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\S 1. Introduction.

The purpose of this note is to study the topology of simple fold maps of a closed
n-manifold into a p-manifold $(n>p)$ and special generic maps of a closed orientable
4-manifold into an orientable 3-manifold. We call a smooth map $f$ with only fold sin-
gularities a fold map and it is said to be simple if the connected component of$f^{-1}(f(x))$
containing $x$ intersects $S(f)$ only at $x$ for every $x\in S(f)$ . Special generic maps are smooth
maps which have only definite fold sigularities. Precise definitions of fold maps, simple
fold maps and special generic maps are given in \S 2.

The results here extend and depend upon some related results in the author’s
previous paper [13], where special generic maps of simply connected $2n$-manifolds into
$R^{3}$ were studied. For a map $f:M^{n}\rightarrow N^{p},$ $S(f)$ denotes the set of the singular points of
$f$, and when $n-p+1$ is even, $S^{+}(f)$ denotes the set of the fold points with even index
and $S^{-}(f)$ the set of the fold points with odd index.

One of our main results is the following

THEOREM A. Let $M^{n}\dot{b}e$ a closedn-manifold and $N^{p}$ ap-manifold ($n-p$ : odd, $n>p$).
Let $f:M^{n}\rightarrow N^{p}$ be a simple fold map. Then we have

$\chi(M^{n})=\chi(S^{+}(f))-\chi(S^{-}(f))$ ,

where $\chi$ denotes the Euler characteristic.

When $N^{p}=R^{p}$, the above theorem has been obtained by Fukuda [5] without the
assumption that $f$be simple. It is interesting that the topology of $N^{p}$ does not affect the
equality involving the Euler characteristics even if we replace $R^{p}$ by any p-manifold
in Fukuda’s theorem, provided that $f$ is simple.

In [13], for a special generic map $f$ of a simply connected $2n$-manifold $M^{2n}$ into
$R^{3}$ we have proved that $\chi(M^{2n})=2\# S(f)$ , twice the number of connected components
of $S(f)$ (when $2n=4,$ $\# S(f)=+b_{2}(M^{4})+1$ ). In the case $2n=4$, if we remove some
restrictions on the source and the target manifolds, we have a weaker result on the
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number $\# S(f)$ as follows.

THEOREM B. $LeiM^{4}$ be a closed orientable 4-manifold and $N^{3}$ an orientable
3-manifold. Let $f:M^{4}\rightarrow N^{3}$ be a special generic map. Then we have

$\# S(f)\leqq*b_{2}(M^{4})+1$ ,

where $\# S(f)$ is the number ofconnected components of$S(f)$ and $b_{2}(M^{4})$ denotes the seconc
betti number of $M^{4}$ . Furthermore, the equality holds if $H_{1}(M^{4} ; Q)=0$ .

This theorem for the case $N^{3}=R^{3}$ , with a slightly different proof, has been
independently proved by Saeki [12].

Moreover, we have several applications of Theorems A and B. One of them is the
following

COROLLARY 4.5. Let $M^{4}$ be a closed 4-manifold with $H_{*}(M^{4} ; Q)\cong H_{*}(\#_{g}S^{1}\times S^{3}$ ;
$Q)(g\geqq 2)$. If $M^{4}$ admits a special generic map $f:M^{4}\rightarrow N^{3}$ into an orientable 3-manifolc
$N^{3}$ , then $S(f)$ is diffeomorphic to the closed orientable surface ofgenus $g$ .

The rest of the paper is organized as follows. In \S 2 we give the definition of the
Stein factorization and a proof of Theorem A. In \S 3 we give a proof of Theorem $B$

\S 4 is devoted to examples and applications of Theorems A and B. In \S 5 some remarks
and related problems will be given.

\S 2. Stein factonizations and proof of Theorem A.

Let $f;M^{n}\rightarrow N^{p}(n\geqq p)$ be a smooth map from an n-manifold into a p-manifold
We denote by $S(f)$ the set of the singularities of $f$ A point $x\in S(f)$ is called a fola
singularity if there exist local coordinates $(x_{1}, \cdots, x_{n})$ centered at $x$ and $(y_{1}, \cdots, y_{p})$

centered at $f(x)$ such that $f$ has the following normal form for some integer 1
$(0\leqq\lambda\leqq n-p+1)$ :

$y_{i}\circ f=x_{i}$ $(1\leqq i\leqq p-1)$

$y_{p}\circ f=-x_{p}^{2}-\cdots-x_{p+\lambda-1}^{2}+x_{p+\lambda}^{2}+\cdots+x_{n}^{2}$ .
If $\lambda=0$ or $n-p+1$ , we call $x\in S(f)$ a definite fold singularity; otherwise, an indefinite
fold singularity. If $n-p+1$ is even, the parity of $\lambda$ is independent of the choice of the
local coordinates. Hence the two sets $S^{+}(f)=$ {$ x\in S(f);\lambda$ is even} and $S^{-}(f)=\{x\in S(f)$

$\lambda$ is odd} are well-defined. Note that for a smooth map $f:M^{n}\rightarrow N^{p}(n\geqq p)$ with only
fold singularities, $S(f),$ $S^{+}(f)$ and $S^{-}(f)$ are ($p-1$ -dimensional submanifolds of $M^{J}$

and that $f|S(f)$ is always an immersion.

DEFINITION 2.1. Let $f:M^{n}\rightarrow N^{p}(n\geqq p)$ be a smooth map with only fold $sin$.
gularities. We call such a map a fold map. If $f$ has no indefinite fold singularities, we
call $f$ a special generic map (cf. [2], [9], [12]). A point $x\in S(f)$ is said to be simple $iJ$
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the component of$f^{-1}(f(x))$ containing $x$ intersects $S(f)$ only at $x$ . Moreover, $f$ is said
to be simple if all its singularities are simple (cf. [8]). Note that a special generic map
is always simple.

REMARK 2.2. In the above definition, even if $f$ has no singularities, we call $f$ a
fold map.

DEFINmON 2.3 (Stein factorization, cf. [2] [7] [8] [9] [12]). Let $f:M^{n}\rightarrow N^{p}(n>p)$

be a smooth map. We define $W_{f}$ as the quotient space of $M^{n}$ obtained by identifying
points of $M^{n}$ which are in the same connected component of a fibre $f^{-1}(y)$ of$f(y\in N^{p})$ .
Let $q_{f}$ : $M^{n}\rightarrow W_{f}$ denote the quotient map and let the map $f^{\prime}$ : $W_{f}\rightarrow N^{p}$ be defined by

$f=f^{\prime}\circ q_{f}$ . The space $W_{f}$ or the map $q_{f}$ : $M^{n}\rightarrow W_{f}$ is called the Stein factorization off
REMARK 2.4. Without loss of generality, we may assume that a simple fold map

$f:M^{n}\rightarrow N^{p}$ is stable in order to prove Theorem $A$ , where $f$ is stable if every nearby
map $g$ in the sense of $C^{\infty}$ -topology is identical to $f$, after suitable changes of coordinates,
both in the domain and in the range of $g$ (see [6]). For a simple fold map $f:M^{n}\rightarrow N^{p}$

(not necessarily stable), we can modify $f$ so that it becomes a stable map without
changing the topologies of $(M^{n}, S(f))$ and $(M^{n}, S^{\pm}(f))$ by slightly perturbing

$f^{\prime}$ : $W_{f}\rightarrow N^{p}$ . This is because we can modify $f^{\prime}|q_{J}(S(f))$ so that it becomes an immersion
with normal crossings by a small perturbation, since $q_{f}|S(f)$ is a homeomorphism.
Note that a simple fold map $f:M^{n}\rightarrow N^{p}$ is stable if and only if$f|S(f)$ is an immersion
with normal crossings (see [6]). Thus, in the following, we assume that all simple fold
maps are stable.

In [7], Kushner-Levine-Porto have determined the local structures of $W_{f}$ for a
stable map $f$of a closed 3-manifold into the plane. For a simple fold map $f:M^{3}\rightarrow R^{2}$ ,
the local structures of $W_{f}$ afe as in Figure 1 ([8, p. 20]).

FIGURE 1.
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For a simple fold map $f:M^{n}\rightarrow N^{n-1}$ , the local structures of $W_{f}$ are the products
of the standard $(n-3)$-disk $D^{n-3}$ and the conic neighborhoods as in Figure 1.

Now we prove a special case of Theorem $A$; namely the case $p=n-1$ .
THEOREM 2.5. Let $M^{n}$ be a closed n-manifold and $N^{n-1}$ an $(n-1)$-manifold. $ Le\iota$

$f;M^{n}\rightarrow N^{n-1}$ be a simple fold map. Then we have

$\chi(M^{n})=\chi(S^{+}(f))-\chi(S^{-}(f))$ .
$p_{R\infty F}$ . Case (i). $ S(f)\neq\emptyset$ . We set $\Sigma=q_{f}(S(f))$ and let $N(\Sigma)$ be the regular

neighborhood of $\Sigma$ in $W_{f}$ . Set $R=W_{f}-IntN(\Sigma)$ . Then we prove the following

CLAIM. $q_{f}|q_{f}^{-1}(R)$ : $q_{f}^{-1}(R)\rightarrow R$ is an $S^{1}$-bundle over $R$ .
(Proof.) Since $f|R$ : $R\rightarrow N^{n-1}$ is a local homeomorphism, we can define a smooth
structure on $R$ so that $f^{\prime}|R$ is an immersion. Then $q_{f}|q_{f}^{-1}(R)$ is a proper submersion,
since $f|M^{n}-S(f)$ is non-singular and $q_{f}^{-1}(R)\subset M^{n}-S(f)$ . Thus we have the conclusion
by Ehresmann’s theorem (cf. [8], [2, Th\’eor\‘eme I]). This completes the proof of Claim.

Let $N^{+}(\Sigma)$ (resp. $N^{-}(\Sigma)$) be the regular neighborhood of $q_{J}(S^{+}(f))$ (resp. $q_{J}\{S^{-}(f)$))
in $W_{f}$ . We see that the composition

$q_{f}^{-1}(N^{+}(\Sigma))\rightarrow^{q_{f}}N^{+}(\Sigma)\rightarrow q_{J}\{S^{+}(f))$

is a $D^{2}$-bundle over $q_{J}(S^{+}(f))(=S^{+}(f))$, where the second map is the bundle projection.
Set $S^{-}(f)=S_{1}\cup\cdots\cup S_{m}$ , where $S_{j}(1\leqq j\leqq m)$ are the connected components of $S^{-}(f)$ .
We set $\Sigma_{j}^{-}=q_{J}(S_{j})$ and let $N(\Sigma_{J^{-}})$ be the regular neighborhood of $\Sigma_{j}^{-}$ in $W_{f}(1\leqq j\leqq m)$

Since $f$ is simple, the composition

$q_{f}^{-1}(N(\Sigma_{j}^{-}))\rightarrow^{q_{f}}N(\Sigma_{j}^{-})\rightarrow q_{J}(S_{j})$

is a $D_{2}^{2}$-or $M_{1}^{2}$-bundle over $q_{j}\langle S_{j}$) $(=S_{j})(1\leqq j\leqq m)$, where the second map is the bundle
projection, $D_{2}^{2}$ is the 2-disk with two open disks removed and $M_{1}^{2}$ is the M\"obius $ban\epsilon$

with an open disk removed (cf. [8]). Thus we have the following decomposition of $M^{n}$ :

$M^{n}=q_{f}^{-1}(W_{f})=q_{f}^{-1}(N^{+}(\Sigma))\cup q_{f}^{-1}(R)\cup\bigcup_{j=1}^{m}q_{f}^{-1}(N(\Sigma_{j}^{-}))$ .

Note that $q_{f}^{-1}(N^{+}(\Sigma))\cap q_{f}^{-1}(N(\Sigma_{j}^{-}))=\emptyset(1\leqq j\leqq m)$ . Since $q_{f}^{-1}(N^{+}(\Sigma))\cap q_{f}^{-1}(R)$ is
homeomorphic to an $S^{1}$ -bundle over $S^{+}(f)$ and $q_{f}^{-1}(N(\Sigma_{j}^{-}))\cap q_{f}^{-1}(R)$ is homeomorphit
to an $(S^{1}\cup S^{1}\cup S^{1})-$ or $(S^{1}\cup S^{1})$-bundle over $S_{j}(1\leqq j\leqq m)$, we have

$\chi(q_{f}^{-1}(N^{+}(\Sigma))\cap q_{f}^{-1}(R))=\chi(q_{f}^{-1}(N(\Sigma_{j}^{-1}))\cap q_{f}^{-1}(R))=0$ $(1\leqq j\leqq m)$

by the following well-known facts about the Euler characteristic of a fibration.
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LEMMA 2.6. (1) Let $\pi:E\rightarrow B$ be a fiber bundle with fiber $F$, where $E,$ $B$ and $F$

are finite CW-complexes and $\pi$ is cellular. Then we have

$\chi(E)=\chi(B)\cdot\chi(F)$ .
(2) Let $X=A\cup B$ be afinite CW-complex andA, Bsubcomplexes $ofX$. Then we have

$\chi(A\cup B)=\chi(A)+\chi(B)-\chi(A\cap B)$ .
Applying this lemma to the decomposition of $M^{n}$ , we have

$\chi(M^{n})=\chi(q_{f}^{-1}(N^{+}(\Sigma)))+\chi(q_{f}^{-1}(R))+\sum_{j=1}^{m}\chi(q_{f}^{-1}(N(\Sigma_{j}^{-})))$

$=\chi(S^{+}(f))\cdot\chi(D^{2})+\chi(R)\cdot\chi(S^{1})+\sum_{j=1}^{m}\chi(S_{j})\cdot\chi(F_{j})$ ,

where $F_{j}$ stands for $D_{2}^{2}$ or $M_{1}^{2}$ . Then, since $\chi(D^{2})=1,\chi(S^{1})=0$ and $\chi(F_{j})=-1$ , we have
$\chi(M^{n})=\chi(S^{+}(f))-\chi(S^{-}(f))$ .

This completes the proof for Case (i).
Case (ii). $ S(f)=\emptyset$ . In this case, $q_{f}$ : $M^{n}\rightarrow W_{f}$ is an $S^{1}$ -bundle over $W_{f}$ (see the

proof for the above claim) and hence we have $\chi(M^{n})=\chi(W_{f})\cdot\chi(S^{1})=0$ by Lemma 2.6
(1). Therefore the equality in the statement of the theorem trivially holds. This completes
the proof of Theorem 2.5.

We are now in a position to prove Theorem A.
$PR\infty F$ OF THEOREM A. Case (i). $ S(f)\neq\emptyset$ . Let $S\subset S(f)$ be a connected

component of $S(f)$ and $N(S)$ be the regular neighborhood of $q_{f}(S)$ in $W_{f}$, which is
homeomorphic to an $I- bu\dot{n}$dle or a Y-bundle over $q_{f}(S)$, where $I=[-1,1]$ and
$Y=\{r\exp(2\pi ik/3)\in C;0\leqq r\leqq 1, k=0,1,2\}$ . Then the composition

$q_{f}^{-1}(N(S))\rightarrow^{q_{f}}N(S)\rightarrow q_{j}\langle S)$

is a T-bundle over $q_{f}(S)$ , where the second map is the bundle projection and $T$ is the
transverse manifold at a point $x\in S$ (see [8]). More precisely, $T$ is the component of
$f^{-1}(\alpha(J))$ containing $x\in S$ , where $\alpha:J=[-1,1]\rightarrow N^{p}$ is an embedded arc which passes
through $f(x)$ such that $\alpha Mf$ and $\alpha(J)\cap f(S(f))=\alpha(J)\cap f(S)=\{f(x)\}$ . Note that dimT$=$

$n-p+1$ , which is even, and that there exists a Morse function $g:T\rightarrow[-1,1]=J$ which
has exactly one critical point whose index is the same as that of $S$ with respect to
$f$ (see the definition of the index of $S$ in [11, p. 553]). Hence $\chi(T)=1$ if $x\in S^{+}(f)$

and $-1$ if $x\in S^{-}(f)$ . Therefore the same argument as in the proof of Theorem 2.5 gives
the desired formula.

Case (ii). $ S(f)=\emptyset$ . By the same argument as in the proof of Theorem 2.5, we
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have $\chi(M^{n})=0$, since the fiber of the fibration $q_{f}$ : $M^{n}\rightarrow W_{f}$ is of odd dimension and
has zero Euler characteristic. Therefore the equality in the statement of the theorem
holds. This completes the proof of Theorem A.

We have an immediate corollary of Theorem A.

COROLLARY 2.7. Let $f:M^{n}\rightarrow N^{p}$ be a simple fold map of a closed n-manifold into
a p-manifold with $n-p+1$ even. Then we have

(i) $\chi(M^{n})\equiv\chi(S(f))$ (mod2).
(ii) When $f$ is a special generic map, we have

$\chi(M^{n})=\chi(S(f))$ .

\S 3. Proof of Theorem B.

The object of this section is to prove the following

THEOREM B. Let $f:M^{4}\rightarrow N^{3}$ be a special generic map of a closed orientable
4-manifold $M^{4}$ into an orientable 3-manifold $N^{3}$ . Then we have

$\# S(f)\leqq*b_{2}(M^{4})+1$ ,

where $\# S(f)$ denotes the number ofconnected components of$S(f)$ and $b_{2}(M^{4})$ is the second
betti number of $M^{4}$ . The equality holds when $H_{1}(M^{4} ; Q)=0$ .

Before proving Theorem $B$ , we state a lemma which was proved in [12] for the
case $N^{3}=R^{3}$ . Note that the same proof works also in this general case.

LEMMA 3.1. Let $f:M^{4}\rightarrow N^{3}$ be a special generic map of a closed 4-manifold $M^{4}$

into an orientable 3-manifold $N^{3}$ such that $ S(f)\neq\emptyset$ and $q_{f}$ : $M^{4}\rightarrow W_{f}$ its Stein
factorization. Then we have the following.

(i) $W_{f}$ is an orientable 3-manifold with boundary.
(ii) $\partial W_{f}$ is homeomorphic to $S(f)$ .
(iii) $(q_{f})_{*}:$ $\pi_{1}(M^{4})\rightarrow\pi_{1}(W_{f})$ is an isomorphism.
$PR\infty F$ OF THEOREM B. Case (i). $ S(f)\neq\emptyset$ . First we prove the following

CLAIM. $\dim {}_{\Phi}H_{2}(W_{f} ; Q)\geqq k-1$ , where $k=\# S(f)$ . Furthermore, if $H_{1}(M^{4} ; Q)=0$,
$\dim_{\Phi}H_{2}(W_{f} ; Q)=k-1$ .
(Proof.) The homology exact sequence of the pair $(W_{f}, \partial W_{f})$ gives

$ 0\rightarrow Q\rightarrow\psi\oplus_{k}Q^{\phi}\rightarrow H_{2}(W_{f} ; Q)\rightarrow H_{2}(W_{f}, \partial W_{f} ; Q)\rightarrow H_{1}(\partial W_{f} ; Q)\rightarrow H_{1}(W_{f} ; Q)\rightarrow\cdots$ ,

since $H_{3}(W_{f} ; Q)=0,$ $H_{3}(W_{f}, \partial W_{f} ; Q)\cong Q$ and $H_{2}(\partial W_{f} ; Q)\cong\oplus_{k}Q$ . Note that $W_{f}$ is a
connected, orientable 3-manifold with boundary consisting of $k$ connected components.
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Hence we have $Coker\psi\cong\oplus_{k-1}Q$, since $\psi$ is an injection. Moreover, by the exactness,
$Coker\psi=H_{2}(\partial W_{f} ; Q)/{\rm Im}\psi\cong H_{2}(\partial W_{f} ; Q)/Ker\phi\cong{\rm Im}\phi$ . Therefore we have ${\rm Im}\phi\cong$

$\oplus_{k-1}Q$ and hence $\dim_{Q}H_{2}(W_{f} ; Q)\geqq k-1$ . From Lemma 3.1 (iii), if $H_{1}(M^{4} ; Q)=0$ ,

we have $H_{1}(W_{f} ; Q)=0$ and $H^{1}(W_{f} ; Q)=0$ . By Poincar\’e-Lefschetz duality, we have
$H_{2}(W_{f}, \partial W_{f} ; Q)\cong H^{1}(W_{f} ; Q)=0$ . Therefore we have $\dim_{Q}H_{2}(W_{f} ; Q)=k-1$ , if
$H_{1}(M^{4} ; Q)=0$ . This implies the claim.

Note that by using the above exact sequence together with Lemma 3.1 (ii) we can
also show the following

LEMMA 3.2. If $H_{1}(M^{4} ; Q)=0,$ $S(f)$ is homeomorphic to a disjoint union of
2-spheres.

Lemma 3.2 will be used in \S 4.
Now we take the double of $W_{f}$ and set $X=W_{f}U_{\partial W_{f}}W_{f}$ . Then $X$ is a closed

orientable 3-manifold. By Lemma 3.1 (ii) and Lemma 2.6 (2),

$0=\chi(X)=2\chi(W_{f})-\chi(\partial W_{f})=2\chi(W_{f})-\chi(S(f))$ .

Combining Corollary 2.7 (ii) with Lemma 3.1 (iii), we have

$\chi(M^{4})=\chi(S(f))=2\chi(W_{f})$

$=2(1-b_{1}(W_{f})+b_{2}(W_{f}))$

$=2(1-b_{1}(M^{4})+b_{2}(W_{f}))$

$\geqq 2(1-b_{1}(M^{4})+k-1)=2(\# S(f)-b_{1}(M^{4}))$ , $(*)$

where $b_{i}$ denotes the i-th betti number. On the other hand, by Poincar\’e duality we have

$\chi(M^{4})=2(1-b_{1}(M^{4}))+b_{2}(M^{4})$ . $(**)$

The inequality in the statement of the theorem follows formally from $(*)$ and $(**)$ and
the equality holds when $H_{1}(M^{4} ; Q)=0$ . This completes the proof for Case (i).

Case (ii). $ S(f)=\emptyset$ . The inequality in the statement of the theorem trivially
follows. Moreover, in this case $q_{f}$ ; $M^{4}\rightarrow W_{f}$ is an $S^{1}$ -bundle over $W_{f}$ (see the proof
for the claim in the proof of Theorem 2.5) and hence $\chi(M^{4})=0$ by Lemma 2.6 (1). On
the other hand, if $H_{1}(M^{4} ; Q)=0$ , then $H_{3}(M^{4} ; Q)=0$ and $\chi(M^{4})\neq 0$ . This means
that S$(f)\neq\emptyset ifH_{1}(M^{4} ; Q)=0$ . $ThereforethiscasedoesnotoccurifH_{1}(M^{4} ; Q)=0$ .
This completes the proof of Theorem B.

COROLLARY 3.3. Let $M^{4}$ be a closed orientable 4-manifold with odd Euler
characteristic. Then $M^{4}$ does not admit any special generic map into an orientable
3-manifold.

$PR\infty F$ . If $M^{4}$ admits a special generic map into an orientable 3-manifold, we
have $\chi(M^{4})=\chi(S(f))=2\chi(W_{f})\equiv 0$ (mod2) (see the proof of Theorem B), if $ S(f)\neq\emptyset$ .
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Recall that, if $S(f)=\emptyset,$ $\chi(M^{4})$ must vanish. This completes the proof.

\S 4. Applications.

In this section we give some applications of Theorems A and $B$ to the study of
special generic maps of closed orientable 4-manifolds into orientable 3-manifolds.

LEMMA 4.1. Let $M^{4}$ be a closed4-manifold with non-zero Euler characteristic. Ther
$M^{4}$ does not admit a smooth map $f$ into an orientable 3-manifold such that $ S(f)=\emptyset$ .

This follows from the same argument as in the proof for Case (ii) in the proof of
Theorem B.

COROLLARY 4.2. Let $M^{4}$ be a closed simply connected 4-mamfold and $N^{3}ar$,
orientable 3-manifold. If $M^{4}$ admits a special generic map $f:M^{4}\rightarrow N^{3}$ such that $S(f)$ is
connected, then $M^{4}$ is homeomorphic to $S^{4}$ , the 4-sphere.

$PR\infty F$ . Since $M^{4}$ is simply connected, $\chi(M^{4})\neq 0$ . By Lemma 4.1 we have $ S(f)\neq\emptyset$

Moreover, by Lemma 3.2, $S(f)$ is diffeomorphic to the 2-sphere. By Corollary 2.7 (ii)
$M^{4}$ is a homotopy 4-sphere, which is homeomorphic to $S^{4}$ (see [4]).

COROLLARY 4.3. Let $f:S^{4}\rightarrow N^{3}$ be a special generic map of the standard 4-sphere
into an orientable 3-manifold $N^{3}$ . Then $S(f)$ is diffeomorphic to the 2-sphere and is
topologically unknotted in $S^{4}$ .

$PR\infty F$ . Since $\chi(S^{4})\neq 0,$ $ S(f)\neq\emptyset$ by Lemma 4.1. By Theorem $B$ we have $\# S(f)=1$ .
Moreover, by Lemma 3.2 $S(f)$ is diffeomorphic to the 2-sphere. We use the same
notations as in the proof of Theorem 2.5. Then $S^{4}$ is decomposed as follows:

$S^{4}=q_{f}^{-1}(N^{+}(\Sigma))\cup q_{f}^{-1}(R)$ .
Note that $W_{f}$ is homeomorphic to $R$ and that $S^{4}-S(f)$ is homotopy equivalent to
$q_{f}^{-1}(R)$ . Recall that $q_{f}^{-1}(R)$ is diffeomorphic to an $S^{1}$ -bundle over $W_{f}$ . On the other
hand, since $S(f)\cong S^{2}$ and $\pi_{1}(W_{f})\cong\pi_{1}(S^{4})=1$ by Lemma 3.1 (iii), $W_{f}$ is a homotopy
3-ball. Henoe $q_{f}^{-1}(R)$ is diffeomorphic to $W_{f}\times S^{1}$ . Hence we have

$\pi_{1}(S^{4}-S(f))\cong\pi_{1}(W_{f}\times S^{1})\cong\pi_{1}(S^{1})\cong Z$ .
Applying Freedman’s result ([4]), we obtain the conclusion.

Next we give fundamental examples of special generic maps of 4-manifolds into
orientable 3-manifolds such that every orientable closed surface is realized as the singular
set. Let $M^{4}$ be a closed 4-manifold with $H_{*}(M^{4} ; Q)\cong H_{*}(S^{1}\times S^{3} ; Q)$ . Now suppose
that $M^{4}$ admits a special generic map$f:M^{4}\rightarrow N^{3}$ such that $ S(f)\neq\emptyset$ for some orientable
3-manifold $N^{3}$ . Note that $\chi(M^{4})=\chi(S^{1}\times S^{3})=0$ and $b_{2}(M^{4})=b_{2}(S^{1}\times S^{3})=0$ . By
Theorems A and $B$ , we have $\chi(S(f))=0$ and $\# S(f)\leqq 1$ . Moreover, $S(f)$ is orientable (see
Lemma 3.1). Thus we obtain
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COROLLARY 4.4. Let $M^{4}$ be a closed 4-manifold with $H_{*}(M^{4} ; Q)\cong H_{*}(S^{1}\times S^{3}$ ;
$Q)$ . If $M^{4}$ admits a special generic map $f:M^{4}\rightarrow N^{3}$ into an orientable 3-manifold $N^{3}$

such that $ S(f)\neq\emptyset$ , then $S(f)$ is diffeomorphic to the torus.

In fact, we can construct a special generic map of $S^{1}\times S^{3}$ into $R^{3}$ as in Corollary
4.4 as follows. Let $\psi_{1}$ : $S^{3}\rightarrow R^{2}$ be the special generic map defined by $\psi_{1}=\pi|S^{3}$ , where
$\pi:R^{4}\rightarrow R^{2}$ is the standard projection defined by $\pi(x, y, z, w)=(x, y)$ . Let $\omega:S^{1}\times R^{2}\rightarrow$

$R^{3}$ be a standard embedding and dePne $\psi:S^{1}\times S^{3}\rightarrow S^{1}\times R^{2}$ by $\psi(x_{1}, x_{2})=(x_{1}, \psi_{1}(x_{2}))$

for $x_{1}\in S^{1},$ $x_{2}\in S^{3}$ . Then the composite map $ f:\omega\circ\psi$ is the required one. Clearly, $S(f)$

is diffeomorphic to the torus. Moreover, by connected summing $S^{1}\times S^{3}’ s$ , we obtain
a special generic map of $\#_{g}S^{1}\times S^{3}(g\geqq 2)$ into $R^{3}$ such that the singular set is
diffeomorphic to $\Sigma_{g}$ , the closed orientable surface of genus $g$ . Such a construction can
be found in [12, Lemma 5.4].

COROLLARY 4.5. Let $M^{4}$ be a closed 4-manifold with $H_{*}(M^{4} ; Q)\cong H_{*}(\#_{g}S^{1}\times S^{3}$ ;
$Q)(g\geqq 2)$. If $M^{4}$ admits a special generic map $f:M^{4}\rightarrow N^{3}$ into an orientable 3-manifold
$N^{3}$ , then $S(f)$ is diffeomorphic to $\Sigma_{g}$ , the closed orientable surface ofgenus $g$ .

This follows by a similar argument as in the proof of Corollary 4.4. Note that
$ S(f)\neq\emptyset$ by Lemma 4.1.

We have seen in Corollary 4.3 that if $f:S^{4}\rightarrow N^{3}$ is a special generic map into an
orientable 3-manifold $N^{3}$ , then $S(f)$ is diffeomorphic to the 2-sphere, which is
topologically unknotted. For fold maps, the situation is much more complicated;
however, we can prove the following, for example.

PROPOSITION 4.6. Let $\Sigma^{4}$ be a closed 4-manifold with $H_{*}(\Sigma^{4} ; Z)\cong H_{*}(S^{4} ; Z)$ and
$f:\Sigma^{4}\rightarrow R^{3}$ afold map. Then $S(f)$ contains no closed non-orientable surface ofoddgenus.

$PR\infty F$ . Suppose that $S(f)$ contains a closed non-orientable surface $F$ ofodd genus.
By [11], it is contained in $S^{-}(f)$ and its self-intersection number is zero. On the other
hand, by generalized Whitney’s congruence [10], we have $F\cdot F\equiv 2\chi(F)(mod 4)$ , since
the signature of $\Sigma^{4}$ vanishes. Hence we have $F\cdot F\neq 0$ . This means that $F\not\in S^{-}(f)$ , which
is a contradiction.

This proposition and the question (see Problem (4) in the next section) were pointed
out to the author by O. Saeki.

REMARK 4.7. By Eliasberg [3], a closed $4\cdot manifold\Sigma^{4}$ with $H_{*}(\Sigma^{4} ; Z)\cong H_{*}(S^{4}$ ;
$Z)$ always admits a fold map into $R^{3}$ , since $\Sigma^{4}$ is stably parallelizable.

\S 5. Problems and concluding remarks.

In conclusion we summarize several problems which have been suggested by the
results of this note.
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(1) In Corollary 4.2 is $M^{4}$ diffeomorphic to $S^{4}$ ?
(2) In Corollary 4.3 is $S(f)$ smoothly unknotted in $S^{4}$ ?
(3) Does a closed orientable 4-manifold with odd Euler characteristic admit

fold map into an orientable 3-manifold? (cf. Corollary 3.3.)
(4) Doesa closed4-manifo1d $\Sigma^{4}withH_{*}(\Sigma^{4} ; Z)\cong H_{*}(S^{4} ; Z)$ admita fold ma

into $R^{3}$ such that $S(f)$ contains a non-orientable surface (of even genus)? (cf. Corollar
4.6.)

Problems (1) and (2) are extremely difficult. Problem (3) is an interesting problem
in singularity theory. Singularities of a stable map of an n-manifold $(n\geqq 3)$ into
3-manifold are fold singularities, cusp singularities and swallowtails. They cannot $b$

eliminated by small perturbations. It is known ([1]) that a smooth map of a close
orientable 4-manifold $M^{4}$ into an orientable 3-manifold is homotopic to a stable ma
without swallowtails. By Corollary 3.3 we have that every stable map of a close
orientable 4-manifold $M^{4}$ with $\chi(M^{4})$ odd into an orientable 3-manifold has indefinit
fold singularities. However, we do not know whether cusp singularities can be eliminate
for a stable map of a closed orientable 4-manifold $M^{4}$ into an orientable 3-manifol
without swallowtails, even ifwe suppose that $\chi(M^{4})$ is odd. In fact, the Thom polynomia
for cusp singularities vanishes (cf. [1]). This is because $[\overline{A_{2}(f)}]_{2}^{*}$ should be of the forn
$aw_{1}^{3}+bw_{1}w_{2}+cw_{3}(a, b, c\in Z_{2})$ and $w_{1}=0,$ $w_{3}=0$ (see [14, \S 23]), where $A_{2}(f)$ denote
the set of the cusp singularities of$f:M^{4}\rightarrow R^{3}$ (see [5]) and $[\overline{A_{2}(f)}]_{2}^{*}\in H^{3}(M^{4} ; Z_{2})i$

the Poincar\’e dual of the $Z_{2}$-homology class $[\overline{A_{2}(f)}]_{2}$ represented by the closure $0$

$A_{2}(f)$. Thus the Thom polynomial for cusp singularities has no information about thi
question. It is recently proved as a partial answer to this question by Saeki ([11, Theoren
4]) that a closed 4-manifold $M^{4}$ with $H_{*}(M^{4} ; Z)\cong H_{*}(CP^{2} ; Z)$ admits no fold ma]
into $R^{3}$ . In [11], it is also proved that a closed orientable 4-manifold $M^{4}$ with $\chi(M^{4}$

odd never admits a simple fold map into $R^{3}$ .
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