-}(f))+1$ $\iota f\chi(M)$ is odd (type $A$) ,

$=2(\# S_{+}(f\gamma-\# S_{-}(f))+5$ $\iota f\chi(M)$ is odd (type $B$) ,

where $\chi(M)$ is the Euler number of $M$.
$PR\infty F$ . By Remark (2) in section 2, there exists a stable mapping $g:M\rightarrow R^{2}$ su

that $W_{f}=W_{g},$ $q_{f}=q_{g}$ , and that $\overline{g}:W_{g}\rightarrow R^{2}$ is an embedding. For such $g$ , the lemma
immediately seen by Theorem 1 of [3]. We obtain the required equalities for $f$, sir
$\# S_{\pm}(f)=\# S_{\pm}(g)$ . q.e
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Let $f:M^{4}\rightarrow R^{2}$ be a simple mapping, $C$ a connected component of $q_{f}(S(f))$ which
is adjacent to both a O-region and a l-region, and $a$ a point in the l-region. Let $J$ be
an embedded closed arc in $W_{f}$ which connects $a$ and a point in the O-region, such that
it meets $q_{f}(S(f))$ transversely at a single point in $C$. We see that the restriction of $q_{f}$ to
$q_{f}^{-1}(J)$ is a Morse function onto $J$ with a single saddle critical point, in the same way
as in Proposition 4, \S 1.3 of [5]. It tums out that $q_{f}^{-1}(J)$ is a solid torus with an open
3-disc removed.

DEFINITION (meridian and longitude with respect to $(C,$ $J)$). (Notations $a,$ $C,$ $J$ are
as above.) An essential simple closed curve $m$ in $q_{f}^{-1}(a)$ is called a meridian of $q_{f}^{-1}(a)$

with respect to $(C, J)$ if it is the boundary of a closed 2-disc embedded in the solid torus
$q_{f}^{-1}(J)\cup D^{3}$ . A simple closed curve $l$ in $q_{f}^{-1}(a)$ is called a longitude of $q_{f}^{-1}(a)$ with respect
to $(C, J)$ if $l$ and $m$ meet transversely at a single point.

Note that the isotopy class or the homology class of $m$ is unique up to sign.
More generally, we consider the following situation. Set $J=[-1,1]$ and

$\tilde{J}=(S^{1}\times D^{2})\backslash IntD^{3}$ . Let $g:\tilde{J}\rightarrow J$ be a $C^{\infty}$-function such that $g^{-1}(-1)$ is the sphere
component of $\partial\tilde{J}$, that $g^{-1}(1)$ is the torus component of $\partial\tilde{J}$, and that $g|Int\tilde{J}$ is a Morse
function with a single critical point of Morse-index 1. Them we can define a longitude
and a meridian of $g^{-1}(1)$ as before.

NOTATION. Let $\varphi$ be a diffeomorphism on $\tilde{J}=(S^{1}\times D^{2})\backslash IntD^{3}$ and $T$ the torus
component of $\partial\tilde{J}$. We denote by $[\varphi]$ the isomorphism $(\varphi|_{T})_{*}$ on $H_{1}(T, Z)$ induced by $\varphi$ .

NOTATION. For an integer $\alpha$ , let $T_{\alpha}$ denote the matrix defined by

$T_{\alpha}=\left(\begin{array}{ll}1 & 0\\\alpha & 1\end{array}\right)$ .

PROPOSITION 3.2. ($g,$
$J,\tilde{J}$ are as above.) Let $(l, m)$ be a longitude and a meridian of

$g^{-1}(1)$ . Ifan orientation preserving diffeomorphism $\varphi$ on $\tilde{J}satisfiesg=g\circ\varphi$ , then $[\varphi]$ has

FIGURE 3.1
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a matrix representation of the form $[\varphi]=\pm T_{\alpha},$ $\alpha\in Z$ with respect to the basis $\langle[l],$ $[m]$

of $H_{1}(g^{-1}(1), Z)$ . Conversely, for $A=\pm T_{\alpha}$, there is a diffeomorphism $\varphi$ on $\tilde{J}$ such the
$[\varphi]=A$ and that $ g=g\circ\varphi$ .

$PR\infty F$ . Both assertions are obvious since $g$ has the level sets illustrated in FiguI
3.1. $q.e.($

4. Proof of Theorem A.

In the case $b_{2}(M)$ is even, $\# S(f)=\# S_{+}(f)+\# S_{-}(f)+1$ . Using Lemma 3.1, on
obtains

$\# S(f)=2\# S_{-}(f)+\frac{1}{2}b_{2}(M)+1$ .

It is enough to show $\# S_{-}(f)\geq 1$ . Suppose that $\# S_{-}(f)=0$ , then $W_{f}$ has no l-region
since the region adjacent to $\partial W_{f}$ is a O-region. This implies that $\# S(\cap=1$ , and henc
that $b_{2}(M)=0$ , which is excluded. Therefore $\# S_{-}(fJ\geq 1$ for $M$ with $b_{2}(M)>0$ .

In the case $b_{2}(M)$ is odd, $\# S(f)=\# S_{+}(f)+\# s_{-}\omega+2$ , and using Lemma 3.1 on
obtains

$\# S\omega=2\# S_{-}(f)+\frac{1}{2}b_{2}(M)+\frac{5}{2}$ if $f$ is of type $A$ , and

$\# S\omega=2\# S_{-}(f7+\frac{1}{2}b_{2}(M)+\frac{1}{2}$ if $f$ is of type B.

If $f$ is of type $A$ , then the required inequality is obvious ($\# S_{-}(fJ$ can be $0$ . In fact $C^{2}$

has such a simple mapping. See Figure 9.1). If $f$ is of type $B$ , then an element of $S_{-}(J$

must be located outside the $\infty nnected$ component of $q_{j}\langle S(f))$ which contains the imag
of the cusp. Therefore $\# S_{-}(f)\geq 1$ . The same required inequality follows immediately

$q.e.\langle$

5. Transversal trees.

For a simple mapping $f$ with $g_{f}\leq 1$ , we define agraph $\Lambda_{f}$ embedded in $W_{f}$ as follow
(1) Take a point $p_{i}(i\geq 1)$ in each connected component $R_{i}$ of $W_{f}\backslash q_{f}(S(f))$ an

$apointp_{0}$ in $\partial W_{f}$ , which are the vertices of $\Lambda_{f}$ .
(2) If $R_{i}$ and $R_{j}$ are separated by a connected component, say $C_{ij}(i>j\geq 1),$ $($

$q_{f}(S(f))\backslash \partial W_{f}$ (such $C_{ij}$ is unique for each $(i,j)$ , if it exists), then connect $p_{t}$ and $p_{j}b$

a path $\sigma_{ij}$ so that $\sigma_{ij}$ meets $q_{f}(S(f))$ transversely at a single point in $C_{ij}$ .
(3) Let $p_{1}$ be the vertex chosen from the O-region adjacent to $\partial W_{f}$ . Then connet

$p_{0}$ and $p_{1}$ by a path $\sigma_{10}$ so that $\sigma_{10}$ is normal to $\partial W_{f}$ and $\sigma_{10}\cap q_{j}\langle S(f))=\{p_{0}\};0$
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$(i>j\geq 1)$ and $\sigma_{10}$ are the edges of $\Lambda_{f}$ .
Note that $\Lambda_{f}$ is a tree. Suppose that $\Lambda_{f}$ has a cycle $\gamma$ and let $C$ be a connected

component of $q_{f}(S(f))$ which meets $\gamma$ . Let $D$ be the closed 2-disc in $W_{f}$ which bounds
$C$. Since $\gamma$ meets $C$ transversely at a single point, say $p,$ $\gamma\backslash p$ is divided into two open
sets $\gamma\cap IntDand\gamma\cap(W_{J}\backslash D)$ , both of which are non-empty. This isacontradiction.

DEFINITION (transversal tree). For a simple mapping $f:M^{4}\rightarrow R^{2}$ , we call the tree
$\Lambda_{f}$ in $W_{f}$ thus obtained a transversal tree of $f$ . We give $\Lambda_{f}$ the orientation towards the
inside: Let $\sigma$ be an edge of $\Lambda_{f}$ and $C$ the connected component of $q_{f}(S(f))$ which meets
$\sigma$ . We give $\sigma$ the orientation, from the vertex of $\sigma$ lying outside of $C$ towards the vertex
lying inside of $C$ . To $\sigma_{10}$ we give the orientation from $p_{0}$ towards $p_{1}$ .

We say a vertex $p$ of a graph is of degree $k$ if the number of edges which contain
$p$ as a boundary point is $k$ .

LEMMA 5.1. Let $f:M\rightarrow R^{2}$ be a simple mapping with $g_{f}\leq 1$ and $\pi_{1}(M)=1$ . Then
the degree one vertices of a transversal tree $\Lambda_{f}$ are in O-regions except for $p_{0}$ .

The proof will be given at the end of this section.

DEFINITION (elementary tree of $\Lambda_{f}$). Let $\{p_{1}, \cdots, p_{k}\}$ be the vertices of $\Lambda_{f}$

contained im the O-regions and of degree greater than one. We call the closure of each
connected component of $\Lambda_{f}\backslash \{p_{1}, \cdots, p_{k}\}$ an elementary tree of $\Lambda_{f}$ .

To each elementary tree $\Lambda_{i}$ , we give an orientation which is induced from $\Lambda_{f}$ . We
say a degree one vertex $p$ of $\Lambda_{i}$ is an initial (resp. a terminal) point of $\Lambda_{i}$ if $p$ is the
initial (resp. the terminal) point of the unique edge of $\Lambda_{i}$ which contains $p$ as a boundary
point. We call the unique elementary tree which meets $\partial W_{f}$ the initial tree.

$PR\infty F$ OF LEMMA 5.1. Ifa connected component of $W_{f}\backslash q_{f}(S(f))$ contains a vertex
of $\Lambda_{f}$ of degree one, then it is diffeomorphic to the open disc. Therefore we have only
to show that a region $R$ is a O-region if it is diffeomorphic to the open disc. Suppose
that such $R$ is a l-region and set $C=\partial\overline{R}$ .

Case 1 where $C$ does not contain $q_{f}(\{cusp\})$ , the image of the unique cusp. One
can show that there is a tubular neighbourhood $N(C)$ of $C$ such that $ q_{f}^{-1}(J)\rightarrow$

$q_{f}^{-1}(N(C))\rightarrow C$ is a local trivial fibration where $J$ is a fibre of the canonical projec-
tion $N(C)\rightarrow C$ , by using the same argument as in Proposition, \S 1.6 of [5]. The fibre
$q_{f}^{-1}(J)$ is diffeomorphic to $(S^{1}\times D^{2})\backslash IntD^{3}$ (see section 3). Let $C^{\prime}$ be the outside
boundary of $N(C)$ and $D_{c}^{\prime}$ the closed neighbourhood of $R$ enclosed by $C^{\prime}$ . Set
$E=W_{f}\backslash IntD_{c}^{\prime}$ . Let $i:q_{f}^{-1}(C^{\prime})\rightarrow q_{f}^{-1}(D_{c}^{\prime})$ and $j:q_{f}^{-1}(C^{\prime})\rightarrow q_{f}^{-1}(E)$ be the inclusions.

We show that rank $H_{1}(q_{f}^{-1}(E), Z)\geq 1$ . One can take a free generator $s^{\prime}$ of
$H_{1}(q_{f}^{-1}(C^{\prime}), Z)$ , since $q_{f}^{-1}(C^{\prime})$ is diffeomorphic to $S^{2}\times S^{1}$ . Then $j_{*}(s^{\prime})$ is of infinite order
in $H_{1}(q_{f}^{-1}(E), Z)$ , since $(q_{f}|q_{f}^{-1}(E))_{*}\circ j_{*}(s^{\prime})$ is afree generator of $H_{1}(E, Z)\cong Z$.

Next we show that rank $H_{1}(q_{f}^{-1}(D_{c}^{\prime}), Z)=1$ , by using a Mayer-Vietoris exact
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sequence. Let $C^{\prime\prime}$ be the inside boundary of $N(C)$ and $D_{c}^{\prime\prime}$ the closure of $D_{c}^{\prime}\backslash N(C)$ . $W$

have the following exact sequence;

$H_{1}(q_{f}^{-1}(C^{\prime\prime}), Z)\rightarrow H_{1}(q_{f}^{-1}(D_{c}^{\prime\prime}), Z)\oplus H_{1}(q_{f}^{-1}(N(C)), Z)\rightarrow H_{1}(q_{f}^{-1}(D_{c}^{\prime}), Z)\rightarrow 0$

Since $q_{f}|q_{f}^{-1}(C^{\prime\prime}):q_{f}^{-1}(C^{\prime\prime})\rightarrow C^{\prime\prime}$ is a trivial $T^{2}$ fibration, one can see that the fibratio
$q_{f}^{-1}(N(C))\rightarrow C$ is trivial. It is shown that $H_{1}(q_{f}^{-1}(C^{\prime\prime}), Z),$ $H_{1}(q_{f}^{-1}(D_{c}^{\prime\prime}), Z)$ an
$H_{1}(q_{f}^{-1}(N(C)), Z)$ are torsion free and of rank 3, 2 and 2 respectively, by the K\"unnet

formula in the last case. Let $(l, m)$ be a longitude and a meridian with respect to $(C,$ $J$

and set $s=S(f)\cap q_{f}^{-1}(C)$ . Let $s^{\prime\prime}$ be a cross-section of $q_{f}$ over $C^{\prime\prime}$ . We may assume th;

the above three homology groups are generated by $l,$ $m$ , and $s^{\prime\prime}$ , by $l$ and $m$ , and by
and $s$, respectively. Therefore it is easy to see that the first homomorphism of the $exa|$

sequence is injective. Hence we have $H_{1}(q_{f}^{-1}(D_{c}^{\prime}),$ $ l\cong Z\langle l\rangle$ .
On the other hand, we have the following Mayer-Vietoris exact sequence;

$H_{1}(q_{f}^{-1}(C^{\prime}), Z)\rightarrow H_{1}(q_{f}^{-1}(D_{c}^{\prime}), Z)\oplus H_{1}(q_{f}^{-1}(E), Z)\rightarrow H_{1}(M, Z)=0$ .
Since $j_{*}$ is an injection, the first homomorphism is an isomorphism. This is
contradiction. In fact the left side of the isomorphism has rank 1, and the right $sie$

has rank greater than or equal to 2.
Case 2 where $C$ contains $q_{f}(\{cusp\})$ . Let $g:M\rightarrow R^{2}$ be a simple mapping suc

that $W_{f}=W_{g},$ $q_{f}=q_{g}$ , (thus $g_{g}\leq 1$ ) and that $\overline{g}$ is an embedding (see Remark (2) in sectic
2). We will prove the claim for $g$ . As $R$ is supposed to be a l-region, $g$ must be of $tyI$

A. Let $\gamma:R^{2}\rightarrow R$ be alinear function such that $\gamma\circ g$ is a Morse function (for the existent
of such $\gamma$ , see 1.3 of [3]). After we compose $g$ with some isotopy in $R^{2}$ if necessar

FIGURE 5. 1
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we can take closed neighbourhoods $U$ and $V$ of $\overline{g}(R)$ which satisfy the following condi-
tions, by [3] (see Figure 5.1):
a) $\overline{g}(\overline{R})\subset V\subset U$,
b) there is a diffeomorphism $\varphi:I\times J\rightarrow U$,
c) $\varphi(u\times J)=g(M)\cap\gamma^{-1}(u)$ for $u\in I$,
d) $V\cap g(S(g))=\overline{g}(C)$ ,
e) set $V\cap\gamma^{-1}(u)=J_{u}^{\prime}$ , then $(\gamma\circ g)^{-1}(u)\backslash g^{-1}(J_{u}^{\prime}),$ $u\in I$, are all diffeomorphic, where

$I,$ $J\cong[-1,1]$ .
In fact, one can choose $I\subset(\gamma\circ g)(M)$ so that $I$ contains exactly one critical value

of $\gamma\circ g$ . We may assume that this critical value is $0$ and that the value of the cusp is
1/2. Then by the argument of [3] we see that $(\gamma\circ g)^{-1}(-\infty, 1/4$] can be obtained from
$(\gamma\circ g)^{-1}(-\infty, -1/2]$ by a l-handle attaching. From d), one has $g^{-1}(J_{-1/2}^{\prime})\cong S^{2}\times J$,

hence by e), one has $g^{-1}(J_{1/4}^{\prime})\cong S^{2}\times S^{1}\backslash 2IntD^{3}$ . On the other hand, $ g^{-1}(J_{1/4}^{\prime})\cong$

$g^{-1}(J_{3/4}^{\prime})\cong S^{2}\times J$, where the former diffeomorphism follows from the fact that
[1/4, 3/4] contains no critical values of $\gamma\circ g$ and the latter follows from d). This is a con-
tradiction. q.e. $d$ .

6. S- and C-operations.

Let $f:M^{4}\rightarrow R^{2}$ be a simple mapping and suppose $\pi_{1}(M)=1$ . We $\infty nstruct$ a
$C^{\infty}$ -stable mapping $f$ from $M\# S^{2}\times S^{2}$ onto $S^{2}$ as follows.

CONSTRUCTION OF $f$; Let $c$ be the unique connected component of $S(f)$ such that
$q_{f}(c)=\partial W_{f}$ . Take a collar neighbourhood $v(c)$ of $\partial W_{f}$ so that $v(c)\cap q_{J}(S(f))=c$ . Then
$q_{f}^{-1}(v(c))$ is a tubular neighbourhood of $c$ in $M$ and the restriction of $q_{f}$ to its boundary
is right-left equivalent to the projection $S^{2}\times S^{1}\rightarrow S^{1}$ . One can glue $\overline{M\backslash q_{f}^{-1}(v(c))}$ and
$S^{2}\times D^{2}$ and at the same time $\overline{W_{f}\backslash v(c)}$ and $D^{2}$ along their boundaries by
diffeomorphisms $\varphi$ and $\psi$ which satisfy the commutative diagram (Figure 6.1), where
$p:S^{2}\times D^{2}\rightarrow D^{2}$ is the projection.

$\partial(\overline{M\backslash q_{f}^{-1}(v(c))})\rightarrow^{\varphi}$ $\partial(S^{2}\times D^{2})$

$q_{J}|\partial(M\backslash q_{f}^{-}\partial()\frac{\overline{1(v(c))})\{}{W_{f}\backslash v(c)}\rightarrow^{\psi}$
$\partial D^{2}\downarrow^{p|\partial(S^{2}xD^{2})}$

FIGURE 6. 1

By this gluing, we also glue $q_{f}$ and $q_{p}$ and obtain a smooth mapping $f$ from
$\overline{M\backslash q_{f}^{-1}(v(c))}\bigcup_{\varphi}D^{2}\times S^{2}$ onto $\overline{W_{f}\backslash v(c)}\cup D^{2}\psi$ .

We can choose the attaching diffeomorphism $\varphi$ so that the source manifold is
diffeomorphic to $M\# S^{2}\times S^{2}$ ([9]). Thus we have constructed a smooth mapping
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$f:M\# S^{2}\times S^{2}\rightarrow S^{2}$ , which is obviously stable. Note that the right-left equivalenc
classes of $f’ s$ are not unique according to the various isotopy types of $\varphi$ . We say $th^{l}$

$f$ is a mapping onto $S^{2}$ associated with $f$

DEFINInON (S-equivalence). Let $f$ : $M^{4}\rightarrow R^{2}$ and $g:N^{4}\rightarrow R^{2}$ be simple $mappin\mathfrak{x}$

with $\pi_{1}(M)=\pi_{1}(N)=1$ . The pairs $(M, f)$ and $(N, g)$ are said to be S-equivalent
$f;M\# S^{2}\times S^{2}\rightarrow S^{2}$ and $\tilde{g}:N\# S^{2}\times S^{2}\rightarrow S^{2}$ are right-left equivalent, where $f$ and $\tilde{g}al$

mappings onto $S^{2}$ associated with $f$ and $g$ respectively.

Let $M_{i}$ be an oriented manifold and $f_{t}$ : $M_{i}\rightarrow R^{2}$ a simple mapping for $i=1,2$ . $W$

can construct a smooth stable mapping $f\# g$ from $M_{1}\# M_{2}$ into $R^{2}$ in the following $wa\urcorner$

Let $a_{i}$ be a point in $\partial W_{f_{1}}$ for $i=1,2$ . Take a tubular neighbourhood $U_{t}$ of $a_{i}i$

$W_{f_{i}}$ so that $U_{i}\cap q_{f_{i}}(S(f_{i}))\subset\partial W_{f_{i}}$ for $i=1,2$ (see Figure 6.2). Let $\lambda_{i}$ be the closure $($

$\partial U_{i}\backslash \partial W_{J\iota}$ for $i=1,2$ . We may assume that $\lambda_{i}$ is transverse to $\partial W_{J\uparrow}$ . Then we see $th^{r}$

$q_{f}^{-1}(U_{i})$ is diffeomorphic to $D^{4}$ and $q_{f}^{-1}(\lambda_{i})=\partial q_{f}^{-1}(U_{i}),$ $i=1,2$ , by applying Levinet
argument in [3]. We give an orientation to each $W_{f_{i}}$ so that $f_{i}$ is an orientation preservin
immersion, and to each $\lambda_{i}$ as a subset of the boundary of $\overline{W_{f_{i}}\backslash U_{i}}$ .

$W_{f_{1}}$

FIGURE 6.2

Let $g_{i}$ : $q_{f_{i}}^{-1}(\lambda_{i})\rightarrow\lambda_{i}$ be the restrictions of $q_{J\iota}$ to $q_{f_{i}}^{-1}(\lambda_{i}),$ $i=1,2$ . They are Mors
functions by the definition of definite fold points and are right-left equivalent; in fac
both are the simplest Morse functions on $S^{3}$ . Let $\varphi:q_{f_{1}}^{-1}(\lambda_{1})\rightarrow q_{f_{2}}^{-1}(\lambda_{2})$ and $\psi:\lambda_{1}\rightarrow\lambda$

be diffeomorphisms satisfying $\psi\circ g_{1}=g_{2}\circ\varphi$ . We take $\psi$ as orientation reversing. $W$

may assume that $\varphi$ is orientation reversing with respect to the orientations of $ q_{f_{i}}^{-1}(\lambda$

as the boundaries of $\overline{M_{i}\backslash q_{f_{1}}^{-1}(U_{i})},$ $i=1,2$ . In fact if $\varphi$ is orientation preserving, $ 1\epsilon$

$k:q_{f_{2}}^{-1}(\lambda_{2})\rightarrow q_{f_{2}}^{-1}(\lambda_{2})$ be an orientation reversing diffeomorphism which satisfies $ g_{2}=g_{2}\circ$ ,

and which reverses the orientation of each level set of $g_{2}$ . Then the diffeomorphisr
$ k\circ\varphi$ is $0$rientation reversing and $\psi\circ g_{1}=g_{2}\circ k\circ\varphi$ .

Let $M_{i}^{\prime}$ be the closure of $M_{i}\backslash q_{f_{1}}^{-1}(U_{i})$ and $W_{i}^{\prime}$ the closure of $W_{J\iota}\backslash U_{t}$, for $i=1,$ $A$

’

We can glue the triads $(M_{1}^{\prime}, q_{f_{1}}|_{M_{1}}, W_{1}^{\prime})$ and $(M_{2}^{\prime}, q_{f_{2}}|_{u_{2}^{\prime}}, W_{2}^{\prime})$ by $\varphi$ and $\psi$ , and obtai
$(M_{1}\# M_{2},\tilde{q}, W_{f_{1}}\# W_{f_{2}})$ , where $\tilde{q}$ is a $C^{O}$-mapping satisfying $\tilde{q}=q_{f_{i}}$ on $M_{i}^{\prime},$ $i=1,2$ . Afte
a slight perturbation, $\tilde{q}$ becomes $C^{\infty}$ . We denote the $C^{\infty}$ -mapping by $q_{f_{1}}\# q_{f_{2}}$ . $No\tau$

change the immersion $f_{2}$ left equivalently so that $f_{2}(M_{2}^{\prime})$ attaches to $f_{1}(M_{1}^{\prime})$ . Then $w$

can glue $f_{1}$ and $f_{2}$ and obtain an immersion $h$ from $W_{f_{1}}\# W_{f_{2}}$ into $R^{2}$ . After a sligh
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perturbation of $h$ , we obtain a $C^{\infty}$ -stable mapping $h\circ q_{f_{1}}\# q_{f_{2}}$ from $M_{1}\# M_{2}$ into $R^{2}$ .
Let $f_{1}\# f_{2}$ denote the mapping thus obtained.

Note that $W_{f_{1}\# f_{2}}=W_{f_{1}}$ ta $W_{f_{2}}$ and that $q_{f_{1}\# f_{2}}$ is right-left equivalent to $q_{f_{1}}\# q_{f_{2}}$ .
The mapping $q_{f_{1}}\# q_{f_{2}}$ , (thus also $q_{f_{1}\# f_{2}}$) is determined uniquely by $f_{1}$ and $f_{2}$ up to
right-left equivalence.

NOTATION. For a stable mapping $f:M\rightarrow R^{2}$ and simple mappings $f_{i}$ : $M_{i}\rightarrow R^{2}$ ,
$i=1,2$ , we shall write $(M, f)=(M_{1}, f_{1})\#(M_{2}, f_{2})$ if $q_{f}$ is right-left equivalent to $q_{f_{1}}\# q_{f_{2}}$ .

REMARK. It is easily checked that $(M_{1}, f_{1})\#(M_{2}, f_{2})=(M_{2}, f_{2})\#(M_{1}, f_{1})$ and
$((M_{1}, f_{1})\#(M_{2}, f_{2}))\#(M_{3}, f_{3})=(M_{1}, f_{1})$ ta $((M_{2}, f_{2})\#(M_{3}, f_{3}))$ where the two equalities
mean that the manifolds of both sides are diffeomorphic and the quotient mappings of
the stable mappings of the both sides are right-left equivalent.

DEFINITION (S-operation). Let $f:M^{4}\rightarrow R^{2}$ be a simple mapping with $\pi_{1}(M^{4})=1$ .
Assume that $(M, f)$ has the following decomposition:

$(M, f)=(M_{1}, f_{1})\#(M_{2}, f_{2})\#\cdots$ ta $(M_{k}, f_{k})$ .
Then, an S-operation is to replace an $(M_{i}, f_{i})$ with a pair which is S-equivalent to $(M_{i}, f_{i})$ .

REMARK. (1) If $(M, f)$ and $(N, g)$ are S-equivalent, then $M$ and $N$ are homeo-
morphic, by [1].

(2) If $(M, f)$ is changed to $(N, g)$ by finitely iterated S-operations, then $M\# S^{2}\times S^{2}$

is diffeomorphic to $N\# S^{2}\times S^{2}$ .
DEFINITION (C-operation). Let $f:M^{4}\rightarrow R^{2}$ be a simple mapping with $g_{f}\leq 1$ and

$\pi_{1}(M^{4})=1$ . Assume that $(M, f)$ has a decomposition $(M, f)=(M_{1}, f_{1})\#(M_{2}, f_{2})$ such
that (i) $f_{2}$ has no cusp, (ii) $W_{f_{2}}$ has a unique l-region which is diffeomorphic to an
open annulus, and (iii) $q_{f_{2}}(S(f_{2}))$ consists of three simple closed curves, one of which
is the boundary of $W_{f_{2}}$ and the others bound the l-region. Then, a C-operation is to
replace $(M, f)$ with $(M_{1}, f_{1})$ .

Note that if $(M, f)$ is replaced with $(M_{1}, f_{1})$ by a C-operation, then $M_{1}$ is
diffeomorphic to $M$, by the following proposition.

PROPOSITION 6.1. (Notations are as above). $M_{2}$ is diffeomorphic to $S^{4}$ .
$PR\infty F$ . Note that $M_{2}$ is a homotopy 4-sphere. In fact, $M_{2}$ is simply connected

because so is $M$, and the Euler characteristic of $M_{2}$ is 2 by [3].
Let $a$ be apoint chosen from the $0$-region of $W_{f_{2}}$ enclosed by the inside boundary

of the unique l-region, $D$ a 2-disc in the O-region which contains $a$ in its interior, and
$C$ one of the two connected components of $q_{f_{2}}(S(f_{2}))$ which bound the l-region. There
exists a trivial fibration $\pi$ from $W_{f_{2}}\backslash IntD$ onto $C$, and the composition

$\pi\circ q_{f_{2}}$ : $q_{f_{2}}^{-1}(W_{f_{2}}\backslash IntD)\rightarrow W_{f_{2}}\backslash IntD\rightarrow C$
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is a locally trivial fibration, which follows from the same argument as in Propositio]

\S 1.6 of [5]. Fibres of this fibration are punctured lens spaces whose boundaries $a1$

$q_{f_{2}}^{-1}(r),$ $r\in\partial D$ . We see this easily by the definition of fold points (see the paragrap
following Lemma 3.1). Sinoe $q_{f_{2}}^{-1}(D)$ , which is diffeomorphic to $S^{2}\times D^{2}$ , is a $tubu1^{\tau}$

neighbourhood of $q_{f_{2}}^{-1}(a)$ , it follows that the exterior of the 2-knot $q_{f_{2}}^{-1}(a)$ is a puncture
lens space bundle over $C$. Note that the boundary of each fibre is isotopic to $q_{f_{2}}^{-1}(a$

It turns out that $q_{f_{2}}^{-1}(a)$ is a fibred 2-knot in a homology 4-sphere, fibred by puncture
lens spaces. Such a homology sphere must be diffeomorphic to $S^{4}$ : In fact $q_{f_{2}}^{-1}(a)$

Zeeman’s 2-twist-spun knot of a two bridge knot in $S^{3}[7,8,10]$ . $q.e.($

7. Proof of Theorem B.

We shall prove the theorem in two steps. In the first step, performing $S- operation^{t}$

we change the pair $(M, g)$ to a configuration trivial pair $(N, f^{\prime})=(N_{1}, f_{1})\#\cdots\#(N_{s},f_{s}$

In the second step, performing C-operations, we change $(N, f^{\prime})$ to a configuration $trivi^{e}$

pair $(N, f)$ which satisfies the inequality (1).

First step, simplifying configurations. Let $\Lambda_{g}$ be a transversal tree of $g$ and $p_{1}$ th
terminal point of the initial elementary tree $\Lambda_{0}$ . Suppose that the degree of $p_{1}$ equal
one. It tums out that $\Lambda_{g}$ consists of only the initial elementary tree, and hence $th^{r}$

$(M, g)$ is already a configuration trivial pair. Therefore we may assume that the set
of the vertices in the O-regions with degree greater than one is non-empty. Divide $\Lambda$

into elementary trees $\Lambda_{i}’ s$ at the points in $S$ .
To show that the pair $(M, g)$ can be changed to a configuration trivial pair, $w$

have only to show it in the case where the degree of $p_{1}$ is two: If the degree of $p_{1}l$

greater than two, then there is a natural decomposition

$(M, g)=(L_{1}, g_{1})\#(L_{2}, g_{2})\#\cdots$ lt $(L_{m}, g_{m})$

such that for the closures $\Lambda_{11}\cdot,$ $\Lambda_{12},$ $\cdots,$ $\Lambda_{1m}$ of the connected components of $\Lambda_{f}\backslash \Lambda_{(}$

each $\Lambda_{1i}\cup\Lambda_{0}$ is naturally identified with a transversal tree of $g_{i}$ for $i=1,$ $\cdots,$ $m$ . If eac
$(L_{i}, g_{i})$ can be changed to a configuration trivial pair $(L_{i}^{\prime}, g_{i}^{\prime})$; then $(M, g)$ can be change
to the connected sum $(N, g^{\prime})=(L_{1}^{\prime}, g_{1}^{\prime})\#\cdots\#(L_{m}^{\prime}, g_{m}^{\prime})$ which is also configuration trivia
Therefore this case is reduced to the degree two case.

Assuming that the degree of $p_{1}$ is two, let $p_{2}$ be one of the terminal points of th
elementary tree of $\Lambda_{g}$ whose initial point is $p_{1}$ . In the case that $p_{2}\in S$, to simplify th
configuration of $q_{g}(S(g))$ at $p_{2}$ , we shall perform an S-operation centred at $p_{2}$ to the pa
$(M, g)$ , that is, an S-operation which replaces a tubular neighbourhood of $q_{f}^{-1}(p_{2})$ wit
$S^{1}\times D^{3}$ and a collar neighbourhood of $\partial W_{g}$ with $D^{2}\times S^{2}$ . The resulting pair $(L, )$

satisfies the following conditions: Let $D_{2}$ be a small 2-disc centred at $p_{2}$ in the O-regio
of $W_{g}$ , and let $\Lambda_{g,i},$ $i=1,2,$ $\cdots,$ $n$ , be the connected components of the closure $($

$\Lambda_{g}\backslash (\Lambda_{0}\cup D_{2})$ and let $p_{2t}=\Lambda_{g.i}\cap\partial D_{2}$ . Then there is a decomposition
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$(L, h)=(L_{1}, h_{1})$ ta $(L_{2}, h_{2})$ ta... ta $(L_{n}, h_{n})$

which satisfies the following properties. In each $W_{h_{I}}$ take a point $p_{oi}\in\partial W_{h}$ : and an arc
$\Lambda_{0i}$ whose initial point is $p_{0i}$ and whose terminal point is $p_{2i}$ so that it passes through

no other critical values $q_{h_{i}}(S(h_{i}))$ . Let $\Lambda_{g,i}^{\prime}$ be a tree in $W_{h_{i}}$ which naturally corresponds
to $\Lambda_{g,i}$ in $W_{g}$ . Then $\Lambda_{g.i}^{\prime}u\Lambda_{0,i}$ is a transversal tree of $h_{i}(i=1,2, \cdots, n)$ , if we forget the
orientations.

Let $\Lambda_{h_{i}}$ denote the tree $\Lambda_{g,i}^{\prime}\cup\Lambda_{0i}$ with the new orientation as a transversal tree of
$h_{i}$ . An example of the changes induced on $\Lambda_{g}$ during the S-operation centred at $p_{2}$ is
illustrated in Figure 7.1.

in $W_{g}$ in $W_{h}=W_{\hslash_{1}}\#\cdots\# W_{\hslash_{4}}$

FIGURE 7.1

Note that each $p_{i}$ in $S$ except for $p_{2}$ has a unique corresponding point in some
$W_{h_{i}},$ $i=1,2,$ $\cdots,$ $n$ . For convenience, we do not distinguish the original points from
their corresponding points. Then, each $\Lambda_{h_{i}}$ is divided into elementary trees at $p_{2i}$ and
at points in $S\backslash \{p_{1},p_{2}\}$ .

If $\Lambda_{\hslash_{i}}$ contains some $p_{j}$ in $S$ in its interior, then perform the S-operation centred
at $p_{j}$ to $(L_{i}, h_{i})$ and replace it with an S-equivalent pair $(L_{i}^{\prime}, h_{i}^{\prime})$ .

In this way, by applying the procedure for all $p_{j}’ s$ in $S$ except for $p_{1}$ , we can
construct a pair $(N, f^{\prime})=(N_{1},f_{1})\#(N_{2},f_{2})\#\cdots$ ta $(N_{s}, f_{s})$ which is configuration trivial.
Note that each elementary tree $\Lambda_{i}$ of $\Lambda_{g}$ except for the initial one is a transversal tree
of some $f_{j}$, after added a suitable initial tree and given a suitable orientation.

Second step, cancelling and enumerating connected components of $S(f)$ . Let $(N, f)$

be a configuration trivial pair obtained from $(N, f^{\prime})$ by iterating C-operations so that
the closure of no l-region of $W_{f}$ is diffeomorphic to the annulus. In the following $b_{2}(M)$

is denoted simply by $b_{2}$ .
Case 1 where $\chi(M)$ is even. For each l-region $R$ of $W_{f}$ , the boundary of $\overline{R}$ consists
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of one element of $q_{f}(S_{-}(f))$ and at least two elements of $q_{f}(S_{+}(f))$, by Lemma 5.1. Th
means $\# S_{+}(f)\geq 2\# S_{-}(f)$ . From this and Lemma 3.1, one obtains $2\# S_{-}(f)\leq b_{2}$ . Th
implies the required inequality, as in the proof of Theorem A.

Case 2 where $f$ is of type $A$ . Let $C$ be the connected component of $q_{f}(S(f))$ whic
contains the image of the unique cusp. Let $R_{C}$ be the l-region of $W_{f}$ which is adjace]
to $C$. Note that $\partial\overline{R_{C}}$ consists of $C$ and $k$ elements of $q_{J}\{S_{+}(f))$ where $k\geq 1$ , by Lemm
5.1. As in case 1, $\# S_{+}(f)-k\geq 2\# S_{-\omega}$, and one obtains $2\# S_{-}(f)\leq 1+b_{2}-2k\leq b_{2}-$

This implies the required inequality.
Case 3 where $f$ is of type $B$. Let $C$ and $R_{C}$ be the same as in case 2. Note th;

$\partial\overline{R_{C}}$ consists of $C$ and $l$ elements of $q_{f}(S_{+}(J))$ and an element of $q_{f}(S_{-}(J))$ where $l$ is
non-negative integer. As in the previous cases, $\# S_{+}(f)-l\geq 2(\# S_{-}(f)-1)$ . One obtair
$2\# S_{-}(f)\leq b_{2}+1-2l\leq b_{2}+1$ , which implies the required inequality. q.e. $t$

8. Proof of Theorem C.

To prove the theorem for the case $M\cong N\# C^{2}P\#\overline{C^{2}P}$, we need a result $analogo\iota$

to Theorem B. Let S’-equivalence be the relation defined by performing a connecte
sum with $C^{2}P\#\overline{C^{2}P}$ instead of $S^{2}\times S^{2}$ , in the definition of S-equivalence. Then a
S’-operation is defined similarly as an S-operation. It is easily checked that Theorem
$B$ is valid if we replace “S-operation” with “S’-operation”, and delete the phrase $\lrcorner$

is homeomorphic to $M’$ . We call this result Theorem $B^{\prime}$ .
Case 1 where $b_{2}(N)\geq 1$ . Let $g:N\rightarrow R^{2}$ be a simple mapping with $g_{g}\leq 1$ . Let $(L,$ $1$

be a configuration trivial pair obtained from $(N, g)$ by applying Theorem $B$ or Theorem
$B^{\prime}$ , according to the cases $M\cong N\# S^{2}xS^{2}$ or $N\# C^{2}P\#\overline{C^{2}P}$ . For convenience, we assum
that $k:W_{h}\rightarrow R^{2}$ is an embedding (see Remark (2) in section 2). We will construct th
required pair ($M,$ $fJ$ from $(L, h)$ as follows.

Let $C$ be one of the connected components of $q_{h}(S(h))\backslash \partial W_{h}$ which bound th
O-region that is adjacent to $\partial W_{h}$ . Such $C$ exists; in fact, sinoe $b_{2}(N)\geq 1$ , we have $\# S(h)\geq$

by Theorem A. Let $a$ be a point in $\partial W_{h}$ . Take a tubular neighbourhood $U$ of $a$ in $W$

so that $U\cap q_{h}(S(h))=(U\cap C)\cup(U\cap\partial W_{\hslash})$ and that $\partial U$ meets $C$ transversely at tw
points. Let $\lambda$ be the closure of $\partial U\backslash \partial W_{\hslash}$ . We may assume that $\lambda$ is transverse to $\partial W$,
By applying the arguments in [3], we see that $h^{-1}(U)$ is obtained from $D^{4}$ by a l-handl
attaching, thus diffeomorphic to $D^{3}\times S^{1}$ , and that $h^{-1}(\lambda)=\partial h^{-1}(U)$ . We denote th
closure of $L\backslash h^{-1}(U)$ by $\check{L}$ .

Let $f_{2}$ : $S^{2}\times D^{2}\rightarrow R^{2}$ be a $C^{\infty}$ mapping with two cusps constructed in Appendi
1 (see Figure 9.3). Then the two mappings $h|\partial\check{L}$ and $f_{2}|\partial(S^{2}\times D^{2})$ are right-lel
equivalent, which we show in Appendix 1. After changing $h$ and $f_{2}$ both left equivalent13
one can glue the two pairs $(\check{L}, h)$ and $(S^{2}\times D^{2},f_{2})$ along their boundaries and obtain
a pair $(L^{\prime},f^{\prime})$ such that $f^{\prime}$ : $L^{\prime}\rightarrow R^{2}$ is stable. Let $f$ be the simple mapping obtaine $($

from $f^{\prime}$ by eliminating the two cusps (see the last step in the construction of a simpl
mapping on $C^{2}P$ in Appendix 1). It is easily checked that $g_{f}\leq 1,$ $\# S(f)=\# S(h)+1,$ $an|$
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that $(L^{\prime}, f)$ is configuration trivial. Therefore the proof is completed if one can choose
the diffeomorphism of the gluing so that $L^{\prime}$ is diffeomorphic to $M$, which we prove in
Appendix 1.

Case 2 where $b_{2}(N)=0$ . We show that for such $N,$ $N\# S^{2}\times S^{2}\cong S^{2}\times S^{2}$ and
$N\# C^{2}P\#\overline{C^{2}P}\cong C^{2}P\#\overline{C^{2}P}$ . Then it is easily checked that the mappings given in
Examples in Appendix 1 are the required ones (see Figure 9.1).

Applying Theorem $B$ to $(N, g)$ , one obtains a pair $(N^{\prime}, f^{\prime})$ with $\# S(f^{\prime})=1$ . Then $N^{\prime}$

is diffeomorphic to $S^{4}$ (see Proposition 2.6 and Remark 2.7 in [6]). Therefore
$S^{2}\times S^{2}\cong N^{\prime}\# S^{2}\times S^{2}\cong N\# S^{2}\times S^{2}$ by Remark (2) in section 6. Next, let $(N^{\prime\prime},f^{\prime\prime})$ be the
pair obtained from $(N, g)$ by applying Theorem $B^{\prime}$ . In the same way, we see that $N^{\prime\prime}$ is
diffeomorphic to $S^{4}$ and $C^{2}P\#\overline{C^{2}P}\cong N^{\prime\prime}\# C^{2}P\#\overline{C^{2}P}\cong N\# C^{2}P\#\overline{C^{2}P}$ . q.e.d.

Appendix 1.

In this section we give examples of simply connected 4-manifolds which admit
simple mapping $f’ s$ with $g_{f}\leq 1$ and we complete the proof of Theorem $C$ using the
same arguments as the construction of the examples.

EXAMPLES. (1) For $M=S^{4},$ $C^{2}P,$ $S^{2}\times S^{2}$ and $C^{2}P\#\overline{C^{2}P}$, we can construct a
simple mapping $f:M\rightarrow R^{2}$ with $g_{f}\leq 1$ . The location of $q_{f}(S(f))$ in $W_{f}$ , which is a
2-disc, is illustrated in Figure 9.1.

(2) Let $M$ be a manifold obtained by performing finite connected sums of the
manifolds above. Then there exists a simple mapping $f:M\rightarrow R^{2}$ with $g_{f}\leq 1$ .

(a) $S^{4}$ (b) $C^{2}P$ (c) $S^{2}\times S^{2},$ $C^{2}P\#\overline{C^{2}P},$ $C^{2}PfC^{2}P$

The integers in the figures indicate the genus of the fibre overa point in the region.

FIGURE 9.1

PROOF OF (1). Construction in the case of $S^{4}$ . Let $i:S^{4}\rightarrow R^{5}$ be an embedding
which maps $S^{4}$ onto the unit sphere. Let $\pi:R^{5}\rightarrow R^{2}$ be the projection given by
$\pi(v, w, x, y, z)=(v, w)$ . Then $\pi\circ t:S^{4}\rightarrow R^{2}$ is the required simple mapping.

For the other manifolds, we construct the required mappings by the following
steps. First we construct a mapping from $B_{k}$ , the total space of a $D^{2}$ bundle over $S^{2}$

with Euler number $k$, into $R^{2}$ . Next we construct a mapping from the manifold $M$ into
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$R^{2}$ using the decompositions $M=B_{1}\cup D^{4},$ $B_{0}\cup BorB_{0}U_{\phi^{\prime}}B_{0}$ according to the cas$($

where $M=C^{2}P,$ $S^{2}\times S^{2}$ or $C^{2}P\#\frac{\varphi}{C^{2}P}$.
Construction of a mapping $f_{2}$ from $B_{k}$ into $R^{2}$ . Let $f_{1}$ be a $C^{\infty}$ -mapping fro]

$D^{2}\times D^{2}$ onto a sector in $R^{2}$ which satisfies the following conditions (see Appendix
for the construction).
(i) $f_{1}(D^{2}\times D^{2})=\{(x, y)|x^{2}+y^{2}\leq 1, x, y\geq 0\}$ .
(ii) $f_{1}^{-1}(0,0)=\partial D^{2}\times\partial D^{2},$ $f_{1}^{-1}(0\times[0,1])=\partial D^{2}\times D^{2}$ and $f_{1}^{-1}([0,1]x0)=D^{2}\times\partial D$

(iii) Set $\partial_{0}f_{1}=f_{1}|(\partial D^{2}\times D^{2}):\partial D^{2}\times D^{2}\rightarrow 0\times[0,1]$ , and $\partial_{1}f_{1}=f_{1}|(D^{2}\times\partial D^{2}$

$D^{2}\times\partial D^{2}\rightarrow[0,1]\times 0$ . Then $f_{1}|Int(D^{2}\times D^{2}),$ $\partial_{0}f_{1}$ and $\partial_{1}f_{1}$ are stable mappings
(iv) $f_{1}$ has exactly one cusp point in the interior of $D^{2}\times D^{2}$ .
(v) Each regular fibre of $f_{1}$ is connected and is either a sphere or a torus.
(vi) Let $C(f_{1})$ be the union of the critical values of $f_{1}|Int(D^{2}\times D^{2}),$ $\partial_{a}f_{1}$ and $\partial_{1}f$

Then it consists of two connected components whose locations are illustrated
Figure 9.2.

FIGURE 9.2

Let $\varphi_{k}$ be a diffeomorphism on $\partial D^{2}\times D^{2}$ defined by $\varphi_{k}(z, w)=(\overline{z}, z^{k}\cdot w)$, whe
$D^{2}$ is regarded as the unit disc in $C$. Let $l_{y}$ be the reflexion on $R^{2}$ given by $l_{y}(x, y)=(-x, $]

We glue the two pairs $(D^{2}\times D^{2}, f_{1})$ and $(D^{2}\times D^{2}, l_{y}\circ f_{1})$ via $\varphi_{k}$ and obtain a manifo
$B_{k}$ and a $C^{0}$-mapping $f_{2}^{\prime}$ . To show that the gluing is possible, we show that $ f_{1}=l_{y}\circ f_{1}\circ\langle$

on $\partial D^{2}\times D^{2}$ , as follows. Note that $(l_{y}\circ f_{1})|\partial D^{2}\times D^{2}$ : $\partial D^{2}\times D^{2}\rightarrow 0\times[0,1]$ coincid
with $\partial_{0}f_{1}$ . It is a Morse function which has two critical points of index $0$ and of $ind_{t}$

1. We can perturb $\varphi_{k}$ slightly without changing its isotopy type so that it preserves ’

$\partial_{a}f_{1}$ -fibres, since $\varphi_{k}$ preserves the meridian discs of $\partial D^{2}\times D^{2}$ (see Figure 3.1). Therefo
one can glue the two pairs $(D^{2}\times D^{2}, f_{1})$ and $(D^{2}\times D^{2}, l_{y}\circ f_{1})$ via $\varphi_{k}$ .

By the construction, the resulting manifold is diffeomorphic to $B_{k}$ . Note that $\partial_{\lrcorner}$

is alens space, since it is obtained by gluing two solid tori. We see that it is diffeomorph
to $L(k, 1)$, by calculation.

After we perturb $f_{2}^{\prime}$ slightly, we obtain a $C^{\infty}$-mapping $f_{2}$ : $B_{k}\rightarrow R^{2}$ such that bo
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$f_{2}|IntB_{k}$ and $\partial f_{2}=f_{2}|\partial B_{k}$ : $\partial B_{k}\rightarrow[-1,1]\times 0$ are stable mappings. Note that $f_{2}$ has two
cusps in the interior of $B_{k}$ . Let $C(f_{2})$ be the union of the critical values of $f_{2}|IntB_{k}$ and
$\partial f_{2}$ . The location of $C(f_{2})$ is illustrated in Figure 9.3.

$\downarrow y$

FIGURE 9.3

A construction in the case of $C^{2}P$ . Let $h:D^{4}\rightarrow R^{2}$ be a $C^{\infty}$-mapping satisfying the
following conditions (see Appendix 2 for a construction).
$(i)^{\prime}$ $h(D^{4})=\{(x, y)|x^{2}+y^{2}\leq 1, x\geq 0\}$ .

1(ii)’ $h^{-1}(0\times[-1,1])=\partial D^{4}$ .
(iii)’ Set $\partial h=h|\partial D^{4}$ : $\partial D^{4}\rightarrow 0\times[-1,1]$ . Then both $h|IntD^{4}$ and $\partial h$ are stable mappings.
(iv)’ $h$ has exactly one cusp point in the interior of $D^{4}$ .
$(v)^{\prime}$ Each regular fibre of $h$ is connected and is either a sphere or a torus.
(vi)’ Let $C(h)$ be the union of the critical values of $h|IntD^{4}$ and $\partial h$ . Then it consists of

two connected components whose locations are illustrated in Figure 9.4.

$|^{y}$

$1$

FIGURE 9.4
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Let $l_{r}$ be a slight perturbation of the $-\pi/2$-rotation on $R^{2}$ centred at the origi]
such that $l_{r}$ maps the critical values of $\partial h$ to those of $\partial f_{2}$ and that $f_{2}(B_{1})$ and $l_{r}\circ h(D^{4}$

form a disc. We will glue the pairs $(B_{1}, f_{2})$ and $(D^{4}, l_{r}\circ h)$ as before. We must show tha
there is a diffeomorphism $\varphi:\partial B_{1}\rightarrow\partial D^{4}$ such that $ f_{2}=l_{r}\circ h\circ\varphi$ on $\partial B_{1}$ .

Let $C$ be the connected component of $C(f_{2})$ which contains the image of the cusps
Let $C_{0}$ be the connected component of $C\backslash J_{2}(\{cusps\})$ which meets the negative par
of the x-axis, and $C_{1}$ the one which meets the positive part of the x-axis. Let $C^{\prime}$ be th
connected component of $C(h)$ which contains the image of the cusp. Let $C_{\acute{0}}$ be th
connected component of $C^{\prime}\backslash h(\{cusp\})$ which meets the negative part of the y-axis, an $($

$C_{1}^{\prime}$ the other. Take longitudes and meridians $(l_{0}, m_{0})$ and $(l_{1}, m_{1})$ of $f_{2}^{-1}(0,0)$ with respec
to $(C_{0}, [-1,0]\times 0)$ and $(C_{1}, [0,1]\times 0)$ respectively. Take longitudes and meridian
$(l_{\acute{O}}, m_{\acute{O}})$ and $(l_{1}^{\prime}, m_{1}^{\prime})$ of $h^{-1}(0,0)$ with respect to $(C_{\acute{O}}, 0\times[-1,0])$ and $(C_{1}^{\prime},0\times[0,1_{-}\neg$

respectively.
We fix orientations of $B_{1}$ and $D^{4}$ , and give orientations to the longitudes an $($

meridians as follows. Set $\partial_{0}=f_{2}^{-1}([-1,0]\times 0)$ and set $\partial_{1}=f_{2}^{-1}([0,1]\times 0)$ . We giv
orientations to $\partial_{0}$ and $\partial_{1}$ so that each of them coincides with the orientation of $\partial B_{1}i$

the interiors. Then give orientations to $l_{i}$ and $m_{i}$ so that, lined in this order, they coincid
with the orientation of $f_{2}^{-1}(0,0)$ as the boundary of $\partial_{i}$ for $i=0,1$ . (This says nothin
on the choice of the orientation of $m_{i}$ . We fix one.) In the same way, we orient $1_{i}^{\prime}$ an
$m_{i}^{\prime}$ by using the orientation of $D^{4}$ .

Let

$A=\left(\begin{array}{ll}r & p\\s & q\end{array}\right)$

and

$B=\left(\begin{array}{ll}z & u\\w & v\end{array}\right)$

be the matrices given by $[l_{1}]=r[l_{O}]+s[m_{0}]$ and $[m_{1}]=p[l_{0}]+q[m_{0}]$ in $H_{1}(f_{2}^{-1}(0,0),$ $Z$

and $[-l_{1}^{\prime}]=z[-l_{\acute{O}}]+w[m_{O}^{\prime}]$ and $[m_{1}^{\prime}]=u[-l_{o}^{\prime}]+v[m_{O}^{\prime}]$ in $H_{1}(h^{-1}(0,0),$ $Z$).
One can take an orientation reversing diffeomorphism $\varphi_{0}$ from $f_{2}^{-1}([-1,0]\times($

to $h^{-1}(0\times[-1,0])$ such that $f_{2}|f_{2}^{-1}([-1,0]\times 0)=l_{r}\circ h\circ\varphi_{0}$ . Then the induce
isomorphism $(\varphi_{0}|f_{2}^{-1}(0, O))_{*}$ from $H_{1}(f_{2}^{-1}(0,0),$ $Z$) to $H_{1}(h^{-1}(0,0),$ $Z$) has a matri
representation of the form $\pm T_{c},$ $c\in Z$, for the basis $\langle[l_{0}], [m_{0}]\rangle$ of the domain an
$\langle[-l_{\acute{0}}], [m_{\acute{0}}]\rangle$ of the image, by Proposition 3.2. In the same way, let $\varphi_{1}$ be an $orient^{l}$

tion reversing diffeomorphism from $f_{2}^{-1}([0,1]\times 0)$ to $h^{-1}(0\times[0,1])$ such $th^{l}$

$f_{2}|f_{2}^{-1}([0,1]\times 0)=l_{r}\circ h\circ\varphi_{1}.Let\pm T_{d},$ $d\in Z$, be the matrix representation of the induce
isomorphism $(\varphi_{1}|f_{2}^{-1}(0, O))_{*}$ for the bases $\langle[l_{1}], [m_{1}]\rangle$ and $\langle[-l_{1}^{\prime}], [m_{1}^{\prime}]\rangle$ .

The two diffeomorphisms $\varphi_{0}$ and $\varphi_{1}$ can be glued so as to define an $0$rientatio
, reversing diffeomorphism $\varphi$ from $\partial B_{1}$ to $\partial D^{4}$ if and only if the following $t*$ ) holds.
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$(*)$ $\pm T_{c}\cdot A=B\cdot(\pm T_{d})$ .
By a direct calculation, $(*)$ holds for some integers $c$ and $d$ if and only if $p=\pm u$,

$q\equiv\pm v(mod |p|)$ and $r\equiv\pm z(mod |p|)$ . Now we have $|p|=|u|=1$ , and hence these
conditions are satisfied. In fact $\partial B_{1}$ is identified with $S^{1}\times D^{2}\bigcup_{A}S^{1}\times D^{2}=L(p, q)$ and
since $\partial B_{1}$ is also identified with $S^{3},$

$p$ must be $\pm 1$ . In the same way, $u$ must be $\pm 1$ .
Therefore one can glue $\varphi_{0}$ and $\varphi_{1}$ . The resulting diffeomorphism $\varphi:\partial B_{1}\rightarrow\partial D^{4}$ reverses
orientation and satisfies $ f_{2}=l_{r}\circ h\circ\varphi$ on $\partial B_{1}$ . Now glue the pairs $(B_{1}, f_{2})$ and $(D^{4}, l_{r}\circ h)$

via $\varphi$ so as to obtain $C^{2}P$ and a $C^{0}$-mapping $f_{3}^{\prime}$ from $C^{2}P$ into $R^{2}$ . After a slight
perturbation, $f_{3}^{\prime}$ becomes a $C^{\infty}$-stable mapping $f_{3}$ .

Next, one can eliminate two of the three cusps of $f_{3}$ by applying the method of
[4] carefully to $f_{3}$ , and obtains a simple mapping $f$ . In fact take the joining curve
(which is defined in (4.4) of [4]) that connects two of the three cusps so that its image
does not meet the critical values of $f_{3}$ except for the two cusps. Then one can elimindte
the two cusps without creating any crossings of $f(S(f))$ and without changing the
maximum genus of regular map-fibres. The mapping $f$ thus obtained is the required
one (refer to Figure 9.1 $(b)$).

Constructions for the cases of $S^{2}\times S^{2}$ and $C^{2}P\#\overline{C^{2}P}$ . Let $l_{x}$ be the reflexion on $R^{2}$

given by $l_{x}(x, y)=(x, -y)$ . We will glue the pairs $(B_{0}, f_{2})$ and $(B_{0}, l_{x}\circ f_{2})$ . Assuming that
the gluing is possible, let $f_{3}$ be the resulting mapping from the resulting manifold into
$R^{2}$ . Then one can eliminate the four cusps of $f_{3}$ in pairs and obtains a required simple
mapping as in the previous cases. Therefore it suffices to show the following: There are
two diffeomorphisms $\varphi_{0}$ (resp. $\varphi_{\acute{0}}$) on $f_{2}^{-1}([-1,0]\times 0)$ and $\varphi_{1}$ (resp. $\varphi_{1}^{\prime}$ ) on
$f_{2}^{-1}([0,1]\times 0)$ which can be glued such that the resulting diffeomorphism $\phi$ (resp. $\phi^{\prime}$)
on $\partial B_{0}$ is orientation reversing and satisfies, (a) $ f_{2}|\partial B_{0}=l_{x}\circ f_{2}\circ\phi$ (resp. $f_{2}|\partial B_{0}=$

$l_{x}\circ f_{2}\circ\phi^{\prime})$ , and (b) $B_{0}u_{\phi}B_{0}\cong S^{2}\times S^{2},$ $B_{0}U_{\phi’}B_{0}\cong C^{2}P\#\overline{C^{2}P}$ .
Take $C_{i},$ $l_{i},$ $m_{i}(i=0,1)$ and integers $p,$ $q,$ $r,$ $s$ which are the elements of a matrix $A$ ,

similarly as in the cases of $B_{1}$ . Since $\partial B_{0}$ is identified with $L(p, q)$ and with $S^{1}\times S^{2},$
$p$

is zero and hence $q=\pm 1$ . Therefore one may assume that $A=I^{\prime}$ by an appropriate
choice of $m_{1}$ and $l_{1}$ , where $I^{\prime}$ is the matrix defined by

$I^{\prime}=\left(\begin{array}{ll}-1 & O\\0 & 1\end{array}\right)$ .

Let $\varphi_{0}$ (resp. $\varphi_{\acute{0}}$) be a diffeomorphism on $f_{2}^{-1}([-1,0]\times 0)$ such that the induced
isomorphism $(\varphi_{0}|f_{2}^{-1}(O, O))_{*}$ (resp. $(\varphi_{\acute{0}}|f_{2}^{-1}(O,$ $0))_{*}$) on $H_{1}(f_{2}^{-1}(O, 0),$ $Z$) has the matrix
representation $T_{0}$ (resp. $T_{1}$ ) for the basis $\langle[l_{0}], [m_{0}]\rangle$ of the domain and $\langle[-l_{0}], [m_{0}]\rangle$

of the image. Let $\varphi_{1}$ . (resp. $\varphi_{1}^{\prime}$ ) be a diffeomorphism on $f_{2}^{-1}([O, 1]\times 0)$ such that the
induced isomorphism $(\varphi_{1}|f_{2}^{-1}(O, O))_{*}$ (resp. $(\varphi_{1}^{\prime}|f_{2}^{-1}(0,0))_{*}$) on $H_{1}(f_{2}^{-1}(O, 0),$ $Z$) has the
matrix representation $T_{0}$ (resp. $T_{-1}$ ) for the bases $\langle[l_{1}], [m_{1}]\rangle$ and $\langle[-l_{1}], [m_{1}]\rangle$ . We
can take these mappings so that they preserve all $f_{2}- fibres$ , by Proposition 3.2.
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Since the condition $(*)$ is verified for $A=B=I^{\prime}$ , one can glue $\varphi_{0}$ and $\varphi_{1}(res$]

$\varphi_{\acute{0}}$ and $\varphi_{1}^{\prime}$ ). Let $\phi$ (resp. $\phi^{\prime}$) be the resulting diffeomorphism. Then they are orientatio
reversing diffeomorphisms on $\partial B_{0}$ and satisfy condition (a).

Now we check the condition (b). Note that one can identify $S^{1}\times D^{2}\bigcup_{A}S^{1}\times D$

with $S^{1}\times S^{2}$ since both of them are identified with $\partial B_{0}$ . Via the identificatio]

$\{t\}\times D^{2}\cup\{t\}\times D^{2}$ corresponds to $\{t\}\times S^{2}(t\in S^{1})$ . We say a point $p_{t}$ (resp. $n_{t}$) in $\{t\}xS$

is a north pole (resp. south pole) if it is identified with $(t, 0)$ of the former $\{t\}\times D^{2}(res$]

the latter $\{t\}\times D^{2}$). Since we may assume that $\varphi_{i}$ and $\varphi_{i}^{\prime}(i=0,1)$ induce diffeomorphisn
on $S^{1}\times D^{2}$ which preserve $\{t\}\times D^{2}(t\in S^{1}),$ $\phi$ and $\phi^{\prime}$ satisfy $\phi(\{t\}\times S^{2})=\{t\}\times S^{2}$ an
$\phi^{\prime}(\{t\}\times S^{2})=\{t\}\times S^{2}$ . Moreover $\phi$ does not twist $\{t\}\times S^{2}$ according as $t$ moves, sint
$\varphi_{i}(l_{i})(i=0,1)$ does not tum around $S^{1}\times\{0\}\subset S^{1}\times D^{2}$ and $\phi^{\prime}$ twists $\{t\}\times S^{2}$ once aroun
the north and south poles according as $t$ moves, since $\varphi_{i}^{\prime}(l_{i})(i=0,1)$ tums once aroun
$S^{1}\times\{0\}\subset S^{1}\times D^{2}$ . Therefore $B_{0}U_{\phi}B_{0}$ is the total space of the trivial $S^{2}$ bundle ove
$S^{2}$ and $B_{0}u_{\phi},$ $B_{0}$ is that of the non-trivial $S^{2}$ bundle over $S^{2}$ , which is diffeomorph]

to $C^{2}P\#\overline{C^{2}P}([9])$ . $q.e.($

$PR\infty F$ OF (2). Let $(M_{i}, f_{i})$ be one of the pairs of a manifold and a simple mappin
constructed in (1). By eliminating extra cusps of $\# f_{i}$ : $\#_{i}M_{i}\rightarrow R^{2}$ as in (1), one obtain
a simple mapping $f:\#_{i}M_{i}\rightarrow R^{2}$ with $g_{f}\leq 1$ . $q.e.\langle$

REMARK. By using the method of (2), one can construct a simple mapping $0$

$C^{2}P\#\overline{C^{2}P}$ . Let $f$ be a simple mapping on $C^{2}P$ constructed in (1). Note that $C^{2}P$

obtained by gluing $B_{-1}$ and $D^{4}$ . One can construct a simple mapping $gon\underline{C^{2}P}$, in th
same way as $f$ . Then, from $f\# g$ , one obtains a simple mapping on $C^{2}P\# C^{2}P$ .

COMPLETION $oFTHEPR\infty FOF$ THEOREM C. We show that there is a diffeomorphis]
$\Phi:\partial\check{L}\rightarrow\partial(S^{2}\times D^{2})$ such that, $(a^{\prime})h|\partial L$ and $(f_{2}|\partial(S^{2}\times D^{2}))\circ\Phi$ are left equivalent, an
$(b^{\prime})L\bigcup_{\Phi}S^{2}\times D^{2}$ is diffeomorphic to $M$.

Take a point $a$ in $\lambda$ so that $q_{h}^{-1}(a)$ is a torus. Then divide $\lambda$ into two closed $ar($

$I_{O}$ and $I_{1}$ with $I_{0}\cap I_{1}=\{a\}$ . Since $I_{0}$ and $I_{1}$ meet $C$ transversely at each single poin
one can choose a longitude and a meridian $(l_{i}, m_{i})$ of $q_{h}^{-1}(a)$ with respect to $(C,$ $I_{1}$

$i=0,1$ . One may assume that $[m_{1}]=[m_{0}]$ and $[l_{1}]=-[l_{O}]$ as in the proof of (1), $\sin($

$\partial L$ is diffeomorphic to $S^{1}\times S^{2}$ . Let $(l_{i}^{\prime}, m_{i}^{\prime})$ be the longitude and meridian of $f_{2}^{-1}(0$ ,

chosen for $B_{0}$ in the proof of (1). Then one can define diffeomorphisms $\phi$ and $\phi^{\prime}$ fro
$\partial L$ to $\partial(S^{2}\times D^{2})$ in the same way as in the proof of (1), using these longitudes an
meridians. The condition $(a^{\prime})$ is checked in the same way. For the condition $(b^{\prime})$ , on
can show that either $\check{L}\cup S^{2}\phi\times D^{2}$ or $LU_{\phi’}S^{2}\times D^{2}$ is diffeomorphic to $ N\# S^{2}\times S^{2}a\iota$

that the other is diffeomorphic to $N\# C^{2}P\#\overline{C^{2}P}$ . Therefore either $\phi$ or $\phi^{\prime}$ can be takt
as $\Phi$ . q.e.
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Appendix 2. Construction of the mappings used in Appendix 1.

In this section we construct the mappings $f_{1}$ : $D^{2}\times D^{2}\rightarrow R^{2}$ and $h:D^{4}\rightarrow R^{2}$ which
were used in Appendix 1.

Once $h$ is constructed, one can construct $f_{1}$ from $h$ as follows. Set $E=$

$\{(x, y)\in R^{2}|x^{2}+y^{2}\leq 1, x\geq 0\}$ and let $S$ be the sector in $E$ enclosed by the two lines
$l_{1}$ : $x=y$ and $l_{2}$ : $x=-y$ . One may assume that the line $x=ty$ and $C(h)$ meet transversely
for $t\in[-1,1]$ . Then $h^{-1}(S)$ is a manifold with boundary $h^{-1}(l_{1}\cap E)\cup h^{-1}(l_{2}\cap E)$ and
corner $h^{-1}(O, 0)$ . We show that $h^{-1}(S)$ is diffeomorphic to $D^{2}\times D^{2}$ .

By an appropriate choice of coordinates, one may assume that $ h^{-1}(E)=\{(z, w)\in$

$C^{2}||z|^{2}+|w|^{2}\leq 1\}$ and $h^{-1}(0\times[-1, O])(resp. h^{-1}(O\times[1,0]))=\{(z, w)\in C^{2}||z|^{2}+$

$|w|^{2}=1,$ $|z|\leq|w|$ (resp. $|z|\geq|w|$ )}. Note that $h^{-1}(E\cap\{(x, y)|x<y\})$ is an open tubular
neighbourhood of $h^{-1}(0\times[1,0])\backslash h^{-1}(0,0)$ . Therefore $h^{-1}(E\cap\{(x, y)|x<y\})$ is
isotopic to $\{(z, w)\in C^{2}||z|^{2}+|w|^{2}\leq 1, |z|>1/\sqrt{2}\}$ by the uniqueness of the tubular
neighbourhood. In the same way, $h^{-1}(E\cap\{(x, y)|x<-y\})$ is isotopic to $\{(z, w)\in C^{2}|$

$|z|^{2}+|w|^{2}\leq 1,$ $|w|>1/\sqrt{2}$}. Therefore $h^{-1}(S)$ is diffeomorphic to $\{(z, w)\in C^{2}||z|^{2}+$

$|w|^{2}\leq 1,$ $|z|\leq 1/\sqrt{2},$ $|w|\leq 1/\sqrt{2}$}, and hence is diffeomorphic to $D^{2}\times D^{2}$ .
It is easily checked that the restriction of $h$ to $h^{-1}(S)$ satisfies the conditions (i)

through (vi) after composed with a suitable diffeomorphism on $R^{2}$ . Therefore we have
only to construct $h$ .

We divide $E$ into four pieces and construct $h$ step by step over these pieces. Set
$A=[0, \sqrt{5}/4]\times[-3/4,3/4]$ , which will include the connected component of $C(h)$ that
contains the image of the cusp. Let $B^{1}$ and $B^{2}$ be the two connected components of
$E\cap\{(x, y)|x\leq\sqrt{5}/4, |y|\geq 3/4\}$ and set $C=E\cap\{(x, y)|x\geq\sqrt{5}/4\}$ (see Figure 9.4).
Then $h^{-1}(A)$ and $h^{-1}(A\cup B^{1}uB^{2})$ will be diffeomorphic to $[0, \sqrt{5}/4]\times[-1,1]\times S^{2}$

and $[0, \sqrt{5}/4]\times S^{3}$ respectively, and $h^{-1}(C)$ will be diffeomorphic to $D^{4}$ .
First step, construction on $[0, \sqrt{5}/4]\times[-1,1]\times S^{2}$ . Let $H:[0,3/4]\times R^{3}\rightarrow R^{2}$ be

the stable mapping defined by $H(u, x, y, z)=(u, x^{3}+3(u-1/2)x+y^{2}-z^{2})$ . $H$ has a cusp
point at $(1/2, 0,0,0)$ and the critical values $C(H)$ divide the image of $H$ into two regions.
If $(u, a)\in{\rm Im}(H)$ is in the same region as $(0,0)$ , then $H^{-1}(u, a)$ is diffeomorphic to $T^{2}\backslash D^{2}$ .
If $(u, a)\in{\rm Im}(H)$ is in the other region, then $H^{-1}(u, a)$ is diffeomorphic to $S^{2}\backslash D^{2}$ (see
Figure 10.1).

$[-],1]whereF_{u,a}=u\times[-3/2,3/2]\times Q\cap H^{-}(uNowwerestrictHtothesubsetFofR^{4}defin_{1}edbyF=\bigcup_{a)\subset R^{4}with}(u,a)F_{u,a},(u,a)\in[0,\sqrt{5}/4]\times Q=\{(y,z)\in R^{2}||y^{2}-$

$z^{2}|\leq 5,$ $|y\pm z|\leq 3$ } (see Figure 10.1).
The following properties are checked in an elementary way. For all $u\in[0, \sqrt{5}/4]$ ,

(1) $F_{u,a}$ is connected for $a\in[-1,1]$ ,
(2) $\partial F_{u,a}isacirclewitheightcornersfora\in[-1,1]$ ,
(3) $F_{u,\pm 1}$ is a manifold with eight corners on the boundary, and its interior is diffeo-

morphic to $IntD^{2}$ ,
(4) $ F_{u,a}\cap(u, \pm 3/2)\times Q\neq\emptyset$ for $a\in[-1,1]$ ,
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FIGURE 10. 1

$\bigcup_{a\epsilon[- 1.1]}F_{u.a}$

FIGURE 10.2

(5) let $\Phi_{u,t}$ : $\bigcup_{a\in[-1,1]}F_{u.a}\cap(u, t)\times Q\rightarrow R$ be the mapping defined by $\Phi_{u,t}(u, t, y, z)--$

$y^{2}-z^{2}$ , then ${\rm Im}(\Phi_{u.t})$ is aclosed subinterval of $(-5,5)$ for all $t\in[-3/2,3/2]$ ,

(6) if $(u, 3/2, y, z)\in F_{u,a}$ , then $y^{2}-z^{2}<0$ for $a\in[-1,1]$ ,

(7) if $(u, -3/2, y, z)\in F_{u_{1}a}$ , then $y^{2}-z^{2}>0$ for $a\in[-1,1]$ ,

(8) $\bigcup_{a\in[-1.1]}F_{u,a}$ contains the singular points of $g_{u}(x, y, z)=x^{3}+3(u-1/2)x+y^{2}-z$

We see that $\bigcup_{a\in[-1,1]}F_{u,a}$ is a thick saddle, by (4) through (7), and th;

$H|\bigcup_{\langle ua)\in[0,\sqrt{}\overline{5}/4]x[-1,1]}\partial F_{u,a}$ is a trivial fibration with fibre $\partial F_{u,a}$ , by (2) (see Figure 10.2

Therefore one can naturally extend $H|F$ to $H_{1}$ : $[0, \sqrt{5}/4]\times[-1,1]\times S^{2_{-}}$

$[0, \sqrt{5}/4]\times[-1,1]$ by attaching the pair $([0, \sqrt{5}/4]\times[-1,1]\times D^{2}, \pi)$ to $(F,$ $H|F$

where $\pi:[0, \sqrt{5}/4]\times[-1,1]\times D^{2}\rightarrow[0, \sqrt{5}/4]\times[-1,1]$ is the projection. Note tha
the restriction of $H_{1}$ to $[0, \sqrt{5}/4]\times\{\pm 1\}\times S^{2}$ is the projection with sphere-fibres $t$
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(3), and that $H_{1}$ has a cusp point in $($ 1/2, $O)\times S^{2}$ by (8).
Second step, extension to $[0, \sqrt{5}/4]\times S^{3}$ . Define $k:D_{1}^{3}\rightarrow[1,2]$ by $k(x, y, z)=2-$

$x^{2}-y^{2}-z^{2}$ , where $D_{1}^{3}$ denotes the unit 3-ball centred at the origin. After slight
perturbation of mappings, one can glue the three pairs $([0, \sqrt{5}/4]\times D_{1}^{3}, id\times k)$ ,
$([0, \sqrt{5}/4]\times[-1,1]\times S^{2}, H_{1})$ and $([0, \sqrt{5}/4]\times D_{1}^{3}, id\times(-k))$ one after the other
along $[0, \sqrt{5}/4]\times\{\pm 1\}\times S^{2}$ so as to obtain a $C^{\infty}$ -mapping $H_{2}$ : $[0, \sqrt{5}/4]\times S^{3}\rightarrow$

$[0, \sqrt{5}/4]\times[-2,2]$ .
Third step, extension to $D^{4}$ . Define $l:D_{1}^{4}\rightarrow R^{2}$ by $l(u, x, y, z)=(1-((4-\sqrt{5})/4)$

$(u^{2}+x^{2}+y^{2}+z^{2}),$ $2u$) where $D_{1}^{4}$ denotes the unit 4-ball centred at the origin. Then
$l|\partial D_{1}^{4}$ : $\partial D_{1}^{4}\rightarrow\sqrt{5}/4\times[-2,2]$ and $H_{2}|\sqrt{5}/4\times S^{3}$ : $\sqrt{}\overline{5}/4\times S^{3}\rightarrow\sqrt{5}/4\times[-2,2]$ are
right-equivalent Morse functions. Therefore after slight perturbations of $l$ and $H_{2}$ , one
can glue the pairs $([0, \sqrt{5}/4]\times S^{3}, H_{2})$ and $(D_{1}^{4}, l)$ so as to obtain a $C^{\infty}$-mapping
$H_{3}$ ; $D^{4}\rightarrow R^{2}$ .

It is obvious from the construction that $h=\psi\circ H_{3}$ satisfies the conditions $(i)^{\prime}$ through
(vi)’, for an appropriate diffeomorphism $\psi$ on $R^{2}$ . Therefore we have constructed the
required mapping $h$ . q.e.d.
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