Simplifying Certain Mappings from Simply Connected 4-Manifolds into the Plane

Mahito KOBAYASHI
Tokyo Institute of Technology
(Communicated by S. Suzuki)

1. Introduction and summary.

In the study of C^{∞}-manifolds by means of mappings, the following is a primary and deep problem: To what extent can we simplify mappings between manifolds? We study this problem in the present paper for a certain class of stable mappings from closed simply connected 4-manifolds into the plane. It is the class such that the associated quotient mapping q_{f} from M onto the closed 2-disc D^{2} of each member $f: M \rightarrow \boldsymbol{R}^{2}$ has only tori and spheres as regular map-fibres. For example, $S^{4}, C^{2} P, C^{2} P \# \overline{C^{2} P}, S^{2} \times$ S^{2} and their finite connected sums admit such stable mappings (see Examples in Appendix 1).

Let f be a stable mapping from M into \boldsymbol{R}^{2}. We call a point p in M a singular point of f if $d f_{p}$ is not of maximum rank. The set of the singular points of f is denoted by $S(f)$, which is a 1 -dimensional closed submanifold of M consisting of fold points and a finite number of cusp points ([4]). For x and y in M, we define $x \sim y$ by the conditions that $f(x)=f(y)(=a)$ and that x and y are in the same connected component of $f^{-1}(a)$. The quotient space of M by this equivalence relation is called the quotient space associated with f and is denoted by W_{f}. The quotient mapping is denoted by q_{f}. Let $f: W_{f} \rightarrow \boldsymbol{R}^{2}$ be the mapping which satisfies $f \circ q_{f}=f$. Then q_{f} is a local homeomorphism when it is restricted to $S(f)$ and f is a local homeomorphism outside $q_{f}(S(f))([5],[6])$. For points in W_{f}, the topological types of their neighborhoods in W_{f} are listed in [6].

We call a stable mapping $f: M^{4} \rightarrow \boldsymbol{R}^{2}$ simple, if (i) f has at most one cusp, (ii) W_{f} is homeomorphic to D^{2}, and (iii) q_{f} is an embedding when it is restricted to $S(f) \backslash$ \{cusps \}. If M is oriented, all the regular fibres of q_{f} are oriented closed surfaces. Let the maximum genus of all the regular q_{f}-fibres be denoted by q_{f}. Let R be a connected component of $W_{f} \backslash q_{f}(S(f))$. We say R is a 0 -region if the regular fibre over a point in R is a sphere,

[^0]and a 1-region if it is a torus.
Now we state our theorems.
Theorem A. Let $f: M^{4} \rightarrow R^{2}$ be a simple mapping with $g_{f} \leq 1$ and $\pi_{1}(M)=1$. Then
\[

$$
\begin{array}{ll}
\# S(f) \geq \frac{1}{2} b_{2}(M)+3 & \text { (if } \left.b_{2}(M) \text { is even and non-zero }\right), \\
\# S(f) \geq \frac{1}{2}\left(b_{2}(M)+5\right) & \left(\text { if } b_{2}(M) \text { is odd }\right),
\end{array}
$$
\]

where $\# S(f)$ denotes the number of connected components of $S(f)$ and $b_{2}(M)$ the second Betti number of M.

Theorem B. Let $g: M^{4} \rightarrow R^{2}$ be a simple mapping with $g_{g} \leq 1$ and $\pi_{1}(M)=1$. Then, by a finite iteration of the S - and C-operations, which are defined in section 6 , we can change the pair (M, g) to (N, f) such that N is homeomorphic to M, and that $f: N \rightarrow \boldsymbol{R}^{2}$ is a simple mapping with $g_{f} \leq 1$ which satisfies the following conditions.
(1)

$$
\begin{array}{ll}
\# S(f)=1 & \left(\text { if } b_{2}(M)=0\right), \\
\# S(f) \leq \frac{3}{2} b_{2}(M)+1 & \left(\text { if } b_{2}(M) \text { is even and non-zero }\right), \\
\# S(f) \leq \frac{3}{2}\left(b_{2}(M)+1\right) & \left(\text { if } b_{2}(M) \text { is odd }\right)
\end{array}
$$

(2) The pair (N, f) has a decomposition

$$
(N, f)=\left(N_{1}, f_{1}\right) \text { 勺 }\left(N_{2}, f_{2}\right) \text { ต } \cdots \text { ต }\left(N_{k}, f_{k}\right)
$$

such that $f_{i}: N_{i} \rightarrow \boldsymbol{R}^{2}$ is a simple mapping with $g_{f_{i}} \leq 1$ and has at most one 1-region.
The notation $(M, f)=\left(M_{1}, f_{1}\right)$ घ $\left(M_{2}, f_{2}\right)$ means that $M=M_{1} \# M_{2}$ and that q_{f} is right-left equivalent to $q_{f_{1} \# f_{2}}$, where the connected sum of simple mappings is defined precisely in section 6. If a pair (M, f) has a decomposition as in the second condition in Theorem B, we say (M, f) is configuration trivial.

Theorem C. Let $g: N \rightarrow R^{2}$ be a simple mapping with $g_{g} \leq 1$ and $\pi_{1}(N)=1$. Then for $M=N \# S^{2} \times S^{2}$ and $N \# C^{2} P \# \overline{C^{2} P}$, there exists a simple mapping $f: M \rightarrow R^{2}$ with $g_{f} \leq 1$ which satisfies the following conditions.
(1)

$$
\begin{array}{ll}
\# S(f)=4 & \left(\text { if } b_{2}(M)=2\right), \\
\# S(f) \leq \frac{3}{2} b_{2}(M)-1 & \left(\text { if } b_{2}(M) \text { is even and not equal to } 0,2\right),
\end{array}
$$

$$
\# S(f) \leq \frac{1}{2}\left(3 b_{2}(M)-1\right) \quad\left(\text { if } b_{2}(M) \text { is odd }\right)
$$

(2) The pair (M, f) is configuration trivial.

The basic tools used in this paper have been prepared in [3], [4], [5]. Local properties of the quotient spaces have been studied in [2], [6].

A remark on configuration triviality. If a pair (M, f) is configuration trivial, then the location of $q_{f}(S(f))$ is very simple: The region adjacent to the boundary of W_{f} is a 0 -region, since f has the normal form $(u, x, y, z) \rightarrow\left(u, x^{2}+y^{2}+z^{2}\right)$ near the points in $q_{f}^{-1}\left(\partial W_{f}\right) \cap S(f)$. Therefore if (M, f) is configuration trivial, then the location of $q_{f}(S(f))$ in W_{f} is simple as illustrated in Figure 1.1.

Figure 1.1

Throughout this paper, the symbol \cong between two manifolds means that the manifolds are diffeomorphic.

The author would like to express his gratitude to the referee for correcting many errors in early versions of this paper.

2. Preliminaries.

A stable mapping $f: M^{4} \rightarrow \boldsymbol{R}^{2}$ is characterized by the following local and global conditions ([4]).

Local condition: For a given point $p \in S(f)$, there are local coordinate systems centred at p and $f(p)$ such that in a neighbourhood of p, f has the normal form $\left(\mathrm{L}_{1}\right)$ or $\left(\mathrm{L}_{2}\right)$;
$\left(\mathrm{L}_{1}\right) \quad f:\left(u, z_{1}, z_{2}, z_{3}\right) \mapsto(u, Q(z)), \quad$ where $Q(z)=\sum \varepsilon_{i} z_{i}^{2}, \quad\left|\varepsilon_{i}\right|=1$, or
$\left(\mathrm{L}_{2}\right) \quad f:\left(u, x, z_{1}, z_{2}\right) \mapsto\left(u, Q(z)+a u x+b x^{3}\right)$, where $Q(z)=\sum \varepsilon_{i} z_{i}^{2}, \quad\left|\varepsilon_{i}\right|=|a|=|b|=1$.

We call p a fold point, or simply a fold if it is of type $\left(\mathrm{L}_{1}\right)$, and a cusp point or a cusp if it is of type (L_{2}).

Global conditions:

$\left(\mathrm{G}_{1}\right)$ if $p \in S(f)$ is a cusp point, then $f^{-1}(f(p)) \cap S(f)=\{p\}$, and
$\left.\left(\mathrm{G}_{2}\right) \quad f\right|_{s(f) \backslash\{\text { cusps }\}}$ is an immersion with normal-crossings.
For a fold point p, we can choose local coordinates so that the index of $Q(z)$ is even, which we call the index of the fold point p. Thus the index of a fold point is either 0 or 2 . A fold point is called definite if its index is 0 , and indefinite if it is 2 .

For the quotient spaces associated with stable mappings, one should refer to [5] and [6]. We give only two remarks here.

Remark (1). For a stable mapping $f: M \rightarrow \boldsymbol{R}^{2}$, assume that the quotient space W_{f} is a topological manifold possibly with boundary. Then one can give a C^{∞}-structure to W_{f} with respect to which $\bar{f}: W_{f} \rightarrow \boldsymbol{R}^{2}$ is an immersion, since the mapping \bar{f} is a local homeomorphism (see Fig. 2, [6]). With respect to this C^{∞}-structure, q_{f} is C^{∞}.

Remark (2). For the same f as in Remark (1), fix the C^{∞}-structure of W_{f} given above. Then for any generic immersion $h: W_{f} \rightarrow R^{2}$, the composed mapping $g=h \circ q_{f}$ is a stable mapping such that $W_{f}=W_{g}$ and $q_{f}=q_{g}$.

3. Basic tools.

Let $f: M^{4} \rightarrow \boldsymbol{R}^{2}$ be a simple mapping with $g_{f} \leq 1$, and let S_{i} be a connected component of $S(f)$ consisting of indefinite folds. Then $q_{f}\left(S_{i}\right)$ separates W_{f} into two regions. We say S_{i} is positive (resp. negative) if the inside region of $q_{f}\left(S_{i}\right)$ is a 0 -region (resp. 1-region).

Notation. $\quad S_{ \pm}(f)=\left\{S_{i} \mid S_{i}\right.$ is a positive (resp. negative) connected component of $S(f)$ consisting of indefinite fold points $\}$.

DEFINITION (type of a simple mapping). Let $f: M^{4} \rightarrow \boldsymbol{R}^{2}$ be a simple mapping with a cusp and $g_{f} \leq 1$. Let S be the connected component of $S(f)$ with the unique cusp. Then $q_{f}(S)$ separates W_{f} into two regions. We say f is of type A (resp. type B) if the inside region of $q_{f}(S)$ is a 1 -region (resp. 0-region).

Lemma 3.1. For a simple mapping $f: M^{4} \rightarrow \boldsymbol{R}^{2}$ with $g_{f} \leq 1$, we have

$$
\begin{aligned}
\chi(M) & =2\left(\# S_{+}(f)-\# S_{-}(f)\right)+2 & & \text { if } \chi(M) \text { is even , } \\
& =2\left(\# S_{+}(f)-\# S_{-}(f)\right)+1 & & \text { if } \chi(M) \text { is odd }(\text { type } A), \\
& =2\left(\# S_{+}(f)-\# S_{-}(f)\right)+5 & & \text { if } \chi(M) \text { is odd (type } B),
\end{aligned}
$$

where $\chi(M)$ is the Euler number of M.
Proof. By Remark (2) in section 2, there exists a stable mapping $g: M \rightarrow \boldsymbol{R}^{2}$ such that $W_{f}=W_{g}, q_{f}=q_{g}$, and that $\bar{g}: W_{g} \rightarrow \boldsymbol{R}^{2}$ is an embedding. For such g, the lemma is immediately seen by Theorem 1 of [3]. We obtain the required equalities for f, since $\# S_{ \pm}(f)=\# S_{ \pm}(g)$.

Let $f: M^{4} \rightarrow \boldsymbol{R}^{2}$ be a simple mapping, C a connected component of $q_{f}(S(f))$ which is adjacent to both a 0 -region and a 1 -region, and a a point in the 1 -region. Let J be an embedded closed arc in W_{f} which connects a and a point in the 0 -region, such that it meets $q_{f}(S(f))$ transversely at a single point in C. We see that the restriction of q_{f} to $q_{f}^{-1}(J)$ is a Morse function onto J with a single saddle critical point, in the same way as in Proposition 4, $\S 1.3$ of [5]. It turns out that $q_{f}^{-1}(J)$ is a solid torus with an open 3-disc removed.

Definition (meridian and longitude with respect to (C, J)). (Notations a, C, J are as above.) An essential simple closed curve m in $q_{f}^{-1}(a)$ is called a meridian of $q_{f}^{-1}(a)$ with respect to (C, J) if it is the boundary of a closed 2-disc embedded in the solid torus $q_{f}^{-1}(J) \cup D^{3}$. A simple closed curve l in $q_{f}^{-1}(a)$ is called a longitude of $q_{f}^{-1}(a)$ with respect to (C, J) if l and m meet transversely at a single point.

Note that the isotopy class or the homology class of m is unique up to sign.
More generally, we consider the following situation. Set $J=[-1,1]$ and $\tilde{J}=\left(S^{1} \times D^{2}\right) \backslash \operatorname{Int} D^{3}$. Let $g: \tilde{J} \rightarrow J$ be a C^{∞}-function such that $g^{-1}(-1)$ is the sphere component of $\partial \tilde{J}$, that $g^{-1}(1)$ is the torus component of $\partial \tilde{J}$, and that $g \mid \operatorname{Int} \tilde{J}$ is a Morse function with a single critical point of Morse-index 1. Then we can define a longitude and a meridian of $g^{-1}(1)$ as before.

Notation. Let φ be a diffeomorphism on $\tilde{J}=\left(S^{1} \times D^{2}\right) \backslash \operatorname{Int} D^{3}$ and T the torus component of $\partial \tilde{J}$. We denote by $[\varphi]$ the isomorphism $\left(\left.\varphi\right|_{T}\right)_{*}$ on $H_{1}(T, Z)$ induced by φ.

Notation. For an integer α, let T_{α} denote the matrix defined by

$$
T_{\alpha}=\left(\begin{array}{cc}
1 & 0 \\
\alpha & 1
\end{array}\right)
$$

Proposition 3.2. (g, J, \tilde{J} are as above.) Let (l, m) be a longitude and a meridian of $g^{-1}(1)$. If an orientation preserving diffeomorphism φ on \tilde{J} satisfies $g=g \circ \varphi$, then $[\varphi]$ has

Figure 3.1
a matrix representation of the form $[\varphi]= \pm T_{\alpha}, \alpha \in Z$ with respect to the basis $\langle[l],[m]\rangle$ of $H_{1}\left(g^{-1}(1), Z\right)$. Conversely, for $A= \pm T_{\alpha}$, there is a diffeomorphism φ on \widetilde{J} such that $[\varphi]=A$ and that $g=g \circ \varphi$.

Proof. Both assertions are obvious since g has the level sets illustrated in Figure 3.1.
q.e.d.

4. Proof of Theorem A.

In the case $b_{2}(M)$ is even, $\# S(f)=\# S_{+}(f)+\# S_{-}(f)+1$. Using Lemma 3.1, one obtains

$$
\# S(f)=2 \# S_{-}(f)+\frac{1}{2} b_{2}(M)+1
$$

It is enough to show $\# S_{-}(f) \geq 1$. Suppose that $\# S_{-}(f)=0$, then W_{f} has no 1-region, since the region adjacent to ∂W_{f} is a 0 -region. This implies that $\# S(f)=1$, and hence that $b_{2}(M)=0$, which is excluded. Therefore $\# S_{-}(f) \geq 1$ for M with $b_{2}(M)>0$.

In the case $b_{2}(M)$ is odd, $\# S(f)=\# S_{+}(f)+\# S_{-}(f)+2$, and using Lemma 3.1 one obtains

$$
\begin{array}{ll}
\# S(f)=2 \# S_{-}(f)+\frac{1}{2} b_{2}(M)+\frac{5}{2} & \text { if } f \text { is of type A, and } \\
\# S(f)=2 \# S_{-}(f)+\frac{1}{2} b_{2}(M)+\frac{1}{2} & \text { if } f \text { is of type B }
\end{array}
$$

If f is of type A, then the required inequality is obvious (\# $S_{-}(f)$ can be 0 . In fact $C^{2} P$ has such a simple mapping. See Figure 9.1). If f is of type B, then an element of $S_{-}(f)$ must be located outside the connected component of $q_{f}(S(f))$ which contains the image of the cusp. Therefore $\# S_{-}(f) \geq 1$. The same required inequality follows immediately. q.e.d.

5. Transversal trees.

For a simple mapping f with $g_{f} \leq 1$, we define a graph Λ_{f} embedded in W_{f} as follows:
(1) Take a point $p_{i}(i \geq 1)$ in each connected component R_{i} of $W_{f} \backslash q_{f}(S(f))$ and a point p_{0} in ∂W_{f}, which are the vertices of Λ_{f}.
(2) If R_{i} and R_{j} are separated by a connected component, say $C_{i j}(i>j \geq 1)$, of $q_{f}(S(f)) \backslash \partial W_{f}$ (such $C_{i j}$ is unique for each (i,j), if it exists), then connect p_{i} and p_{j} by a path $\sigma_{i j}$ so that $\sigma_{i j}$ meets $q_{f}(S(f))$ transversely at a single point in $C_{i j}$.
(3) Let p_{1} be the vertex chosen from the 0 -region adjacent to ∂W_{f}. Then connect p_{0} and p_{1} by a path σ_{10} so that σ_{10} is normal to ∂W_{f} and $\sigma_{10} \cap q_{f}(S(f))=\left\{p_{0}\right\} ; \sigma_{i j}$
$(i>j \geq 1)$ and σ_{10} are the edges of Λ_{f}.
Note that Λ_{f} is a tree. Suppose that Λ_{f} has a cycle γ and let C be a connected component of $q_{f}(S(f))$ which meets γ. Let D be the closed 2-disc in W_{f} which bounds C. Since γ meets C transversely at a single point, say $p, \gamma \backslash p$ is divided into two open sets $\gamma \cap \operatorname{Int} D$ and $\gamma \cap\left(W_{f} \backslash D\right)$, both of which are non-empty. This is a contradiction.

Definition (transversal tree). For a simple mapping $f: M^{4} \rightarrow \boldsymbol{R}^{2}$, we call the tree Λ_{f} in W_{f} thus obtained a transversal tree of f. We give Λ_{f} the orientation towards the inside: Let σ be an edge of Λ_{f} and C the connected component of $q_{f}(S(f))$ which meets σ. We give σ the orientation, from the vertex of σ lying outside of C towards the vertex lying inside of C. To σ_{10} we give the orientation from p_{0} towards p_{1}.

We say a vertex p of a graph is of degree k if the number of edges which contain p as a boundary point is k.

Lemma 5.1. Let $f: M \rightarrow \boldsymbol{R}^{2}$ be a simple mapping with $g_{f} \leq 1$ and $\pi_{1}(M)=1$. Then the degree one vertices of a transversal tree Λ_{f} are in 0 -regions except for p_{0}.

The proof will be given at the end of this section.
Definition (elementary tree of Λ_{f}). Let $\left\{p_{1}, \cdots, p_{k}\right\}$ be the vertices of Λ_{f} contained in the 0 -regions and of degree greater than one. We call the closure of each connected component of $\Lambda_{f} \backslash\left\{p_{1}, \cdots, p_{k}\right\}$ an elementary tree of Λ_{f}.

To each elementary tree Λ_{i}, we give an orientation which is induced from Λ_{f}. We say a degree one vertex p of Λ_{i} is an initial (resp. a terminal) point of Λ_{i} if p is the initial (resp. the terminal) point of the unique edge of Λ_{i} which contains p as a boundary point. We call the unique elementary tree which meets ∂W_{f} the initial tree.

Proof of Lemma 5.1. If a connected component of $W_{f} \backslash q_{f}(S(f))$ contains a vertex of Λ_{f} of degree one, then it is diffeomorphic to the open disc. Therefore we have only to show that a region \mathbf{R} is a 0 -region if it is diffeomorphic to the open disc. Suppose that such R is a 1 -region and set $C=\partial \overline{\mathrm{R}}$.

Case 1 where C does not contain $q_{f}(\{c u s p\})$, the image of the unique cusp. One can show that there is a tubular neighbourhood $N(C)$ of C such that $q_{f}^{-1}(J) \rightarrow$ $q_{f}^{-1}(N(C)) \rightarrow C$ is a local trivial fibration where J is a fibre of the canonical projection $N(C) \rightarrow C$, by using the same argument as in Proposition, §1.6 of [5]. The fibre $q_{f}^{-1}(J)$ is diffeomorphic to $\left(S^{1} \times D^{2}\right) \backslash \operatorname{Int} D^{3}$ (see section 3). Let C^{\prime} be the outside boundary of $N(C)$ and D_{c}^{\prime} the closed neighbourhood of R enclosed by C^{\prime}. Set $E=W_{f} \backslash$ Int D_{c}^{\prime}. Let $i: q_{f}^{-1}\left(C^{\prime}\right) \rightarrow q_{f}^{-1}\left(D_{c}^{\prime}\right)$ and $j: q_{f}^{-1}\left(C^{\prime}\right) \rightarrow q_{f}^{-1}(E)$ be the inclusions.

We show that $\operatorname{rank} H_{1}\left(q_{f}^{-1}(E), Z\right) \geq 1$. One can take a free generator s^{\prime} of $H_{1}\left(q_{f}^{-1}\left(C^{\prime}\right), Z\right)$, since $q_{f}^{-1}\left(C^{\prime}\right)$ is diffeomorphic to $S^{2} \times S^{1}$. Then $j_{*}\left(s^{\prime}\right)$ is of infinite order in $H_{1}\left(q_{f}^{-1}(E), Z\right)$, since $\left(q_{f} \mid q_{f}^{-1}(E)\right)_{*} \circ j_{*}\left(s^{\prime}\right)$ is a free generator of $H_{1}(E, Z) \cong Z$.

Next we show that $\operatorname{rank} H_{1}\left(q_{f}^{-1}\left(D_{c}^{\prime}\right), Z\right)=1$, by using a Mayer-Vietoris exact
sequence. Let $C^{\prime \prime}$ be the inside boundary of $N(C)$ and $D_{c}^{\prime \prime}$ the closure of $D_{c}^{\prime} \backslash N(C)$. We have the following exact sequence;

$$
H_{1}\left(q_{f}^{-1}\left(C^{\prime \prime}\right), Z\right) \longrightarrow H_{1}\left(q_{f}^{-1}\left(D_{c}^{\prime \prime}\right), Z\right) \oplus H_{1}\left(q_{f}^{-1}(N(C)), Z\right) \longrightarrow H_{1}\left(q_{f}^{-1}\left(D_{c}^{\prime}\right), Z\right) \longrightarrow 0
$$

Since $q_{f} \mid q_{f}^{-1}\left(C^{\prime \prime}\right): q_{f}^{-1}\left(C^{\prime \prime}\right) \rightarrow C^{\prime \prime}$ is a trivial T^{2} fibration, one can see that the fibration $q_{f}^{-1}(N(C)) \rightarrow C$ is trivial. It is shown that $H_{1}\left(q_{f}^{-1}\left(C^{\prime \prime}\right), Z\right), H_{1}\left(q_{f}^{-1}\left(D_{c}^{\prime \prime}\right), Z\right)$ and $H_{1}\left(q_{f}^{-1}(N(C)), Z\right)$ are torsion free and of rank 3,2 and 2 respectively, by the Künneth formula in the last case. Let (l, m) be a longitude and a meridian with respect to (C, J), and set $s=S(f) \cap q_{f}^{-1}(C)$. Let $s^{\prime \prime}$ be a cross-section of q_{f} over $C^{\prime \prime}$. We may assume that the above three homology groups are generated by l, m, and $s^{\prime \prime}$, by l and m, and by l and s, respectively. Therefore it is easy to see that the first homomorphism of the exact sequence is injective. Hence we have $H_{1}\left(q_{f}^{-1}\left(D_{c}^{\prime}\right), Z\right) \cong Z\langle l\rangle$.

On the other hand, we have the following Mayer-Vietoris exact sequence;

$$
H_{1}\left(q_{f}^{-1}\left(C^{\prime}\right), Z\right) \longrightarrow H_{1}\left(q_{f}^{-1}\left(D_{c}^{\prime}\right), Z\right) \oplus H_{1}\left(q_{f}^{-1}(E), Z\right) \longrightarrow H_{1}(M, Z)=0
$$

Since j_{*} is an injection, the first homomorphism is an isomorphism. This is a contradiction. In fact the left side of the isomorphism has rank 1 , and the right side has rank greater than or equal to 2 .

Case 2 where C contains $q_{f}(\{\operatorname{cusp}\})$. Let $g: M \rightarrow R^{2}$ be a simple mapping such that $W_{f}=W_{g}, q_{f}=q_{g}$, (thus $g_{g} \leq 1$) and that \bar{g} is an embedding (see Remark (2) in section 2). We will prove the claim for g. As R is supposed to be a 1-region, g must be of type A. Let $\gamma: \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}$ be a linear function such that $\gamma \circ g$ is a Morse function (for the existence of such γ, see 1.3 of [3]). After we compose g with some isotopy in $\boldsymbol{R}^{\mathbf{2}}$ if necessary,

Figure 5.1
we can take closed neighbourhoods U and V of $\bar{g}(R)$ which satisfy the following conditions, by [3] (see Figure 5.1):
a) $\bar{g}(\overline{\mathbf{R}}) \subset V \subset U$,
b) there is a diffeomorphism $\varphi: I \times J \rightarrow U$,
c) $\varphi(u \times J)=g(M) \cap \gamma^{-1}(u)$ for $u \in I$,
d) $V \cap g(S(g))=\bar{g}(C)$,
e) set $V \cap \gamma^{-1}(u)=J_{u}^{\prime}$, then $(\gamma \circ g)^{-1}(u) \backslash g^{-1}\left(J_{u}^{\prime}\right), u \in I$, are all diffeomorphic, where $I, J \cong[-1,1]$.
In fact, one can choose $I \subset(\gamma \circ g)(M)$ so that I contains exactly one critical value of $\gamma \circ g$. We may assume that this critical value is 0 and that the value of the cusp is $1 / 2$. Then by the argument of [3] we see that $(\gamma \circ g)^{-1}(-\infty, 1 / 4]$ can be obtained from $(\gamma \circ g)^{-1}(-\infty,-1 / 2]$ by a 1 -handle attaching. From d), one has $g^{-1}\left(J_{-1 / 2}^{\prime}\right) \cong S^{2} \times J$, hence by e), one has $g^{-1}\left(J_{1 / 4}^{\prime}\right) \cong S^{2} \times S^{1} \backslash 2 \operatorname{Int} D^{3}$. On the other hand, $g^{-1}\left(J_{1 / 4}^{\prime}\right) \cong$ $g^{-1}\left(J_{3 / 4}^{\prime}\right) \cong S^{2} \times J$, where the former diffeomorphism follows from the fact that $[1 / 4,3 / 4]$ contains no critical values of $\gamma \circ g$ and the latter follows from d). This is a contradiction.
q.e.d.

6. S - and C-operations.

Let $f: M^{4} \rightarrow R^{2}$ be a simple mapping and suppose $\pi_{1}(M)=1$. We construct a C^{∞}-stable mapping \tilde{f} from $M \# S^{2} \times S^{2}$ onto S^{2} as follows.

Construction of f : Let c be the unique connected component of $S(f)$ such that $q_{f}(c)=\partial W_{f}$. Take a collar neighbourhood $v(c)$ of ∂W_{f} so that $v(c) \cap q_{f}(S(f))=c$. Then $q_{f}^{-1}(v(c))$ is a tubular neighbourhood of c in M and the restriction of q_{f} to its boundary is right-left equivalent to the projection $S^{2} \times S^{1} \rightarrow S^{1}$. One can glue $M \backslash q_{f}^{-1}(v(c))$ and $S^{2} \times D^{2}$ and at the same time $\overline{W_{f} \backslash v(c)}$ and D^{2} along their boundaries by diffeomorphisms φ and ψ which satisfy the commutative diagram (Figure 6.1), where $p: S^{2} \times D^{2} \rightarrow D^{2}$ is the projection.

Figure 6.1
By this gluing, we also glue q_{f} and q_{p} and obtain a smooth mapping \tilde{f} from $\overline{M \backslash q_{f}^{-1}(v(c))} \cup_{\varphi} D^{2} \times S^{2}$ onto $\overline{W_{f} \backslash v(c)} \cup_{\psi} D^{2}$.

We can choose the attaching diffeomorphism φ so that the source manifold is diffeomorphic to $M \# S^{2} \times S^{2}$ ([9]). Thus we have constructed a smooth mapping
$\tilde{f}: M \# S^{2} \times S^{2} \rightarrow S^{2}$, which is obviously stable. Note that the right-left equivalence classes of \tilde{f} 's are not unique according to the various isotopy types of φ. We say that f is a mapping onto S^{2} associated with f.

Definition (S-equivalence). Let $f: M^{4} \rightarrow \boldsymbol{R}^{2}$ and $g: N^{4} \rightarrow \boldsymbol{R}^{2}$ be simple mappings with $\pi_{1}(M)=\pi_{1}(N)=1$. The pairs (M, f) and (N, g) are said to be S-equivalent if $\tilde{f}: M \# S^{2} \times S^{2} \rightarrow S^{2}$ and $\tilde{g}: N \# S^{2} \times S^{2} \rightarrow S^{2}$ are right-left equivalent, where \tilde{f} and \tilde{g} are mappings onto S^{2} associated with f and g respectively.

Let M_{i} be an oriented manifold and $f_{i}: M_{i} \rightarrow \boldsymbol{R}^{2}$ a simple mapping for $i=1,2$. We can construct a smooth stable mapping $f \# g$ from $M_{1} \# M_{2}$ into R^{2} in the following way.

Let a_{i} be a point in $\partial W_{f_{i}}$ for $i=1,2$. Take a tubular neighbourhood U_{i} of a_{i} in $W_{f_{i}}$ so that $U_{i} \cap q_{f_{i}}\left(S\left(f_{i}\right) \subset \partial W_{f_{i}}\right.$ for $i=1,2$ (see Figure 6.2). Let λ_{i} be the closure of $\partial U_{i} \backslash \partial W_{f_{i}}$ for $i=1,2$. We may assume that λ_{i} is transverse to $\partial W_{f_{i}}$. Then we see that $q_{f}^{-1}\left(U_{i}\right)$ is diffeomorphic to D^{4} and $q_{f}^{-1}\left(\lambda_{i}\right)=\partial q_{f}^{-1}\left(U_{i}\right), i=1,2$, by applying Levine's argument in [3]. We give an orientation to each $W_{f_{i}}$ so that \bar{f}_{i} is an orientation preserving immersion, and to each λ_{i} as a subset of the boundary of $\overline{W_{f_{i}} \backslash U_{i}}$.

Figure 6.2
Let $g_{i}: q_{f_{i}}^{-1}\left(\lambda_{i}\right) \rightarrow \lambda_{i}$ be the restrictions of $q_{f_{i}}$ to $q_{f_{i}}^{-1}\left(\lambda_{i}\right), i=1,2$. They are Morse functions by the definition of definite fold points and are right-left equivalent; in fact both are the simplest Morse functions on S^{3}. Let $\varphi: q_{f_{1}}^{-1}\left(\lambda_{1}\right) \rightarrow q_{f_{2}}^{-1}\left(\lambda_{2}\right)$ and $\psi: \lambda_{1} \rightarrow \lambda_{2}$ be diffeomorphisms satisfying $\psi \circ g_{1}=g_{2} \circ \varphi$. We take ψ as orientation reversing. We may assume that φ is orientation reversing with respect to the orientations of $q_{f_{i}}^{-1}\left(\lambda_{i}\right)$ as the boundaries of $\overline{M_{i} \backslash q_{f_{i}}^{-1}\left(U_{i}\right)}, i=1,2$. In fact if φ is orientation preserving, let $k: q_{f_{2}}^{-1}\left(\lambda_{2}\right) \rightarrow q_{f_{2}}^{-1}\left(\lambda_{2}\right)$ be an orientation reversing diffeomorphism which satisfies $g_{2}=g_{2} \circ k$ and which reverses the orientation of each level set of g_{2}. Then the diffeomorphism $k \circ \varphi$ is orientation reversing and $\psi \circ g_{1}=g_{2} \circ k \circ \varphi$.

Let M_{i}^{\prime} be the closure of $M_{i} \backslash q_{f_{i}}^{-1}\left(U_{i}\right)$ and W_{i}^{\prime} the closure of $W_{f_{i}} \backslash U_{i}$, for $i=1,2$. We can glue the triads $\left(M_{1}^{\prime},\left.q_{f_{1}}\right|_{M_{1}^{\prime}}, W_{1}^{\prime}\right)$ and $\left(M_{2}^{\prime},\left.q_{f_{2}}\right|_{M_{2}^{\prime}}, W_{2}^{\prime}\right)$ by φ and ψ, and obtain ($M_{1} \# M_{2}, \tilde{q}, W_{f_{1}}$ घ $W_{f_{2}}$), where \tilde{q} is a C^{0}-mapping satisfying $\tilde{q}=q_{f_{i}}$ on $M_{i}^{\prime}, i=1,2$. After a slight perturbation, \tilde{q} becomes C^{∞}. We denote the C^{∞}-mapping by $q_{f_{1}} \# q_{f_{2}}$. Now change the immersion \bar{f}_{2} left equivalently so that $f_{2}\left(M_{2}^{\prime}\right)$ attaches to $f_{1}\left(M_{1}^{\prime}\right)$. Then we can glue \bar{f}_{1} and \bar{f}_{2} and obtain an immersion h from $W_{f_{1}} \ddagger W_{f_{2}}$ into \boldsymbol{R}^{2}. After a slight
perturbation of h, we obtain a C^{∞}-stable mapping $h \circ q_{f_{1}} \# q_{f_{2}}$ from $M_{1} \# M_{2}$ into \boldsymbol{R}^{2}. Let $f_{1} \# f_{2}$ denote the mapping thus obtained.

Note that $W_{f_{1} \# f_{2}}=W_{f_{1}}$ घ $W_{f_{2}}$ and that $q_{f_{1} \# f_{2}}$ is right-left equivalent to $q_{f_{1}} \# q_{f_{2}}$. The mapping $q_{f_{1}} \# q_{f_{2}}$, (thus also $q_{f_{1} \# f_{2}}$) is determined uniquely by f_{1} and f_{2} up to right-left equivalence.

Notation. For a stable mapping $f: M \rightarrow \boldsymbol{R}^{2}$ and simple mappings $f_{i}: M_{i} \rightarrow \boldsymbol{R}^{2}$, $i=1,2$, we shall write $(M, f)=\left(M_{1}, f_{1}\right)$ ध $\left(M_{2}, f_{2}\right)$ if q_{f} is right-left equivalent to $q_{f_{1}} \# q_{f_{2}}$.

Remark. It is easily checked that $\left(M_{1}, f_{1}\right)$ घ $\left(M_{2}, f_{2}\right)=\left(M_{2}, f_{2}\right)$ 比 $\left(M_{1}, f_{1}\right)$ and
 mean that the manifolds of both sides are diffeomorphic and the quotient mappings of the stable mappings of the both sides are right-left equivalent.

Definition (S-operation). Let $f: M^{4} \rightarrow R^{2}$ be a simple mapping with $\pi_{1}\left(M^{4}\right)=1$. Assume that (M, f) has the following decomposition:

$$
(M, f)=\left(M_{1}, f_{1}\right) \text { ท }\left(M_{2}, f_{2}\right) \text { घ } \cdots \text { ท }\left(M_{k}, f_{k}\right) .
$$

Then, an S-operation is to replace an $\left(M_{i}, f_{i}\right)$ with a pair which is S-equivalent to $\left(M_{i}, f_{i}\right)$.
Remark. (1) If (M, f) and (N, g) are S-equivalent, then M and N are homeomorphic, by [1].
(2) If (M, f) is changed to (N, g) by finitely iterated S-operations, then $M \# S^{2} \times S^{2}$ is diffeomorphic to $N \# S^{2} \times S^{2}$.

Definition (C-operation). Let $f: M^{4} \rightarrow \boldsymbol{R}^{2}$ be a simple mapping with $g_{f} \leq 1$ and $\pi_{1}\left(M^{4}\right)=1$. Assume that (M, f) has a decomposition $(M, f)=\left(M_{1}, f_{1}\right)$ 解 $\left(M_{2}, f_{2}\right)$ such that (i) f_{2} has no cusp, (ii) $W_{f_{2}}$ has a unique 1-region which is diffeomorphic to an open annulus, and (iii) $q_{f_{2}}\left(S\left(f_{2}\right)\right)$ consists of three simple closed curves, one of which is the boundary of $W_{f_{2}}$ and the others bound the 1-region. Then, a C-operation is to replace (M, f) with (M_{1}, f_{1}).

Note that if (M, f) is replaced with $\left(M_{1}, f_{1}\right)$ by a C-operation, then M_{1} is diffeomorphic to M, by the following proposition.

Proposition 6.1. (Notations are as above). M_{2} is diffeomorphic to S^{4}.
Proof. Note that M_{2} is a homotopy 4 -sphere. In fact, M_{2} is simply connected because so is M, and the Euler characteristic of M_{2} is 2 by [3].

Let a be a point chosen from the 0 -region of $W_{f_{2}}$ enclosed by the inside boundary of the unique 1 -region, D a 2 -disc in the 0 -region which contains a in its interior, and C one of the two connected components of $q_{f_{2}}\left(S\left(f_{2}\right)\right)$ which bound the 1 -region. There exists a trivial fibration π from $W_{f_{2}} \backslash \operatorname{Int} D$ onto C, and the composition

$$
\pi \circ q_{f_{2}}: \quad q_{f_{2}}^{-1}\left(W_{f_{2}} \backslash \operatorname{Int} D\right) \longrightarrow W_{f_{2}} \backslash \operatorname{Int} D \longrightarrow C
$$

is a locally trivial fibration, which follows from the same argument as in Proposition, $\S 1.6$ of [5]. Fibres of this fibration are punctured lens spaces whose boundaries are $q_{f_{2}}^{-1}(r), r \in \partial D$. We see this easily by the definition of fold points (see the paragraph following Lemma 3.1). Since $q_{f_{2}}^{-1}(D)$, which is diffeomorphic to $S^{2} \times D^{2}$, is a tubular neighbourhood of $q_{f_{2}}^{-1}(a)$, it follows that the exterior of the $2-\mathrm{knot} q_{f_{2}}^{-1}(a)$ is a punctured lens space bundle over C. Note that the boundary of each fibre is isotopic to $q_{f_{2}}^{-1}(a)$. It turns out that $q_{f_{2}}^{-1}(a)$ is a fibred 2 -knot in a homology 4 -sphere, fibred by punctured lens spaces. Such a homology sphere must be diffeomorphic to S^{4} : In fact $q_{f_{2}}^{-1}(a)$ is Zeeman's 2-twist-spun knot of a two bridge knot in $S^{3}[7,8,10]$.
q.e.d.

7. Proof of Theorem B.

We shall prove the theorem in two steps. In the first step, performing S-operations, we change the pair (M, g) to a configuration trivial pair $\left(N, f^{\prime}\right)=\left(N_{1}, f_{1}\right)$ ต \cdots ท $\left(N_{s}, f_{s}\right)$. In the second step, performing C-operations, we change (N, f^{\prime}) to a configuration trivial pair (N, f) which satisfies the inequality (1).

First step, simplifying configurations. Let Λ_{g} be a transversal tree of g and p_{1} the terminal point of the initial elementary tree Λ_{0}. Suppose that the degree of p_{1} equals one. It turns out that Λ_{g} consists of only the initial elementary tree, and hence that (M, g) is already a configuration trivial pair. Therefore we may assume that the set S of the vertices in the 0 -regions with degree greater than one is non-empty. Divide Λ_{g} into elementary trees Λ_{i} 's at the points in S.

To show that the pair (M, g) can be changed to a configuration trivial pair, we have only to show it in the case where the degree of p_{1} is two: If the degree of p_{1} is greater than two, then there is a natural decomposition
such that for the closures $\Lambda_{11} ; \Lambda_{12}, \cdots, \Lambda_{1 m}$ of the connected components of $\Lambda_{f} \backslash \Lambda_{0}$, each $\Lambda_{1 i} \cup \Lambda_{0}$ is naturally identified with a transversal tree of g_{i} for $i=1, \cdots, m$. If each (L_{i}, g_{i}) can be changed to a configuration trivial pair ($L_{i}^{\prime}, g_{i}^{\prime}$); then (M, g) can be changed
 Therefore this case is reduced to the degree two case.

Assuming that the degree of p_{1} is two, let p_{2} be one of the terminal points of the elementary tree of Λ_{g} whose initial point is p_{1}. In the case that $p_{2} \in S$, to simplify the configuration of $q_{g}(S(g))$ at p_{2}, we shall perform an S-operation centred at p_{2} to the pair (M, g), that is, an S-operation which replaces a tubular neighbourhood of $q_{f}^{-1}\left(p_{2}\right)$ with $S^{1} \times D^{3}$ and a collar neighbourhood of ∂W_{g} with $D^{2} \times S^{2}$. The resulting pair (L, h) satisfies the following conditions: Let D_{2} be a small 2-disc centred at p_{2} in the 0 -region of W_{g}, and let $\Lambda_{g, i}, i=1,2, \cdots, n$, be the connected components of the closure of $\Lambda_{g} \backslash\left(\Lambda_{0} \cup D_{2}\right)$ and let $p_{2 i}=\Lambda_{g, i} \cap \partial D_{2}$. Then there is a decomposition

$$
(L, h)=\left(L_{1}, h_{1}\right) \text { 夕 }\left(L_{2}, h_{2}\right) \text { 曰 } \cdots \text { 夕 }\left(L_{n}, h_{n}\right)
$$

which satisfies the following properties．In each $W_{h_{i}}$ take a point $p_{0 i} \in \partial W_{h_{i}}$ and an arc $\Lambda_{0 i}$ whose initial point is $p_{0 i}$ and whose terminal point is $p_{2 i}$ so that it passes through no other critical values $q_{h_{i}}\left(S\left(h_{i}\right)\right.$ ）．Let $\Lambda_{g, i}^{\prime}$ be a tree in $W_{h_{i}}$ which naturally corresponds to $\Lambda_{g, i}$ in W_{g} ．Then $\Lambda_{g, i}^{\prime} \cup \Lambda_{0, i}$ is a transversal tree of $h_{i}(i=1,2, \cdots, n)$ ，if we forget the orientations．

Let $\Lambda_{h_{i}}$ denote the tree $\Lambda_{g, i}^{\prime} \cup \Lambda_{0 i}$ with the new orientation as a transversal tree of h_{i} ．An example of the changes induced on Λ_{g} during the S－operation centred at p_{2} is illustrated in Figure 7．1．

Figure 7.1
Note that each p_{i} in S except for p_{2} has a unique corresponding point in some $W_{h_{i}}, i=1,2, \cdots, n$ ．For convenience，we do not distinguish the original points from their corresponding points．Then，each $\Lambda_{h_{i}}$ is divided into elementary trees at $p_{2 i}$ and at points in $S \backslash\left\{p_{1}, p_{2}\right\}$ ．

If $\Lambda_{h_{i}}$ contains some p_{j} in S in its interior，then perform the S－operation centred at p_{j} to $\left(L_{i}, h_{i}\right)$ and replace it with an S－equivalent pair $\left(L_{i}^{\prime}, h_{i}^{\prime}\right)$ ．

In this way，by applying the procedure for all p_{j}＇s in S except for p_{1} ，we can
 Note that each elementary tree Λ_{i} of Λ_{g} except for the initial one is a transversal tree of some f_{j} ，after added a suitable initial tree and given a suitable orientation．

Second step，cancelling and enumerating connected components of $S(f)$ ．Let (N, f) be a configuration trivial pair obtained from（ N, f^{\prime} ）by iterating C－operations so that the closure of no 1－region of W_{f} is diffeomorphic to the annulus．In the following $b_{2}(M)$ is denoted simply by b_{2} ．

Case 1 where $\chi(M)$ is even．For each 1－region R of W_{f} ，the boundary of $\overline{\mathrm{R}}$ consists
of one element of $q_{f}\left(S_{-}(f)\right)$ and at least two elements of $q_{f}\left(S_{+}(f)\right)$, by Lemma 5.1. This means $\# S_{+}(f) \geq 2 \# S_{-}(f)$. From this and Lemma 3.1, one obtains $2 \# S_{-}(f) \leq b_{2}$. This implies the required inequality, as in the proof of Theorem A.

Case 2 where f is of type A. Let C be the connected component of $q_{f}(S(f))$ which contains the image of the unique cusp. Let $\mathrm{R}_{\boldsymbol{C}}$ be the 1-region of W_{f} which is adjacent to C. Note that $\partial \overline{\mathbf{R}_{C}}$ consists of C and k elements of $q_{f}\left(S_{+}(f)\right)$ where $k \geq 1$, by Lemma 5.1. As in case $1, \# S_{+}(f)-k \geq 2 \# S_{-}(f)$, and one obtains $2 \# S_{-}(f) \leq 1+b_{2}-2 k \leq b_{2}-1$. This implies the required inequality.

Case 3 where f is of type B. Let C and R_{C} be the same as in case 2. Note that $\partial \overline{\mathrm{R}_{C}}$ consists of C and l elements of $q_{f}\left(S_{+}(f)\right)$ and an element of $q_{f}\left(S_{-}(f)\right)$ where l is a non-negative integer. As in the previous cases, $\# S_{+}(f)-l \geq 2\left(\# S_{-}(f)-1\right)$. One obtains $2 \# S_{-}(f) \leq b_{2}+1-2 l \leq b_{2}+1$, which implies the required inequality.
q.e.d.

8. Proof of Theorem C.

To prove the theorem for the case $M \cong N \# C^{2} P \# \overline{C^{2} P}$, we need a result analogous to Theorem B. Let S^{\prime}-equivalence be the relation defined by performing a connected sum with $C^{2} P \# \overline{C^{2} P}$ instead of $S^{2} \times S^{2}$, in the definition of S-equivalence. Then an S^{\prime}-operation is defined similarly as an S-operation. It is easily checked that Theorem B is valid if we replace " S-operation" with " S '-operation", and delete the phrase " N is homeomorphic to M ". We call this result Theorem B'.

Case 1 where $b_{2}(N) \geq 1$. Let $g: N \rightarrow R^{2}$ be a simple mapping with $g_{g} \leq 1$. Let (L, h) be a configuration trivial pair obtained from (N, g) by applying Theorem B or Theorem B^{\prime}, according to the cases $M \cong N \# S^{2} \times S^{2}$ or $N \# C^{2} P \# \overline{C^{2} P}$. For convenience, we assume that $\bar{K}: W_{h} \rightarrow \boldsymbol{R}^{2}$ is an embedding (see Remark (2) in section 2). We will construct the required pair (M, f) from (L, h) as follows.

Let C be one of the connected components of $q_{h}(S(h)) \backslash \partial W_{h}$ which bound the 0 -region that is adjacent to ∂W_{h}. Such C exists; in fact, since $b_{2}(N) \geq 1$, we have \#S(h) ≥ 2 by Theorem A. Let a be a point in ∂W_{h}. Take a tubular neighbourhood U of a in W_{h} so that $U \cap q_{h}(S(h))=(U \cap C) \cup\left(U \cap \partial W_{h}\right)$ and that ∂U meets C transversely at two points. Let λ be the closure of $\partial U \backslash \partial W_{h}$. We may assume that λ is transverse to ∂W_{h}. By applying the arguments in [3], we see that $h^{-1}(U)$ is obtained from D^{4} by a 1 -handle attaching, thus diffeomorphic to $D^{3} \times S^{1}$, and that $h^{-1}(\lambda)=\partial h^{-1}(U)$. We denote the closure of $L \backslash h^{-1}(U)$ by \check{L}.

Let $f_{2}: S^{2} \times D^{2} \rightarrow R^{2}$ be a C^{∞} mapping with two cusps constructed in Appendix 1 (see Figure 9.3). Then the two mappings $h \mid \partial \check{L}$ and $f_{2} \mid \partial\left(S^{2} \times D^{2}\right)$ are right-left equivalent, which we show in Appendix 1. After changing h and f_{2} both left equivalently, one can glue the two pairs (\check{L}, h) and ($S^{2} \times D^{2}, f_{2}$) along their boundaries and obtains a pair (L^{\prime}, f^{\prime}) such that $f^{\prime}: L^{\prime} \rightarrow \boldsymbol{R}^{2}$ is stable. Let f be the simple mapping obtained from f^{\prime} by eliminating the two cusps (see the last step in the construction of a simple mapping on $C^{2} P$ in Appendix 1). It is easily checked that $g_{f} \leq 1, \# S(f)=\# S(h)+1$, and
that (L^{\prime}, f) is configuration trivial. Therefore the proof is completed if one can choose the diffeomorphism of the gluing so that L^{\prime} is diffeomorphic to M, which we prove in Appendix 1.

Case 2 where $b_{2}(N)=0$. We show that for such $N, N \# S^{2} \times S^{2} \cong S^{2} \times S^{2}$ and $N \# C^{2} P \# \overline{C^{2} P} \cong C^{2} P \# \overline{\boldsymbol{C}^{2} \boldsymbol{P}}$. Then it is easily checked that the mappings given in Examples in Appendix 1 are the required ones (see Figure 9.1).

Applying Theorem B to (N, g), one obtains a pair ($\left.N^{\prime}, f^{\prime}\right)$ with \# $S\left(f^{\prime}\right)=1$. Then N^{\prime} is diffeomorphic to S^{4} (see Proposition 2.6 and Remark 2.7 in [6]). Therefore $S^{2} \times S^{2} \cong N^{\prime} \# S^{2} \times S^{2} \cong N \# S^{2} \times S^{2}$ by Remark (2) in section 6. Next, let ($N^{\prime \prime}, f^{\prime \prime}$) be the pair obtained from (N, g) by applying Theorem \mathbf{B}^{\prime}. In the same way, we see that $N^{\prime \prime}$ is diffeomorphic to S^{4} and $C^{2} P \# \overline{C^{2} P} \cong N^{\prime \prime} \# C^{2} P \# \overline{C^{2} P} \cong N \# C^{2} P \# \overline{C^{2} P}$.
q.e.d.

Appendix 1.

In this section we give examples of simply connected 4-manifolds which admit simple mapping f 's with $g_{f} \leq 1$ and we complete the proof of Theorem C using the same arguments as the construction of the examples.

Examples. (1) For $M=S^{4}, C^{2} P, S^{2} \times S^{2}$ and $C^{2} P \# \overline{C^{2} P}$, we can construct a simple mapping $f: M \rightarrow \boldsymbol{R}^{2}$ with $g_{f} \leq 1$. The location of $q_{f}(S(f))$ in W_{f}, which is a 2-disc, is illustrated in Figure 9.1.
(2) Let M be a manifold obtained by performing finite connected sums of the manifolds above. Then there exists a simple mapping $f: M \rightarrow \boldsymbol{R}^{2}$ with $g_{f} \leq 1$.

The integers in the figures indicate the genus of the fibre over a point in the region.
Figure 9.1

Proof of (1). Construction in the case of S^{4}. Let $i: S^{4} \rightarrow \boldsymbol{R}^{5}$ be an embedding which maps S^{4} onto the unit sphere. Let $\pi: \boldsymbol{R}^{5} \rightarrow \boldsymbol{R}^{2}$ be the projection given by $\pi(v, w, x, y, z)=(v, w)$. Then $\pi \circ i: S^{4} \rightarrow \boldsymbol{R}^{2}$ is the required simple mapping.

For the other manifolds, we construct the required mappings by the following steps. First we construct a mapping from B_{k}, the total space of a D^{2} bundle over S^{2} with Euler number k, into \boldsymbol{R}^{2}. Next we construct a mapping from the manifold M into
R^{2} using the decompositions $M=B_{1} \cup_{\varphi} D^{4}, B_{0} \cup_{\phi} B_{0}$ or $B_{0} \cup_{\phi^{\prime}} B_{0}$ according to the cases where $M=C^{2} P, S^{2} \times S^{2}$ or $C^{2} P \# \bar{C}^{2} P$.

Construction of a mapping f_{2} from B_{k} into R^{2}. Let f_{1} be a C^{∞}-mapping from $D^{2} \times D^{2}$ onto a sector in R^{2} which satisfies the following conditions (see Appendix 2 for the construction).
(i) $f_{1}\left(D^{2} \times D^{2}\right)=\left\{(x, y) \mid x^{2}+y^{2} \leq 1, x, y \geq 0\right\}$.
(ii) $f_{1}^{-1}(0,0)=\partial D^{2} \times \partial D^{2}, f_{1}^{-1}(0 \times[0,1])=\partial D^{2} \times D^{2}$ and $f_{1}^{-1}([0,1] \times 0)=D^{2} \times \partial D^{2}$.
(iii) Set $\partial_{0} f_{1}=f_{1} \mid\left(\partial D^{2} \times D^{2}\right): \partial D^{2} \times D^{2} \rightarrow 0 \times[0,1]$, and $\partial_{1} f_{1}=f_{1} \mid\left(D^{2} \times \partial D^{2}\right)$: $D^{2} \times \partial D^{2} \rightarrow[0,1] \times 0$. Then $f_{1} \mid \operatorname{Int}\left(D^{2} \times D^{2}\right), \partial_{0} f_{1}$ and $\partial_{1} f_{1}$ are stable mappings.
(iv) f_{1} has exactly one cusp point in the interior of $D^{2} \times D^{2}$.
(v) Each regular fibre of f_{1} is connected and is either a sphere or a torus.
(vi) Let $C\left(f_{1}\right)$ be the union of the critical values of $f_{1} \mid \operatorname{Int}\left(D^{2} \times D^{2}\right), \partial_{0} f_{1}$ and $\partial_{1} f_{1}$. Then it consists of two connected components whose locations are illustrated in Figure 9.2.

Figure 9.2

Let φ_{k} be a diffeomorphism on $\partial D^{2} \times D^{2}$ defined by $\varphi_{k}(z, w)=\left(\bar{z}, z^{k} \cdot w\right)$, where D^{2} is regarded as the unit disc in C. Let l_{y} be the reflexion on R^{2} given by $l_{y}(x, y)=(-x, y)$. We glue the two pairs ($D^{2} \times D^{2}, f_{1}$) and ($D^{2} \times D^{2}, l_{y} \circ f_{1}$) via φ_{k} and obtain a manifold B_{k} and a C^{0}-mapping f_{2}^{\prime}. To show that the gluing is possible, we show that $f_{1}=l_{y} \circ f_{1} \circ \varphi_{k}$ on $\partial D^{2} \times D^{2}$, as follows. Note that $\left(l_{y} \circ f_{1}\right) \mid \partial D^{2} \times D^{2}: \partial D^{2} \times D^{2} \rightarrow 0 \times[0,1]$ coincides with $\partial_{0} f_{1}$. It is a Morse function which has two critical points of index 0 and of index 1. We can perturb φ_{k} slightly without changing its isotopy type so that it preserves all $\partial_{0} f_{1}$-fibres, since φ_{k} preserves the meridian discs of $\partial D^{2} \times D^{2}$ (see Figure 3.1). Therefore one can glue the two pairs $\left(D^{2} \times D^{2}, f_{1}\right)$ and $\left(D^{2} \times D^{2}, l_{y} \circ f_{1}\right)$ via φ_{k}.

By the construction, the resulting manifold is diffeomorphic to B_{k}. Note that ∂B_{k} is a lens space, since it is obtained by gluing two solid tori. We see that it is diffeomorphic to $L(k, 1)$, by calculation.

After we perturb f_{2}^{\prime} slightly, we obtain a C^{∞}-mapping $f_{2}: \boldsymbol{B}_{\boldsymbol{k}} \rightarrow \boldsymbol{R}^{2}$ such that both
$f_{2} \mid \operatorname{Int} B_{k}$ and $\partial f_{2}=f_{2} \mid \partial B_{k}: \partial B_{k} \rightarrow[-1,1] \times 0$ are stable mappings. Note that f_{2} has two cusps in the interior of B_{k}. Let $C\left(f_{2}\right)$ be the union of the critical values of $f_{2} \mid \operatorname{Int} B_{k}$ and ∂f_{2}. The location of $C\left(f_{2}\right)$ is illustrated in Figure 9.3.

Figure 9.3
A construction in the case of $C^{2} P$. Let $h: D^{4} \rightarrow R^{2}$ be a C^{∞}-mapping satisfying the following conditions (see Appendix 2 for a construction).
(i) $h\left(D^{4}\right)=\left\{(x, y) \mid x^{2}+y^{2} \leq 1, x \geq 0\right\}$.
(ii) $h^{-1}(0 \times[-1,1])=\partial D^{4}$.
(iii)' Set $\partial h=h \mid \partial D^{4}: \partial D^{4} \rightarrow 0 \times[-1,1]$. Then both $h \mid \operatorname{Int} D^{4}$ and ∂h are stable mappings.
(iv) $\quad h$ has exactly one cusp point in the interior of D^{4}.
(v) Each regular fibre of h is connected and is either a sphere or a torus.
(vi)' Let $C(h)$ be the union of the critical values of $h \mid \operatorname{Int} D^{4}$ and ∂h. Then it consists of two connected components whose locations are illustrated in Figure 9.4.

Figure 9.4

Let l_{r} be a slight perturbation of the $-\pi / 2$-rotation on \boldsymbol{R}^{2} centred at the origin such that l_{r} maps the critical values of ∂h to those of ∂f_{2} and that $f_{2}\left(B_{1}\right)$ and $l_{r} \circ h\left(D^{4}\right)$ form a disc. We will glue the pairs $\left(B_{1}, f_{2}\right)$ and $\left(D^{4}, l_{r} \circ h\right)$ as before. We must show that there is a diffeomorphism $\varphi: \partial B_{1} \rightarrow \partial D^{4}$ such that $f_{2}=l_{r} \circ h \circ \varphi$ on ∂B_{1}.

Let C be the connected component of $C\left(f_{2}\right)$ which contains the image of the cusps. Let C_{0} be the connected component of $C \backslash f_{2}(\{$ cusps $\})$ which meets the negative part of the x-axis, and C_{1} the one which meets the positive part of the x-axis. Let C^{\prime} be the connected component of $C(h)$ which contains the image of the cusp. Let C_{0}^{\prime} be the connected component of $C^{\prime} \backslash h(\{\operatorname{cusp}\})$ which meets the negative part of the y-axis, and C_{1}^{\prime} the other. Take longitudes and meridians $\left(l_{0}, m_{0}\right)$ and $\left(l_{1}, m_{1}\right)$ of $f_{2}^{-1}(0,0)$ with respect to ($C_{0},[-1,0] \times 0$) and ($\left.C_{1},[0,1] \times 0\right)$ respectively. Take longitudes and meridians $\left(l_{0}^{\prime}, m_{0}^{\prime}\right)$ and $\left(l_{1}^{\prime}, m_{1}^{\prime}\right)$ of $h^{-1}(0,0)$ with respect to $\left(C_{0}^{\prime}, 0 \times[-1,0]\right)$ and ($\left.C_{1}^{\prime}, 0 \times[0,1]\right)$ respectively.

We fix orientations of B_{1} and D^{4}, and give orientations to the longitudes and meridians as follows. Set $\partial_{0}=f_{2}^{-1}([-1,0] \times 0)$ and set $\partial_{1}=f_{2}^{-1}([0,1] \times 0)$. We give orientations to ∂_{0} and ∂_{1} so that each of them coincides with the orientation of ∂B_{1} in the interiors. Then give orientations to l_{i} and m_{i} so that, lined in this order, they coincide with the orientation of $f_{2}^{-1}(0,0)$ as the boundary of ∂_{i} for $i=0,1$. (This says nothing on the choice of the orientation of m_{i}. We fix one.) In the same way, we orient l_{i}^{\prime} and m_{i}^{\prime} by using the orientation of D^{4}.

Let

$$
A=\left(\begin{array}{cc}
r & p \\
s & q
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ll}
z & u \\
w & v
\end{array}\right)
$$

be the matrices given by $\left[l_{1}\right]=r\left[l_{0}\right]+s\left[m_{0}\right]$ and $\left[m_{1}\right]=p\left[l_{0}\right]+q\left[m_{0}\right]$ in $H_{1}\left(f_{2}^{-1}(0,0), Z\right)$, and $\left[-l_{1}^{\prime}\right]=z\left[-l_{0}^{\prime}\right]+w\left[m_{0}^{\prime}\right]$ and $\left[m_{1}^{\prime}\right]=u\left[-l_{0}^{\prime}\right]+v\left[m_{0}^{\prime}\right]$ in $H_{1}\left(h^{-1}(0,0), Z\right)$.

One can take an orientation reversing diffeomorphism φ_{0} from $f_{2}^{-1}([-1,0] \times 0)$ to $h^{-1}(0 \times[-1,0])$ such that $f_{2} \mid f_{2}^{-1}([-1,0] \times 0)=l_{r} \circ h \circ \varphi_{0}$. Then the induced isomorphism $\left(\varphi_{0} \mid f_{2}^{-1}(0,0)\right)_{*}$ from $H_{1}\left(f_{2}^{-1}(0,0), Z\right)$ to $H_{1}\left(h^{-1}(0,0), Z\right)$ has a matrix representation of the form $\pm T_{c}, c \in Z$, for the basis $\left\langle\left[l_{0}\right],\left[m_{0}\right]\right\rangle$ of the domain and $\left\langle\left[-l_{0}^{\prime}\right],\left[m_{0}^{\prime}\right]\right\rangle$ of the image, by Proposition 3.2. In the same way, let φ_{1} be an orientation reversing diffeomorphism from $f_{2}^{-1}([0,1] \times 0)$ to $h^{-1}(0 \times[0,1])$ such that $f_{2} \mid f_{2}^{-1}([0,1] \times 0)=l_{r} \circ h \circ \varphi_{1}$. Let $\pm T_{d}, d \in Z$, be the matrix representation of the induced isomorphism $\left(\varphi_{1} \mid f_{2}^{-1}(0,0)\right)_{*}$ for the bases $\left\langle\left[l_{1}\right],\left[m_{1}\right]\right\rangle$ and $\left\langle\left[-l_{1}^{\prime}\right],\left[m_{1}^{\prime}\right]\right\rangle$.

The two diffeomorphisms φ_{0} and φ_{1} can be glued so as to define an orientation reversing diffeomorphism φ from ∂B_{1} to ∂D^{4} if and only if the following (*) holds.

$$
\begin{equation*}
\pm T_{c} \cdot A=B \cdot\left(\pm T_{d}\right) \tag{*}
\end{equation*}
$$

By a direct calculation, (*) holds for some integers c and d if and only if $p= \pm u$, $q \equiv \pm v(\bmod |p|)$ and $r \equiv \pm z(\bmod |p|)$. Now we have $|p|=|u|=1$, and hence these conditions are satisfied. In fact ∂B_{1} is identified with $S^{1} \times D^{2} \cup_{A} S^{1} \times D^{2}=L(p, q)$ and since ∂B_{1} is also identified with S^{3}, p must be ± 1. In the same way, u must be ± 1. Therefore one can glue φ_{0} and φ_{1}. The resulting diffeomorphism $\varphi: \partial B_{1} \rightarrow \partial D^{4}$ reverses orientation and satisfies $f_{2}=l_{r} \circ h \circ \varphi$ on ∂B_{1}. Now glue the pairs (B_{1}, f_{2}) and ($D^{4}, l_{r} \circ h$) via φ so as to obtain $C^{2} P$ and a C^{0}-mapping f_{3}^{\prime} from $C^{2} P$ into \boldsymbol{R}^{2}. After a slight perturbation, f_{3}^{\prime} becomes a C^{∞}-stable mapping f_{3}.

Next, one can eliminate two of the three cusps of f_{3} by applying the method of [4] carefully to f_{3}, and obtains a simple mapping f. In fact take the joining curve (which is defined in (4.4) of [4]) that connects two of the three cusps so that its image does not meet the critical values of f_{3} except for the two cusps. Then one can eliminate the two cusps without creating any crossings of $f(S(f))$ and without changing the maximum genus of regular map-fibres. The mapping f thus obtained is the required one (refer to Figure 9.1 (b)).

Constructions for the cases of $S^{2} \times S^{2}$ and $C^{2} P \# \overline{C^{2} P}$. Let l_{x} be the reflexion on R^{2} given by $l_{x}(x, y)=(x,-y)$. We will glue the pairs $\left(B_{0}, f_{2}\right)$ and $\left(B_{0}, l_{x} \circ f_{2}\right)$. Assuming that the gluing is possible, let f_{3} be the resulting mapping from the resulting manifold into \boldsymbol{R}^{2}. Then one can eliminate the four cusps of f_{3} in pairs and obtains a required simple mapping as in the previous cases. Therefore it suffices to show the following: There are two diffeomorphisms φ_{0} (resp. φ_{0}^{\prime}) on $f_{2}^{-1}([-1,0] \times 0)$ and φ_{1} (resp. φ_{1}^{\prime}) on $f_{2}^{-1}([0,1] \times 0)$ which can be glued such that the resulting diffeomorphism ϕ (resp. ϕ^{\prime}) on ∂B_{0} is orientation reversing and satisfies, (a) $f_{2} \mid \partial B_{0}=l_{x} \circ f_{2} \circ \phi$ (resp. $f_{2} \mid \partial B_{0}=$ $l_{x} \circ f_{2} \circ \phi^{\prime}$), and (b) $B_{0} \cup_{\phi} B_{0} \cong S^{2} \times S^{2}, B_{0} \cup_{\phi^{\prime}} B_{0} \cong C^{2} P \# \overline{C^{2} P}$.

Take $C_{i}, l_{i}, m_{i}(i=0,1)$ and integers p, q, r, s which are the elements of a matrix A, similarly as in the cases of B_{1}. Since ∂B_{0} is identified with $L(p, q)$ and with $S^{1} \times S^{2}, p$ is zero and hence $q= \pm 1$. Therefore one may assume that $A=I^{\prime}$ by an appropriate choice of m_{1} and l_{1}, where I^{\prime} is the matrix defined by

$$
I^{\prime}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Let φ_{0} (resp. φ_{0}^{\prime}) be a diffeomorphism on $f_{2}^{-1}([-1,0] \times 0)$ such that the induced isomorphism $\left(\varphi_{0} \mid f_{2}^{-1}(0,0)\right)_{*}$ (resp. $\left.\left(\varphi_{0}^{\prime} \mid f_{2}^{-1}(0,0)\right)_{*}\right)$ on $H_{1}\left(f_{2}^{-1}(0,0), Z\right)$ has the matrix representation $T_{0}\left(\right.$ resp. $\left.T_{1}\right)$ for the basis $\left\langle\left[l_{0}\right],\left[m_{0}\right]\right\rangle$ of the domain and $\left\langle\left[-l_{0}\right],\left[m_{0}\right]\right\rangle$ of the image. Let $\varphi_{1 .}\left(\operatorname{resp} . \varphi_{1}^{\prime}\right)$ be a diffeomorphism on $f_{2}^{-1}([0,1] \times 0)$ such that the induced isomorphism $\left(\varphi_{1} \mid f_{2}^{-1}(0,0)\right)_{*}\left(\operatorname{resp} .\left(\varphi_{1}^{\prime} \mid f_{2}^{-1}(0,0)\right)_{*}\right)$ on $H_{1}\left(f_{2}^{-1}(0,0), Z\right)$ has the matrix representation T_{0} (resp. T_{-1}) for the bases $\left\langle\left[l_{1}\right],\left[m_{1}\right]\right\rangle$ and $\left\langle\left[-l_{1}\right],\left[m_{1}\right]\right\rangle$. We can take these mappings so that they preserve all f_{2}-fibres, by Proposition 3.2.

Since the condition (*) is verified for $A=B=I^{\prime}$, one can glue φ_{0} and φ_{1} (resp. φ_{0}^{\prime} and φ_{1}^{\prime}). Let ϕ (resp. ϕ^{\prime}) be the resulting diffeomorphism. Then they are orientation reversing diffeomorphisms on ∂B_{0} and satisfy condition (a).

Now we check the condition (b). Note that one can identify $S^{1} \times D^{2} \cup_{A} S^{1} \times D^{2}$ with $S^{1} \times S^{2}$ since both of them are identified with ∂B_{0}. Via the identification, $\{t\} \times D^{2} \cup\{t\} \times D^{2}$ corresponds to $\{t\} \times S^{2}\left(t \in S^{1}\right)$. We say a point p_{t} (resp. $\left.n_{t}\right)$ in $\{t\} \times S^{2}$ is a north pole (resp. south pole) if it is identified with $(t, 0)$ of the former $\{t\} \times D^{2}$ (resp. the latter $\{t\} \times D^{2}$). Since we may assume that φ_{i} and $\varphi_{i}^{\prime}(i=0,1)$ induce diffeomorphisms on $S^{1} \times D^{2}$ which preserve $\{t\} \times D^{2}\left(t \in S^{1}\right), \phi$ and ϕ^{\prime} satisfy $\phi\left(\{t\} \times S^{2}\right)=\{t\} \times S^{2}$ and $\phi^{\prime}\left(\{t\} \times S^{2}\right)=\{t\} \times S^{2}$. Moreover ϕ does not twist $\{t\} \times S^{2}$ according as t moves, since $\varphi_{i}\left(l_{i}\right)(i=0,1)$ does not turn around $S^{1} \times\{0\} \subset S^{1} \times D^{2}$ and ϕ^{\prime} twists $\{t\} \times S^{2}$ once around the north and south poles according as t moves, since $\varphi_{i}^{\prime}\left(l_{i}\right)(i=0,1)$ turns once around $S^{1} \times\{0\} \subset S^{1} \times D^{2}$. Therefore $B_{0} \cup_{\phi} B_{0}$ is the total space of the trivial S^{2} bundle over S^{2} and $B_{0} \cup_{\phi^{\prime}} B_{0}$ is that of the non-trivial S^{2} bundle over S^{2}, which is diffeomorphic to $\boldsymbol{C}^{2} P \#^{\boldsymbol{C}^{2} \boldsymbol{P}}$ ([9]).
q.e.d.

Proof of (2). Let (M_{i}, f_{i}) be one of the pairs of a manifold and a simple mapping constructed in (1). By eliminating extra cusps of $\#_{i} f_{i}: \#_{i} M_{i} \rightarrow \boldsymbol{R}^{2}$ as in (1), one obtains a simple mapping $f: \#_{i} M_{i} \rightarrow \boldsymbol{R}^{2}$ with $g_{f} \leq 1$.
q.e.d.

Remark. By using the method of (2), one can construct a simple mapping on $C^{2} P \# \overline{C^{2} P}$. Let f be a simple mapping on $\boldsymbol{C}^{2} P$ constructed in (1). Note that $\overline{C^{2} \boldsymbol{P}}$ is obtained by gluing B_{-1} and D^{4}. One can construct a simple mapping g on $\overline{C^{2} P}$, in the same way as f. Then, from $f \# g$, one obtains a simple mapping on $C^{2} P \# \overline{C^{2} P}$.

COMPLETION OF THE PROOF OF Theorem C. We show that there is a diffeomorphism $\Phi: \partial \check{L} \rightarrow \partial\left(S^{2} \times D^{2}\right)$ such that, ($\left.\mathrm{a}^{\prime}\right) h \mid \partial \check{L}$ and $\left(f_{2} \mid \partial\left(S^{2} \times D^{2}\right)\right) \circ \Phi$ are left equivalent, and (b) $\check{L} \cup_{\Phi} S^{2} \times D^{2}$ is diffeomorphic to M.

Take a point a in λ so that $q_{h}^{-1}(a)$ is a torus. Then divide λ into two closed arcs I_{0} and I_{1} with $I_{0} \cap I_{1}=\{a\}$. Since I_{0} and I_{1} meet C transversely at each single point, one can choose a longitude and a meridian $\left(l_{i}, m_{i}\right)$ of $q_{h}^{-1}(a)$ with respect to (C, I_{i}), $i=0,1$. One may assume that $\left[m_{1}\right]=\left[m_{0}\right]$ and $\left[l_{1}\right]=-\left[l_{0}\right]$ as in the proof of (1), since $\partial \check{L}$ is diffeomorphic to $S^{1} \times S^{2}$. Let $\left(l_{i}^{\prime}, m_{i}^{\prime}\right)$ be the longitude and meridian of $f_{2}^{-1}(0,0)$ chosen for B_{0} in the proof of (1). Then one can define diffeomorphisms ϕ and ϕ^{\prime} from $\partial \check{L}$ to $\partial\left(S^{2} \times D^{2}\right)$ in the same way as in the proof of (1), using these longitudes and meridians. The condition (a^{\prime}) is checked in the same way. For the condition (b^{\prime}), one can show that either $\check{L} \cup_{\phi} S^{2} \times D^{2}$ or $\check{L} \cup_{\phi^{\prime}} S^{2} \times D^{2}$ is diffeomorphic to $N \# S^{2} \times S^{2}$ and that the other is diffeomorphic to $N \# C^{2} P \# \overline{C^{2} P}$. Therefore either ϕ or ϕ^{\prime} can be taken as Φ.
q.e.d.

Appendix 2. Construction of the mappings used in Appendix 1.

In this section we construct the mappings $f_{1}: D^{2} \times D^{2} \rightarrow R^{2}$ and $h: D^{4} \rightarrow R^{2}$ which were used in Appendix 1.

Once h is constructed, one can construct f_{1} from h as follows. Set $E=$ $\left\{(x, y) \in \boldsymbol{R}^{2} \mid x^{2}+y^{2} \leq 1, x \geq 0\right\}$ and let S be the sector in E enclosed by the two lines $l_{1}: x=y$ and $l_{2}: x=-y$. One may assume that the line $x=t y$ and $C(h)$ meet transversely for $t \in[-1,1]$. Then $h^{-1}(S)$ is a manifold with boundary $h^{-1}\left(l_{1} \cap E\right) \cup h^{-1}\left(l_{2} \cap E\right)$ and corner $h^{-1}(0,0)$. We show that $h^{-1}(S)$ is diffeomorphic to $D^{2} \times D^{2}$.

By an appropriate choice of coordinates, one may assume that $h^{-1}(E)=\{(z, w) \in$ $\left.\left.C^{2}| | z\right|^{2}+|w|^{2} \leq 1\right\}$ and $h^{-1}(0 \times[-1,0])\left(\right.$ resp. $\left.h^{-1}(0 \times[1,0])\right)=\left\{\left.(z, w) \in C^{2}| | z\right|^{2}+\right.$ $|w|^{2}=1,|z| \leq|w|$ (resp. $\left.\left.|z| \geq|w|\right)\right\}$. Note that $h^{-1}(E \cap\{(x, y) \mid x<y\})$ is an open tubular neighbourhood of $h^{-1}(0 \times[1,0]) \backslash h^{-1}(0,0)$. Therefore $h^{-1}(E \cap\{(x, y) \mid x<y\})$ is isotopic to $\left\{\left.(z, w) \in C^{2}| | z\right|^{2}+|w|^{2} \leq 1,|z|>1 / \sqrt{2}\right\}$ by the uniqueness of the tubular neighbourhood. In the same way, $h^{-1}(E \cap\{(x, y) \mid x<-y\})$ is isotopic to $\left\{(z, w) \in C^{2} \mid\right.$ $\left.|z|^{2}+|w|^{2} \leq 1,|w|>1 / \sqrt{2}\right\}$. Therefore $h^{-1}(S)$ is diffeomorphic to $\left\{\left.(z, w) \in C^{2}| | z\right|^{2}+\right.$ $\left.|w|^{2} \leq 1,|z| \leq 1 / \sqrt{2},|w| \leq 1 / \sqrt{2}\right\}$, and hence is diffeomorphic to $D^{2} \times D^{2}$.

It is easily checked that the restriction of h to $h^{-1}(S)$ satisfies the conditions (i) through (vi) after composed with a suitable diffeomorphism on $\boldsymbol{R}^{\mathbf{2}}$. Therefore we have only to construct h.

We divide E into four pieces and construct h step by step over these pieces. Set $A=[0, \sqrt{5} / 4] \times[-3 / 4,3 / 4]$, which will include the connected component of $C(h)$ that contains the image of the cusp. Let B^{1} and B^{2} be the two connected components of $E \cap\{(x, y)|x \leq \sqrt{5} / 4,|y| \geq 3 / 4\}$ and set $C=E \cap\{(x, y) \mid x \geq \sqrt{5} / 4\}$ (see Figure 9.4). Then $h^{-1}(A)$ and $h^{-1}\left(A \cup B^{1} \cup B^{2}\right)$ will be diffeomorphic to $[0, \sqrt{5} / 4] \times[-1,1] \times S^{2}$ and $[0, \sqrt{5} / 4] \times S^{3}$ respectively, and $h^{-1}(C)$ will be diffeomorphic to D^{4}.

First step, construction on $[0, \sqrt{5} / 4] \times[-1,1] \times S^{2}$. Let $H:[0,3 / 4] \times \boldsymbol{R}^{3} \rightarrow \boldsymbol{R}^{2}$ be the stable mapping defined by $H(u, x, y, z)=\left(u, x^{3}+3(u-1 / 2) x+y^{2}-z^{2}\right) . H$ has a cusp point at $(1 / 2,0,0,0)$ and the critical values $C(H)$ divide the image of H into two regions. If $(u, a) \in \operatorname{Im}(H)$ is in the same region as $(0,0)$, then $H^{-1}(u, a)$ is diffeomorphic to $T^{2} \backslash D^{2}$. If $(u, a) \in \operatorname{Im}(H)$ is in the other region, then $H^{-1}(u, a)$ is diffeomorphic to $S^{2} \backslash D^{2}$ (see Figure 10.1).

Now we restrict H to the subset F of \boldsymbol{R}^{4} defined by $F=\bigcup_{(u, a)} F_{u, a},(u, a) \in[0, \sqrt{5} / 4] \times$ $[-1,1]$ where $F_{u, a}=u \times[-3 / 2,3 / 2] \times Q \cap H^{-1}(u, a) \subset \boldsymbol{R}^{4}$ with $Q=\left\{(y, z) \in \boldsymbol{R}^{2} \| y^{2}-\right.$ $z^{2}|\leq 5,|y \pm z| \leq 3\}$ (see Figure 10.1).

The following properties are checked in an elementary way. For all $u \in[0, \sqrt{5} / 4]$,
(1) $F_{u, a}$ is connected for $a \in[-1,1]$,
(2) $\partial F_{u, a}$ is a circle with eight corners for $a \in[-1,1]$,
(3) $F_{u, \pm 1}$ is a manifold with eight corners on the boundary, and its interior is diffeomorphic to Int D^{2},
(4) $F_{u, a} \cap(u, \pm 3 / 2) \times Q \neq \varnothing$ for $a \in[-1,1]$,

Figure 10.1

Figure 10.2
(5) let $\Phi_{u, t}: \bigcup_{a \in[-1,1]} F_{u, a} \cap(u, t) \times Q \rightarrow R$ be the mapping defined by $\Phi_{u, t}(u, t, y, z)=$ $y^{2}-z^{2}$, then $\operatorname{Im}\left(\Phi_{u, t}\right)$ is a closed subinterval of $(-5,5)$ for all $t \in[-3 / 2,3 / 2]$,
(6) if $(u, 3 / 2, y, z) \in F_{u, a}$, then $y^{2}-z^{2}<0$ for $a \in[-1,1]$,
(7) if $(u,-3 / 2, y, z) \in F_{u, a}$, then $y^{2}-z^{2}>0$ for $a \in[-1,1]$,
(8) $\bigcup_{a \in[-1,1]} F_{u, a}$ contains the singular points of $g_{u}(x, y, z)=x^{3}+3(u-1 / 2) x+y^{2}-z^{2}$. We see that $\bigcup_{a \in[-1,1]} F_{u, a}$ is a thick saddle, by (4) through (7), and that $H \bigcup_{(u, a) \in[0, \sqrt{5} / 4] \times[-1,1]} \partial F_{u, a}$ is a trivial fibration with fibre $\partial F_{u, a}$, by (2) (see Figure 10.2). Therefore one can naturally extend $H \mid F$ to $H_{1}:[0, \sqrt{5} / 4] \times[-1,1] \times S^{2} \rightarrow$ $[0, \sqrt{5} / 4] \times[-1,1]$ by attaching the pair $\left([0, \sqrt{5} / 4] \times[-1,1] \times D^{2}, \pi\right)$ to $(F, H \mid F)$, where $\pi:[0, \sqrt{5} / 4] \times[-1,1] \times D^{2} \rightarrow[0, \sqrt{5} / 4] \times[-1,1]$ is the projection. Note that the restriction of H_{1} to $[0, \sqrt{5} / 4] \times\{ \pm 1\} \times S^{2}$ is the projection with sphere-fibres by
(3), and that H_{1} has a cusp point in $(1 / 2,0) \times S^{2}$ by (8).

Second step, extension to $[0, \sqrt{5} / 4] \times S^{3}$. Define $k: D_{1}^{3} \rightarrow[1,2]$ by $k(x, y, z)=2-$ $x^{2}-y^{2}-z^{2}$, where D_{1}^{3} denotes the unit 3-ball centred at the origin. After slight perturbation of mappings, one can glue the three pairs ($[0, \sqrt{5} / 4] \times D_{1}^{3}, \mathrm{id} \times k$), $\left([0, \sqrt{5} / 4] \times[-1,1] \times S^{2}, H_{1}\right)$ and $\left([0, \sqrt{5} / 4] \times D_{1}^{3}\right.$, id $\times(-k)$) one after the other along $[0, \sqrt{5} / 4] \times\{ \pm 1\} \times S^{2}$ so as to obtain a C^{∞}-mapping $H_{2}:[0, \sqrt{5} / 4] \times S^{3} \rightarrow$ $[0, \sqrt{5} / 4] \times[-2,2]$.

Third step, extension to D^{4}. Define $l: D_{1}^{4} \rightarrow R^{2}$ by $l(u, x, y, z)=(1-((4-\sqrt{5}) / 4)$ $\left.\cdot\left(u^{2}+x^{2}+y^{2}+z^{2}\right), 2 u\right)$ where D_{1}^{4} denotes the unit 4-ball centred at the origin. Then $l \mid \partial D_{1}^{4}: \partial D_{1}^{4} \rightarrow \sqrt{5} / 4 \times[-2,2]$ and $H_{2} \mid \sqrt{5} / 4 \times S^{3}: \sqrt{5} / 4 \times S^{3} \rightarrow \sqrt{5} / 4 \times[-2,2]$ are right-equivalent Morse functions. Therefore after slight perturbations of l and H_{2}, one can glue the pairs $\left([0, \sqrt{5} / 4] \times S^{3}, H_{2}\right)$ and $\left(D_{1}^{4}, l\right)$ so as to obtain a C^{∞}-mapping $H_{3}: D^{4} \rightarrow \boldsymbol{R}^{2}$.

It is obvious from the construction that $h=\psi \circ H_{3}$ satisfies the conditions (i)' through (vi)', for an appropriate diffeomorphism ψ on \boldsymbol{R}^{2}. Therefore we have constructed the required mapping h.
q.e.d.

References

[1] M. H. Freedman, The topology of four-dimensional manifolds, J. Diff. Geom., 17 (1982), 357-453.
[2] L. Kushner, H. Levine and P. Porto, Mapping three manifolds into the plane I, Bol. Soc. Mat. Mexicana, 29 (1984), 11-33.
[3] H. Levine, Mappings of manifolds into the plane, Amer. J. Math., 88 (1966), 357-365.
[4] H. Levine, Elimination of cusps, Topology, 3 suppl. 2 (1965), 263-296.
[5] H. Levine, Classifying Immersions into \boldsymbol{R}^{4} over Stable Maps of 3-Manifolds into \boldsymbol{R}^{2}, Lecture Notes in Math., 1157 (1985), Springer.
[6] P. Porto and Y. Furuya, On special generic maps from a closed manifold into the plane, Topology Appl., 35 (1990), 41-52.
[7] M. Teragaito, Fibered 2-knots and lens spaces, Osaka J. Math., 26 (1989), 57-63.
[8] M. Teragaito, Addendum to fibered 2-knots and lens spaces, Osaka J. Math., 26 (1989), 953.
[9] C. T. C. Wall, Diffeomorphisms of 4-manifolds, J. London Math. Soc., 39 (1964), 131-140.
[10] E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc., 115 (1965), 471-495.

[^0]: Received September 3, 1991
 Revised July 7, 1992

