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Abstract. We consider surfaces in simply connected 4-manifolds. We estimate the normal Euler numbers
of bounded non-orientable surfaces and consider the problem of representing characteristic homology classes
by orientable surfaces. To do so, we develop techniques connecting the above problems for given surfaces
with the problems for surfaces with fewer first Betti numbers.

1. Introduction.

Throughout this paper, we work in the smooth category, all 4-manifolds are
compact, connected, simply connected and oriented, and all surfaces are compact. We
shall assume that all orientable surfaces are oriented.

We investigate surfaces in 4-manifolds and we consider two problems. One is
estimating the normal Euler numbers of bounded non-orientable surfaces. The other is
the problem of representing characteristic homology classes by orientable surfaces. To
attack these problems, we develop so-called ”Connecting Lemma” ([14], [10]), which
are geometric constructions connecting our problems with the problem of representing
certain homology classes by 2-disks or 2-spheres. We actually obtain Connecting
Lemmas I, II and III.

Applying Connecting Lemma I, we have the following theorem (cf. [15, Theorem
in p. 40]).

THEOREM 1.1. Let $M$ be a simply connected 4-manifold with $\partial M\cong S^{3}$ , and $K$ a
knot in $\partial M$. If $K$ bounds a non-orientable surface $N$ in $M$ that represents zero in
$H_{2}(M, \partial M;Z_{2})$ , then

$|\frac{e(N)}{2}-\sigma(M)-\sigma(K)|\leq\beta_{2}(M)+\beta_{1}(N)$ .

REMARK. P. M. Gilmer has pointed out that a similar but sharper inequality can
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be proved for non-simply connected $M$ by algebraic topology techniques.

In Theorem 1.1, $\sigma(M)$ and $\sigma(K)$ are the signatures of $M$ and $K$ respectively, $\beta_{i}$ is

the i-th Betti number and $e(N)$ is the normal Euler number of $N$ defined as follows. Let
$M$ be a 4-manifold with $\partial M\cong S^{3}$ and $N$ a properly embedded surface in $M$ with
$\partial N\cong S^{1}\cup\cdots uS^{1}$ . Let $\partial N$ be oriented. Take a section $N^{\prime}$ of the normal bundle of $N$

that does not intersect $N$. Let $e(N, \partial N)=-1k(\partial N, \partial N^{\prime})$ , where $\partial N^{\prime}$ is to be oriented
similarly to $\partial N$. We call $e(N, \partial N)$ the normal Euler number of the pair $(N, \partial N)$ (cf. [5]).

It is the normal Euler number of a closed surface obtained by capping off $\partial N$ with an
orientable surface in $\partial M$ and pushing into Int $M$ . The normal Euler number depends

on the orientations of $\partial M$ and $\partial N$. But, if $\partial N\cong S^{1}$ , then $e(N, \partial N)$ is independent of the

choice of orientation of $\partial N$. In this case, we use the notation $e(N)$ instead of $e(N, \partial N)$ .
Let $M$ and $K$ be as in Theorem 1.1. Suppose that $K$ bounds a non-orientable surface

$N$ in $M$ that represents a characteristic homology class. Cap off the pair $(\partial M, K)$ with
a pair $(D^{4}, F)$ and we have a new surface $N_{1}=N\cup F$ in $\hat{M}=MuD^{4}$ , where $F$ is a
properly embedded, orientable surface in $D^{4}$ with $\partial F=K$. Note that $N_{1}$ represents a
characteristic homology class in $H_{2}(\hat{M};Z_{2})$ . By the Generalized Whitney’s Congruence
[16], we have $\sigma(\hat{M})\equiv e(N_{1})+2(2-\beta_{1}(N)-\beta_{1}(F))$ mod 4. Since $\sigma(\hat{M})=\sigma(M),$ $e(N_{1})=e(N)$ ,

and both $\beta_{1}(F)$ and $\sigma(K)$ are even, $\sigma(M)+2\sigma(K)\equiv e(N)-2\beta_{1}(N)$ mod 4. If $M$ is a 4-ball,

then $e(N)-2\sigma(K)\equiv 2\beta_{1}(N)$ mod 4. From this and Theorem 1.1, we have the following
corollary.

COROLLARY 1.1.1. Let $K$ be a knot in $\partial D^{4}$ . If $K$ bounds a non-orientable surface
$N$ in $D^{4}$ with $\beta_{1}(N)=g$ , then the integer $e(N)-2\sigma(K)$ has one of the following values:

$-2g$ , $-2g+4$ , $-2g+8,$ $\cdots,$ $2g-4$ , $2g$ . $\square $

Using Connecting Lemma III, we prove

THEOREM 1.2. Let $M$ be a closed, simply connected 4-manifold with $b_{2}^{+}(M)=k$ and
$b_{2}^{-}(M)=l$, and $\xi$ a characteristic homology class in $H_{2}(M;Z)$ with $\xi\cdot\xi\equiv\sigma(M)$ mod 16.
Suppose that $\xi$ is represented by an embedded, closed, orientable surface in $M$ with genus
$g$ . If the 11/8-conjecture is true for the 4-manifolds with $b_{2}^{+}\leq\max(k, l)+g-1$ or
$b_{2}^{-}\leq\max(k, l)+g-1$ , then

$|\xi\cdot\xi-\sigma(M)|\leq 16(\frac{\max(k,l)+g-1}{3})$ ,

where $\xi\cdot\xi$ is the self-intersection number of $\xi$ and $b_{2}^{+}$ (resp. $b_{2}^{-}$ ) is the rank ofpositive

(resp. negative) part of the intersection form of a manifold.
Note that if $\xi$ is characteristic, $\xi\cdot\xi\equiv\sigma(M)$ mod 8 (see [9, Lemma 3.4 on p-25]).

The 11/8-conjecture states that for any closed spin 4-manifold $M$, the inequality
$\beta_{2}(M)\geq 11/8|\sigma(M)|$ holds (cf. [12], [3]).

Since S. K. Donaldson [1, Theorems $B$ and $C$] shows that the 11/8-conjecture is
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true for any manifold with $b_{2}^{+}\leq 2$ or $b_{2}^{-}\leq 2$ , we have the following corollary.

COROLLARY 1.2.1. Let $M$ and $\xi$ be as in above theorem.
(i) If $k\leq 1,$ $l\leq 1$ and $g\leq 2$ , then $\xi\cdot\xi=\sigma(M)$ .
(ii) If $k\leq 2,1\leq 2$ and $g\leq 1$ , then $\xi\cdot\xi=\sigma(M)$ . $\square $

Let $F$ be an embedded, closed, orientable surface in $M$ that represents the
characteristic homology class $\xi$ in $H_{2}(M;Z)$ with $\xi\cdot\xi\equiv\sigma(M)+8$ mod 16. It is not hard
to see that, for any $\epsilon\in\{-1,1\}$ , there exists an embedded torus $T_{\epsilon}$ in $S^{2}\times S^{2}$ that
represents the characteristic homology class $ 2\alpha+2\epsilon\beta$ , where $\alpha$ and $\beta$ are standard
generators of $H_{2}(S^{2}\times S^{2};Z)$ such that $\alpha\cdot\alpha=\beta\cdot\beta=0$ and $\alpha\cdot\beta=\beta\cdot\alpha=1$ . Let
$(M^{\prime}, F_{\epsilon})=(M\# S^{2}\times S^{2}, F\# T_{\epsilon})$ . Clearly $F_{\epsilon}$ represents the characteristic homology class
$\xi+2\alpha+2\epsilon\beta$ and $(\xi+2\alpha+2\epsilon\beta)\cdot(\xi+2\alpha+2\epsilon\beta)\equiv\sigma(M^{\prime})$ mod 16. Apply Theorem 1.2 to
$(M^{\prime}, F_{\epsilon})$ for $\epsilon=\pm 1$ , and we have

COROLLARY 1.2.2. Let $M$ be as in Theorem 1.2 and $\xi$ a characteristic homology
class in $H_{2}(M;Z)$ with $\xi\cdot\xi\equiv\sigma(M)+8$ mod 16. Suppose that $\xi$ is represented by an
embedded, closed, orientable surface in $M$ with genus $g$ . If the 11/8-conjecture is true for
the 4-manifolds with $b_{2}^{+}\leq\max(k, l)+g+1$ or $b_{2}^{-}\leq\max(k, l)+g+1$ , then

$|\xi\cdot\xi-\sigma(M)|\leq 16(\frac{\max(k,l)+g+1}{3})-8$ . $\square $

In Section 2, we state Connecting Lemmas I, II and III and prove these lemmas.
Section 3 is devoted to proving Theorems 1.1 and 1.2. In Section 4, by using Connecting
Lemma III, we consider the problem of representing characteristic second homology
classes of almost definite 4-manifolds by embedded tori. We give a necessary condition
for characteristic homology classes to be represented by embedded tori. In particular,
for characteristic homology classes of $CP^{2}\#\overline{CP^{2}}$, we give a necessary and sufficient
condition for them to be represented by embedded tori. In Section 5, we give two
applications. Our first application is to give a necessary condition for a knot to bound
a M\"obius band in a 4-ball. This condition implies that neither $3_{1}\# 3_{1}$ nor $4_{1}$ can bound
a M\"obius band in a 4-ball (cf. [11]). Second one is to show that if the 11/8-conjecture

is true, then for any nonnegative integer $g$ , there exist infinitely many knots (in different
knot concordance classes) with trivial Alexander polynomial which cannot bound
orientable surface with genus $g$ in a 4-ball. In particular, there exist infinitely many
knots with trivial Alexander polynomial which cannot bound orientable surface with
genus 2 in a 4-ball.

We conclude with some notation. If $M$ is a closed 4-manifold, punc $M$ denotes $M$

with an open 4-ball deleted; the orientation of $\partial(puncM)$ is the one induced from punc $M$ .
For a positive integer $n,$ $nM$ indicates the connected sum of $n$ copies of $M$ .
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2. Connecting Lemmas.

In this section we introduoe Connecting Lemmas. In particular Connecting Lemmas
I and III are used to prove Theorems 1.1 and 1.2, respectively.

We recall the definition of the normal Euler number of a closed surface. Let $M$

be a closed 4-manifold and $N$ an embedded, closed surface in $M$. Take a section $N^{\prime}$ of
the normal bundle of $N$ that is transverse to $N$. At each point of $N\cap N^{\prime}$ choose a local
orientation of $N$. This determines a local orientation of $N^{\prime}$ , and so an incidence number
$\pm 1$ for the intersection point. This is indepdent of the $0$rientation choice. Then $e(N)$ is
the sum of these induced numbers over all points of $N\cap N^{\prime}$ . We call $e(N)$ the normal
Euler number of $N$.

By the definition of the normal Euler number, we have the following lemma.

LEMMA 2.1. Let $M_{\iota}$ be a simply connected 4-manifold with $\partial M_{i}\cong S^{3}$ and $N_{i}$ a
properly embedded surface in $M_{i}(i=1,2)$ . Let $\partial N_{i}$ be an oriented link. If there exists an
orientation reversing $d\iota ffeomorphismf$ from the pair $(\partial M_{1}, \partial N_{1})$ to the pair $(\partial M_{2}, \partial N_{2})$ ,
then we have anewpair $(M, N)=(M_{1}U_{f}M_{2}, N_{1}U_{f}N_{2})$ and thefollowing equality holds:

$e(N)=e(N_{1}, \partial N_{1})+e(N_{2}, \partial N_{2})$ . $\square $

CONNECTING LEMMA I. Let $M$ be a simply connected 4-manifold with $\partial M\cong S^{3}$ and
$N$ a properly embedded, non-orientable surface in $M$ with $\partial N\cong S^{1}$ . If $N$ represents zero
in $H_{2}(M, \partial M;Z_{2})$ , then for any $\epsilon\in\{-1,1\}$ , there exist a 4-manifold $M_{1}$ and a properly
embedded surface $N_{1}$ with $\partial N_{1}=\partial N$ in $M\# M_{1}$ satisfying the following:

(i) $M_{1}\cong S^{2}\times S^{2}$ $ or\cong S^{2}\times S^{2}\sim$ ,
(ii) $N_{1}$ is non-orientable, if $\beta_{1}(N)\geq 2$ ,
(iii) $N_{1}$ represents zero in $H_{2}(M\# M_{1}, \partial(M\# M_{1});Z_{2})$ ,
(iv) $ e(N_{1})=e(N)+2\epsilon$, and
(v) $\beta_{1}(N_{1})=\beta_{1}(N)-1$ .
REMARK. If we replace that $\partial M\cong S^{3}$ and $\partial N\cong S^{1}$ with that $\partial M\cong\emptyset$ and $\partial N\cong\emptyset$ ,

then the above lemma still holds.
$PR\infty F$ . Let $C$ be an orientation reversing loop in $N$. Since $M$ is a simply connected

4-manifold, $C$ is null-homotopic. We note that in these dimensions (i.e., for l-manifolds
in 4-manifolds) every homotopy may be replaced by an isotopy. It follows that $C$ bounds
a 2-disk $D$ in $M$. We can assume that $D$ is transverse to $N$. Taking a neighborhood
$V(D)$ ofD inMsuitably, $weseethatN\cap V(D)$ consists of one M\"obius band and some
2-disks $D_{1},$ $D_{2},$ $\cdots,$ $D_{l}$ and that $\partial(N\cap V(D))\subset\partial V(D)$ is a link as in Figure 1. Set
$N^{\prime}=N\cap V(D)$ and $L=\partial N^{\prime}$ . We orient $L\subset\partial V(D)$ so that the diagram of $L$ in Figure 1
has only positive or negative crossings (Figure 2). Note that $e(N^{\prime}, L)=4k+4l+2$ if $L$

is oriented as in Figure 2(a), and $e(N^{\prime}, L)=-4k-4l-2$ if $L$ is oriented as in Figure 2(b).
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$FlGURE$ $1$

FIGURE 2

CLAIM 1. (a) If $L$ is oriented as in Figure 2(a), then
(i) there exist mutually disjoint 2-disks in punc$(S^{2}\times S^{2})$ that represent $ 2\alpha+(k+l)\beta$ in

$H_{2}(punc(S^{2}\times S^{2}), \partial(punc(S^{2}\times S^{2}));Z)$ and are bounded by $L$ , and
(ii) there exist mutually disjoint2-disks in punc$(S^{2}\times S^{2})thatrepresent2\alpha+(k+l+1)\beta$

in $H_{2}(punc(S^{2}\times S^{2}), \partial(punc(S^{2}\times S^{2}));Z)$ and are bounded by $L$ .
(b) IfL is oriented as in Figure2(b), then

(i) there exist mutually disjoint 2-disks in punc$(S^{2}\times S^{2})$ that represent $ 2\alpha-(k+l)\beta$

in $H_{2}(punc(S^{2}\times S^{2}), \partial(punc(S^{2}\times S^{2}));Z)$ and are bounded by $L$, and
(ii) there exist mutually disjoint2-disks in punc$(S^{2}\times S^{2})thatrepresent2\alpha-(k+l+1)\beta$

in $H_{2}(punc(S^{2}\times S^{2}), \partial(punc(S^{2}\times S^{2}));Z)$ and are bounded by $L$ .
$PR\infty F$ . There exist mutually disjoint $k+l+2$ 2-disks in punc$(S^{2}\times S^{2})$ that

represent $ 2\alpha+(k+l)\beta$ and their boundary is as in Figure 3(a-i). It is not hard to see
that $k+1$ strips $b_{0},$ $b_{1},$ $b_{2},$ $\cdots,$ $b_{k}$ connecting the 2-disks can be chosen so that the
boundary of the union of the 2-disks and the strips is $L$ (Figure 4(a-i)). The resulting
2-disks are the required 2-disks.

The argument similar to that in the above proof and Figures 3 and 4 complete the
proof. $\square $
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FIGURE 3

FIGURE 4

CLAIM 2. (a) If $L$ is oriented as in Figure 2(a), then
(i) there exist mutually disjoint 2-disks in $punc\langle S^{2}\times S^{2}$)

$\sim$

that represent $ 2\tilde{\alpha}+(k+l)\beta$

in $H_{2}(punc(S^{2}\times\sim S^{2}), \partial(punc(S^{2}\tilde{\times}S^{2}));Z)$ and are bounded by $L$, and
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(ii) there exist mutually disjoint 2-disks in punc$(S^{2}\times S^{2})\sim$ that represent $2\tilde{\alpha}+(k+l-1)\tilde{\beta}$

in $H_{2}(punc(S^{2}\times\sim S^{2}), \partial(punc(S^{2}\times\sim S^{2}));Z)$ and are bounded by $L$ .
(b) IfL is oriented as in Figure2(b), then

(i) $thereexistmutuallydisjoint2- disksinpunc\langle S^{2}\times S^{2}$ )$thatrepresent2\tilde{\alpha}-(k+l+2)\tilde{\beta}\sim$

in $H_{2}(punc(S^{2}\times\sim S^{2}), \partial(punc(S^{2}\times\sim S^{2}));Z)$ and are bounded by $L$ , and
(ii) there exist mutually disjoint 2-disks in punc$(S^{2}\times S^{2})\sim$ that represent $2\tilde{\alpha}-(k+l+1)\tilde{\beta}$

in $H_{2}(punc(S^{2}\times\sim S^{2}), \partial(punc(S^{2}\times\sim S^{2}));Z)$ and are bounded by $L$ ,
where $\tilde{\alpha}$ and $\tilde{\beta}$ are standard generators of $ H_{2}(punc(S^{2}\times S^{2}), \partial(punc(S^{2}\sim\times S^{2}));Z)\sim$ such
that $\tilde{\alpha}\cdot\tilde{\alpha}=1,\tilde{\alpha}\cdot\tilde{\beta}=\tilde{\beta}\cdot\tilde{\alpha}=1$ and $\tilde{\beta}\cdot\tilde{\beta}=0$ .

$PR\infty F$ . Let $O_{0}\cup O_{1}$ be the Hopf link in $\partial B^{4}$ . Attach 2-handles $h_{j}^{2}(j=0,1)$ to $B^{4}$

along $O_{j}$ with j-framing and 4-handle $h^{4}$ to $B^{4}\cup h_{0}^{2}\cup h_{1}^{2}$ . The resulting 4-manifold
$B^{4}\cup h_{0}^{2}\cup h_{1}^{2}\cup h^{4}$ is deffeomorphic to $ S^{2}\times S^{2}\sim$ , and $h_{O}^{2}\cup h_{1}^{2}\cup h^{4}\cong punc(S^{2}\tilde{\times}S^{2})$ . Let
$D_{01},$ $D_{02}$ be parallel copies of the core of $h_{1}^{2}$ and $D_{11},$ $D_{12},$ $\cdots,$ $D_{1\{k+1)}$ parallel copies
of the core of $h_{0}^{2}$ . Orienting $D_{01},$ $D_{02},$ $D_{11},$ $D_{12},$ $\cdots,$ $D_{1\langle k+l)}$ suitably, we find that both
$D_{01}$ and $D_{02}$ represent $\tilde{\alpha}$, each $D_{1j’}$ $(j^{\prime}=1,2, \cdots, k+l)$ represents $\beta$ and
$\cup\partial D_{jj’}\subset\partial(punc(S^{2}\times\sim S^{2}))$ is the link as in Figure 5(a-i). It is not hard to see that $k+1$

strips $b_{0},$ $b_{1},$ $b_{2},$ $\cdots,$ $b_{k}$ connecting the 2-disks can be chosen so that the boundary of
the union of the 2-disks and the strips is $L$ (Figure 6(a-i)). Note that the resulting
2-disks represent $2\tilde{\alpha}+(k+l)\tilde{\beta}$.

The argument similar to that in the above proof and Figures 5 and 6 complete the
proof. $\square $

FIGURE 5
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FIGURE 6

We consider the following four cases:
$\bullet$

$L$ is as in Figure 2(a) and $k+l$ is even.
$\bullet$ $L$ is as in Figure 2(a) and $k+l$ is odd.
$\bullet$

$L$ is as in Figure 2(b) and $k+l$ is even.
$\bullet$ $L$ is as in Figure 2(b) and $k+l$ is odd.

For any case and any $\epsilon\in\{-1,1\}$ , by Claims 1 and 2, we find mutually disjoint 2-disks
$\Delta$ in punc $M_{1}$ such that $M_{1}\cong S^{2}\times S^{2}$ or $ S^{2}\times S^{2}\sim$ , the second homology class $[\Delta, \partial\Delta]$

represented by $\Delta$ is divisible by 2 and $ e(\Delta, \partial\Delta)=e(N^{\prime}, \partial N^{\prime})+2\epsilon$ . See Table 1. Cap ofl

TABLE 1

(Note: $e(\Delta,$ $\partial\Delta)=[\Delta,$ $\partial\Delta]\cdot[\Delta$ . $\partial\Delta].$)
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the pair ( $\partial$($M$ -Int $V(D)$), $\partial(N$-Int $N^{\prime})$) with a pair (punc $M_{1},$ $\Delta$ ), and we have a new
surface $N_{1}=$ ($N$-Int $N^{\prime}$) $\cup\Delta$ in $M\# M_{1}$ . Note that $\beta_{1}(N_{1})=\beta_{1}(N)-1,$ $\partial N_{1}=\partial N$ and $N_{1}$

represents zero in $H_{2}(M\# M_{1}, \partial(M\# M_{1});Z_{2})$ . If $\beta_{1}(N)\geq 2$ , then it is not hard to see
that $C$ can be chosen so that $N_{1}$ is non-orientable. Moreover by Lemma 2.1,
$e(N_{1})=e$($N$-Int $N^{\prime},$ $\partial(N-IntN^{\prime})$) $+e(\Delta, \partial\Delta)=e(N)-e(N^{\prime}, \partial N^{\prime})+e(\Delta, \partial\Delta)$ . Thus we have
the following table:

TABLE 2

This completes the proof. $\square $

By the arguments similar to that in the above proof, we have the following known
result [14], [10].

CONNECTING LEMMA II. Let $M$ be a simply connected 4-manifold with $\partial M\cong S^{3}$

(resp. $\cong\emptyset$) and $N$ a properly embedded, non-orientable surface with $\partial N\cong S^{1}$ (resp. $\cong\emptyset$)
that represents a characteristic homology class in $H_{2}(M, \partial M;Z_{2})$ . Then there exists a
properly embedded surface $N_{1}$ with $\partial N_{1}=\partial N$ in $M\# S^{2}\times S^{2}$ such that

(i) $N_{1}$ is non-orientable, if $\beta_{1}(N)\geq 2$ ,
(ii) $N_{1}$ represents a characteristic homology class,
(iii) $ e(N_{1})=e(N)+2\epsilon$ for some $\epsilon=\pm 1$ , and
(iv) $\beta_{1}(N_{1})=\beta(N)-1$ . $\square $

Let us recall the definition of the Arf invariant of surfaces in 4-manifolds
representing characteristic homology classes. Let $M$ be a 4-manifold with $\partial M\cong\emptyset$ or
$\cong S^{3}$ and $F$ a properly embedded, orientable surface in $M$ with $\partial F\cong\emptyset or\cong S^{1}$ . Suppose
that the homology class $[F, \partial F]\in H_{2}(M, \partial M;Z)$ is characteristic, then we can define
a quadratic function $q:H_{1}(F;Z_{2})\rightarrow Z_{2}$ as follows [16], [2], [13]. Let $C$ be an embedded
circle in $F$. Since $M$ is simply connected, $C$ bounds an embedded 2-disk $D$ in $M$. We
may assume that $D$ is transverse to $F$ at any point. The normal bundle $v_{D}$ of $D$ is trivial.
Note that any trivialization $\tau:v_{D}\cong D\times R^{2}$ induces a unique trivialization $ v_{D}|\partial D\cong$

$\partial D\times R^{2}$ on the boundary. The normal line bundle $v_{C}$ of $C$ in $F$ determines an orientable
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sub-line bundle in $v_{D}|\partial D$ . Let $\mathcal{O}(D)$ be the number $(mod 2)$ of the full twists of $v_{C}$ in $v_{D}|\partial L$

with respect to the unique trivialization above. Let $D\cdot F$be the number of the intersection
points of Int $D$ and $F$. Define $q(C)\in Z_{2}$ by

$q(C)=\mathcal{O}(D)+D\cdot F$ mod 2.

This gives a well-defined function $q:H_{1}(F;Z_{2})\rightarrow Z_{2}$ that is a quadratic function with
respect to the intersection pairing. : $H_{1}(F;Z_{2})\otimes H_{1}(F;Z_{2})\rightarrow Z_{2}$ . Choose symplectit
basis $a_{1},$ $a_{2},$ $\cdots,$ $a_{g}$ , $b_{1},$ $b_{2},$ $\cdots,$ $b_{g}$ of $H_{1}(F;Z_{2})$ by satisfyng $a_{i}\cdot a_{j}=b_{i}\cdot b_{j}=0$ anc
$a_{i}\cdot b_{j}=\delta_{ij}$ (Kronecker’s delta). We define the $Arf$invariant ArflF) ofFto be $\sum_{i=1}^{g}q(a_{i})q(b_{i}$

mod 2. It is known that $Arf(F)$ depends only on the relative integral homology clas.
$[F, \partial F]$ and the knot concordance class of the embedding $\partial F\rightarrow\partial M$. In fact, we havt
the following theorem, which is a generalization of Rohlin’s Theorem [16].

THEOREM 2.2. Let $M$ be a simply connected 4-manifold with $\partial M\cong\emptyset$ $or\cong S^{3}$ an‘

$F$ a properly embedded, orientable surface in $M$ with $\partial F\cong\emptyset$ $or\cong S^{1}$ that represents ‘

characteristic homology class. Then we have

$Arf(\partial F)+Ar\mathfrak{g}F)\equiv\frac{[F,\partial F]\cdot[F,\partial F]-\sigma(M)}{8}$ $mod 2$ ,

where $Arf(\partial F)$ is the $Arf$ invariant of the knot $\partial F\subset\partial M$ if $\partial F\neq\emptyset$ , and $Arf(\partial F)=0i$.
$\partial F=\emptyset$ . $\square $

The above theorem implies that for any embedded, closed, orientable surface $Fil$

$M$ representing a characteristic homology class, $Arf(F)=0$ if and only if $[F]\cdot[F]\equiv\sigma(M$

mod 16.
We state the third Connecting Lemma.

CONNECTING LEMMA III. Let $M$ be a closed, simply connected 4-manifold and $\rfloor$

an embedded, closed, orientable surface in $M$ that represents a characteristic homolog.
class. If $Arf(F)=0$ , i.e., $[F]\cdot[F]\equiv\sigma(M)$ mod 16, then there exists an embedded, closec
orientable surface $F_{1}$ in $M\# S^{2}\times S^{2}$ such that $[F_{1}]$ is a characteristic homology $clas_{L}^{(}$

$Arf(F_{1})=0,$ $[F_{1}]\cdot[F_{1}]=[F]\cdot[F]$ and genus$(F_{1})=genus(F)-1$ .
$PR\infty F$ . Set genus$(F)=g$ . Since $Arf(F)=0$ , there exist symplectic basis $a_{1},$ $a_{2},$

$\cdots$

$a_{g},$
$b_{1},$ $b_{2},$ $\cdots,$ $b_{g}$ of $H_{1}(F;Z_{2})$ such that $q(a_{i})=q(b_{j})=0$ for any $i=1,2,$ $\cdots,$ $g$ . It follow

that there exists an embedded essential loop $C$ in $F$ with $q(C)=0$ . Since $M$ is simpl
connected, $C$ bounds a 2-disk $D$ in $M$ that is transverse to $F$. Taking a $neighborhoo|$

$V(D)$ of $D$ suitably, we see that $F\cap V(D)$ consists of one annulus and some 2-disk
$D_{1},$ $D_{2},$ $\cdots,$ $D_{l}$ and that $\partial(F\cap V(D))\subset\partial V(D)$ is a link as in Figure 7. Note that, in Figur
7, $k$ is equal to the times of the full twists of $v_{C}$ in $v_{D}|\partial D$ with respect to the uniqu
trivialization $v_{D}|\partial D\cong\partial D\times R^{2}$ , and $l$ is equal to the number $D\cdot F$ of the intersectio
points of Int $D$ and $F$. It follows from $q(C)=0$ that $k+l$ is even. By the argumenl

similar to that in the proof of Claim 1 in the proof of Connecting Lemma I, ther
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exist mutually disjoint 2-disks $\Delta$ in punc$(S^{2}\times S^{2})$ that represent $0\alpha+2m\beta(m\in Z)$ and
$\partial\Delta\subset\partial(punc(S^{2}\times S^{2}))$ is $\partial(F\cap V(D))\subset\partial V(D)$ . Cap off the pair ( $\partial$($M$ -Int $V(D)$),
$\partial$($F$-Int $V(D)\cap F$)) with the pair (punc$(S^{2}\times S^{2}),$ $\Delta$ ), we have a new closed, orientable
surface $F_{1}=$ ($F$-Int $V(D)\cap F$) $\cup\Delta$ in M$ $S^{2}\times S^{2}$ . By the above construction, we find
that $[F_{1}]$ is a characteristic homology class, $[F_{1}]\cdot[F_{1}]=[F]\cdot[F]$ and genus$(F_{1})=ge-$
$nus(F)-1$ . Since $[F_{1}]\cdot[F_{1}]=[F]\cdot[F]$ and $\sigma(M\# S^{2}\times S^{2})=\sigma(M)$ , by Theorem 2.2, we
have $Arf(F_{1})=Arf(F)=0$ . $\square $

$FlGURE7$

3. Proofs of Theorems 1.1 and 1.2.

We use the following theorem for proving Theorem 1.1.

THEOREM 3.1 (Viro [17], Gilmer [4]). Let $M$ be a simply connected 4-manifold
with $\partial M\cong S^{3}$ and $K$ a knot in $\partial M$ . Suppose that $K$ bounds an orientable surface $F$ in $M$.
If $[F, \partial F]$ is divisible by 2, then

$|\frac{[F,\partial F]\cdot[F,\partial F]}{2}\sigma(M)-\sigma(K)|\leq\beta_{2}(M)+\beta_{1}(F)$ .

PROOF OF THEOREM 1.1. Set $\beta_{1}(N)=g$ . Using Connecting Lemma I repeatedly,
for any $\epsilon\in\{-1,1\}$ , we have 4-manifolds $M_{1\epsilon},$ $M_{2\epsilon},$ $\cdots,$ $M_{g\epsilon}$ and a properly embedded
2-disk $D_{\epsilon}$ in $M\# M_{1\epsilon}\# M_{2\epsilon}\#\cdots\# M_{g\epsilon}$ such that $M_{i\epsilon}\cong S^{2}\times S^{2}$ or $\cong S^{2}\times S^{2}\sim,$ $[D_{\epsilon}, \partial D_{\epsilon}]$

is divisible by 2, $[D_{\epsilon}, \partial D_{\epsilon}]\cdot[D_{\epsilon}, \partial D_{\epsilon}]=e(N)+2\epsilon g$ and $\partial D_{\epsilon}=K$. It follows from Theorem
3.1 that for any $\epsilon\in\{-1,1\}$

$|\frac{e(N)+2\epsilon g}{2}\sigma(M\# M_{1\epsilon}\# M_{2\epsilon}\#\cdots\# M_{g\epsilon})-\sigma(K)|\leq\beta_{2}(M\# M_{1\epsilon}\# M_{2\epsilon}\#\cdots\# M_{g\epsilon})$ .

This implies that, for any $\epsilon\in\{-1,1\}$ ,

$|\frac{e(N)+2\epsilon g}{2}\sigma(M)-\sigma(K)|\leq\beta_{2}(M)+2g$ .

These two inequalities imply the required inequality
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$|\frac{e(N)}{2}-\sigma(M)-\sigma(K)|\leq\beta_{2}(M)+g$ .

This completes the proof. $\square $

In order to prove Theorem 1.2, we show one implication of the 11/8-conjecture.

This proposition is proved by the arguments similar to Kikuchi’s [8, Proof of Lemma
3.4].

PROPOSITION 3.2. Let $M$ be a closed, simply connected 4-manifold with $b_{2}^{+}(M)=k$

$andb_{2}^{-}(M)=l$. Suppose that $S$ is an embed&d 2-sphere in $M$ that represents a characteristic
homology class. If the 11/8-conjecture is true for the 4-manifolds with $b_{2}^{+}\leq\max(k, l)-1$

or $b_{2}^{-}\leq\max(k, l)-1$ , then

$|[S]\cdot[S]-\sigma(M)|\leq 16(\frac{\max(k,l)-1}{3})$ .

$PR\infty F$ . Set $\max(k, l)=m$ . Since $[S]$ is a characteristic homology class, by [7,

Theorem 1], $[S]\cdot[S]\equiv\sigma(M)$ mod 16. Set $[S]\cdot[S]-\sigma(M)=16x(x\in Z)$ . It is sufficient
to prove that

$|x|\leq\frac{m-1}{3}$ .

Let

$(M^{\prime}, S^{\prime})=\left\{\begin{array}{l}(M,S)f(k-l)(CP^{2},CP^{1})\\(M,S)\#(l-k)(CP^{2},CP^{1})\end{array}\right.$ $ifif$ $k\geq lk<l’$

.

Note that $b_{2}^{+}(M^{\prime})=b_{2}^{-}(M^{\prime})=m,$ $[S^{\prime}]$ is a characteristic homology class in $H_{2}(M^{\prime};Z)$ and
$[S^{\prime}]\cdot[S^{\prime}]=16x$ .

In case that $x>0$ , taking the connected sum $(M^{\prime}, S^{\prime})\#(16x-1X\overline{CP^{2}}, cF^{1})$ , we
have a new manifold pair $(M^{\prime\prime}, S^{\prime\prime})$ . Clearly $[S^{\prime\prime}]$ is a characteristic homology class
in $H_{2}(M^{\prime\prime};Z)$ and $[S^{\prime\prime}]\cdot[S^{\prime\prime}]=1$ . Let $U(S^{\prime\prime})$ be a tubular neighborhood of $S$

’ in
$M^{\prime\prime}$ . Since $[S^{\prime\prime}]\cdot[S^{\prime\prime}]=1$ , we have a new manifold $M_{1}=(M^{\prime\prime}-U(S^{\prime\prime}))\cup D^{4}$ with
$b_{2}^{+}(M_{1})=m-1$ . Note that $M^{\prime\prime}=M_{1}\# CP^{2}$ . The fact that $[S^{\prime\prime}]$ is a characteristic
homology class implies that $M_{1}$ is a spin 4-manifold. The 11/8-conjecture says that

$8\beta_{2}(M_{1})\geq 11|\sigma(M_{1})|$ .

Since $\beta_{2}(M_{1})=2m+16x-2$ and $\sigma(M_{1})=-16x$ , we have

$x\leq\frac{m-1}{3}$ .

In case that $x<0$ , the similar arguments give us
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$-x\leq\frac{m-1}{3}$ . $\square $

PROOF OF THEOREM 1.2. Let $\xi$ be as in Theorem 1.2. Using Connecting Lemma
III repeatedly, we have an embedded 2-sphere $S$ in $M\# g(S^{2}\times S^{2})$ such that $[S]$ is a
characteristic homology class and $[S]\cdot[S]=\xi\cdot\xi$ . From Proposition 3.2, if the
11/8-conjecture is true for the 4-manifolds with $b_{2}^{+}\leq\max(k+g, l+g)-1$ or $ b_{2}^{-}\leq$

$\max(k+g, l+g)-1$ , then

$|[S]\cdot[S]-\sigma(M\# g(S^{2}\times S^{2}))|\leq 16(\frac{\max(k+g,l+g)-1}{3})$ .

This completes the proof. $\square $

4. Tori in almost definite 4-manifolds.

Almost all in this section, we study which characteristic second homology classes
are representable by embedded tori for almost definite 4-manifolds where $b_{2}^{+}=1$ or $=2$ .
And we have the following results.

THEOREM 4.1. Let $M$ be a closed, simply connected 4-manifold with $b_{2}^{+}(M)=$

$b_{2}^{-}(M)=1$ and $\xi$ a characteristic homology class in $H_{2}(M;Z)$ . If $\xi$ is represented by an
embedded torus in $M$, then $|\xi\cdot\xi|=0$ $or=8$ .

Let $\gamma$ and $\overline{\gamma}$ be standard generators of $H_{2}(CP^{2}\#\overline{CP^{2}};Z)$ with $\gamma\cdot\gamma=-\overline{\gamma}\cdot\overline{\gamma}=1$ and
let $\xi=x\gamma+y\overline{\gamma}(x, y\in Z)$ . Note that if $\xi$ is characteristic and $|\xi\cdot\xi|=0$ or $=8$ , then
$|x|=|y|,$ $(|x|, |y|)=(3,1)$ , or $=(1,3)$ . It is not hard to see that $\xi$ is represented by an
embedded torus in $CP^{2}\#\overline{CP^{2}}$ when $|x|=|y|,$ $(|x|, |y|)=(3,1)$ or $=(1,3)$ . Thus Theorem
4.1 gives a necessary and sufficient condition for characteristic homology classes of
$CP^{2}\#\overline{CP^{2}}$ to be represented by embedded tori, i.e., we have the following corollary.

COROLLARY 4.1.1. Let $\xi$ be a characteristic homology class in $H_{2}(CP^{2}\#\overline{CP^{2}};Z)$ .
Then $\xi$ is represented by an embedded torus in $CP^{2}\#\overline{CP^{2}}$ if and only if $|\xi\cdot\xi|=0$ or
$=8$ . $\square $

Theorem 4.1 also gives a necessary and sufficient condition for characteristic
homology classes of $S^{2}\times S^{2}$ to be represented by embedded tori. However this is not
remarkable because Rohlin’s genus theorem [15] and Rohlin’s signature theorem [16]
give the same condition, too.

THEOREM 4.2. Let $M$ be a closed, simply connected 4-manifold with $b_{2}^{+}(M)=k$ and
$b_{2}^{-}(M)=l$, and $\xi$ a characteristic homology class in $H_{2}(M;Z)$ . Suppose that $\xi$ is represented
by an embedded torus in $M$.

(i) If $k=1,$ $l\geq 3$ and $\xi\cdot\xi\equiv\sigma(M)$ mod 16, then $\xi\cdot\xi<-1$ .
(ii) If $k=1,$ $l\geq 2$ and $\xi\cdot\xi\equiv\sigma(M)+8$ mod 16, then $\xi\cdot\xi<10$ .
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(iii) If $k=2,$ $l\geq 3$ and $\xi\cdot\xi\equiv\sigma(M)$ mod 16, then $\xi\cdot\xi<1$ .
(iv) If $k\leq 2,$ $l\leq 2$ and $\xi\cdot\xi\equiv\sigma(M)$ mod 16, then $\xi\cdot\xi=\sigma(M)$ .

Part (iv) follows directly from Corollary 1.2.1, (ii).

THEOREM 4.3. Let $M$ be a closed, simply connected 4-manifold with $b_{2}^{+}(M)=1$ and
$b_{2}^{-}(M)\geq 1$ , and $\xi$ a characteristic homology class in $H_{2}(M;Z)$ with $\xi\cdot\xi\equiv\sigma(M)$ mod 16.
If $\xi$ is represented by an embedde$d$, orientable surface in $M$ with genus 2, then $\xi\cdot\xi<1$ .

In the above theorem, if $b_{2}^{-}(M)=1$ , then by reversing orientations, we have $\xi\cdot\xi=0$

(cf. Corollary 1.2.1, $(i)$).
In order to prove Theorems 4.1, 4.2 and 4.3, we need the following theorem.

THEOREM 4.4 (Lawson [10], Kikuchi [8]). Let $M$ be a closed, simply connected
4-manifold with $b_{2}^{+}(M)=k$ and $b_{2}^{-}(M)=l$, and $\xi$ a characteristic homology class in
$H_{2}(M;Z)$ . Suppose that $\xi$ is represented by an embedded sphere in $M$.

(i) If $k=3$ and $l\geq 3$ , then $\xi\cdot\xi<1$ .
(ii) If $k=2$ and $l\geq 4$ , then $\xi\cdot\xi<-1$ .

The above theorem follows from [8, Theorem 1.3, (1)(2)]. For part (ii), Lawson
has a result [10, Theorem 3, (ii)] concerning 4-manifolds with odd intersection form.
But, from [10, Proof of Theorem 3], we note that his result holds for 4-manifolds
without odd intersection form. Connecting Lemma III connects our results Theorems
4.2 and 4.3 with the above theorem.

Let us start to prove the theorems.

$PR\infty F$ OF THEOREM 4.3. By using Connecting Lemma III twice, we have an
embedded sphere in $M\# 2(S^{2}\times S^{2})$ that represents the characteristic homology class $\eta$

with $\eta\cdot\eta=\xi\cdot\xi$ . Since $b_{2}^{+}(M\# 2(S^{2}\times S^{2}))=3$ and $b_{2}^{-}(M\# 2(S^{2}\times S^{2}))=b_{2}^{-}(M)+2\geq 3$ , by
Theorem 4.4, (i), we have $\xi\cdot\xi=\eta\cdot\eta<1$ . $\square $

$PR\infty F$ OF THEOREM 4.2. Part (i) (resp. part (iii)) follows from Connecting Lemma
III and Theorem 4.4, (ii) (resp. $(i)$) by the argument similar to that in the proof of
Theorem 4.3.

For part (ii), take a connected sum with $(\overline{CP^{2}}, T)$ where $T$ is an embedded torus
representing the characteristic homology class $3\overline{\gamma}$ . As a result, we obtain an embedded,
orientable surface with genus 2 in $M\#\overline{CP^{2}}$ that represents the characteristic homology
class $\xi+3\overline{\gamma}$ . Applying Theorem 4.3, we have $(\xi+3\overline{\gamma})\cdot(\xi+3\overline{\gamma})=\xi\cdot\xi-9<1$ .

Part (iv) follows from Corollary 1.2.1, (ii). This completes the proof. $\square $

$PR\infty F$ OF THEOREM 4.1. Note that $\xi\cdot\xi\equiv 0$ or $\equiv 8$ mod 16. If $\xi\cdot\xi\equiv 0$ mod 16
then it follows from part (iv) of Theorem 4.2 that $\xi\cdot\xi=0$ .

We consider the case that $\xi\cdot\xi\equiv 8$ mod 16. Set $\xi\cdot\xi=16x+8(x\in Z)$ and suppose
$x\geq 1$ . We can easily see that there exists an embedded torus $T^{\prime}$ in $\overline{CP^{2}}$ that represents
the characteristic homology class $3\overline{\gamma}$. Let $T$ be an embedded torus in $M$ that represents
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the characteristic homology class $\xi$ and let $(M^{\prime}, F)=(M, T)\#(\overline{CP^{2}}, T^{\prime})$ . Since $b_{2}^{+}(M^{\prime})=1$ ,
$b_{2}^{-}(M^{\prime})=2,$ $genus(F)=2$ and $F$ represents the characteristic homology class $\xi+3\overline{\gamma}$ with
self-intersection number $16x-1$ , by Theorem 4.3, we have $16x-1<1$ . This contradicts
$x\geq 1$ .

If we set $\xi\cdot\xi=16x-8(x\in Z)$ and suppose $x\leq-1$ , then we obtain a contradic-
tion by reversing orientations. It follows that $\xi\cdot\xi=8$ or $=-8$ . This completes the
proof. $\square $

5. Applications.

Our first application, a consequemce of Theorem 1.1, is as follows.

PROPOSITION 5.1. If a knot $K$ bounds a Mobius band in a 4-ball, then there exists
an integer $x$ such that

$|8x+4Arf(K)-\sigma(K)|\leq 2$ .
The above proposition implies that neither $3_{1}\# 3_{1}$ nor $4_{1}$ bounds a M\"obius band

in a 4-ball (cf. [11]).

PROOF. If $K$ bounds a M\"obius band $N$ in a 4-ball $B^{4}$ , then by Connecting Lemma
II, there exits a properly embedded 2-disk $D$ in $B^{4}\# S^{2}\times S^{2}$ such that $[D, \partial D]$ is a
characteristic homology class, $\partial D=K$ and $[D, \partial D]\cdot[D, \partial D]=e(N)+2\epsilon$ for some $\epsilon=\pm 1$ .
By Theorem 2.2, we have

$e(N)+2\epsilon\equiv 8Arf(K)$ mod 16.
Set $e(N)+2\epsilon=16x+8Arf(K)(x\in Z)$ and apply Theorem 1.1 to $K,$ $N$ and $B^{4}$ , we have

$|\frac{16x+8Arf(K)-2\epsilon}{2}\sigma(K)|\leq 1$ .

This implies

$|8x+4Arf(K)-\sigma(K)|\leq 2$ .
This completes the proof. $\square $

Before stating the second application, we need some preliminaries.
Let $K_{0}$ be a knot in $S^{3}$ and $D^{2}$ a 2-disk intersecting $K_{0}$ in its interior. Let

$w=1k(\partial D^{2}, K_{O})$ . A $1/n$-Dehn surgery along $\partial D^{2}$ changes $K_{0}$ into a new knot $K_{n}$ in $S^{3}$ .
We say that $K_{n}$ is obtained from $K_{O}$ by an $(n, w)$-twisting on $D^{2}$ . A. J. Casson states
the following theorem.

THEOREM 5.2 (Casson [6, Remark in p. 56]). Any knot with trivial Arf invariant
is concordant to a knot that can be obtainedfrom a knot with trivial Alexander polynomial
by a $(-1, -1)$-twisting.
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This theorem gives the following lemma.

LEMMA 5.3. For any odd integer $x$ with $x^{2}\equiv 1$ mod 16, there exists a $properl\backslash $.
embedded 2-disk $\Delta$ in punc$(CP^{2}\#\overline{CP^{2}})$ such that $\partial\Delta$ is a knot with trivial Alexande
polynomial and $[\Delta, \partial\Delta]$ is the characteristic homology class $x\gamma+\overline{\gamma}$, where $\gamma$ and $\overline{\gamma}ar_{(}$

standard generators such that $\gamma\cdot\gamma=-\overline{\gamma}\cdot\overline{\gamma}=1$ .
$PR\infty F$ . Let $\Delta$ be a properly embedded 2-disk in punc $CP^{2}$ such that $[\Delta, \partial\Delta]=x\gamma$

Suppose $x^{2}\equiv 1$ mod 16, then by Theorem 2.2, the Arf invariant of the kno
$\partial\Delta\subset\partial(puncCP^{2})$ is zero. By Theorem 5.2, there exists a 2-disk $D$ in $\partial(puncCP^{2})$ sucl
that $1k(\partial D, \partial\Delta)=-1$ and a $-1$ -Dehn surgery along $\partial D$ changes the knot $\partial\Delta$ into $\{$

knot with trivial Alexander polynomial, say $K_{x}$ . Hence, by attaching a 2-handle $t\{$

punc $CP^{2}$ with framing $-1$ along $\partial D$ , we find $\Delta$ a properly embedded 2-disk $il$

$punc\langle CP^{2}\#\overline{CP^{2}}$) such that $\partial\Delta=K_{x}$ and $[\Delta, \partial\Delta]=x\gamma+\overline{\gamma}$. $\square $

Let $x$ be an odd integer with $x^{2}\equiv 1$ mod 16. By Lemma 5.3, we have a knot $K_{x}il$

$\partial(punc(CP^{2}\#\overline{CP^{2}}))$ bounding a 2-disk that represents the characteristic homology clas
$x\gamma+\overline{\gamma}$. If $|x|\neq|x^{\prime}$ , then $K_{x}$ is not concordant to $K_{x^{\prime}}$ . (In fact, if $K_{x}$ is concordant tt
$K_{x’}$ , then we have an embedded 2-sphere in $2(CP^{2}\#\overline{CP^{2}})$ that represent
$x\gamma_{1}+\overline{\gamma}_{1}-(\gamma_{2}+x^{\prime}\overline{\gamma}_{2})$ . This together with Corollary 1.2.1, (ii) imply that $|x|=|x^{\prime}$ .
Suppose that $K_{x}$ bounds an orientable surface with genus $g$ in a 4-ball, then we $hav($

an embedded, orientable surface $F$ in $CP^{2}\#\overline{CP^{2}}$ with genus $g$ that represents $th|$

characteristic homology class $x\gamma+\overline{\gamma}$ in $H_{2}(CP^{2}\#\overline{CP^{2}}; Z)$ . Moreover $[F]\cdot[F]=$

$x^{2}-1\equiv 0=\sigma(CP^{2}\#\overline{CP^{2}})$ mod 16. This fact and Theorem 1.2 imply that

$|x^{2}-1|\leq 16\cdot\frac{g}{3}$,

if the 11/8-conjecture is true for the 4-manifolds with $b_{2}^{+}\leq g$ or $b_{2}^{-}\leq g$ . So there ar
infinitely many $x$ which does not satisfy the above inequality. Thus we obtain

PROPOSITION 5.4. For any nonnegative integer $g$ , there exist infinitely many knot
with trivial Alexander polynomial which cannot bound orientable surface with genus $gi$

a 4-ball, $\iota f$ the 11/8-conjecture is true for the 4-manifolds with $b_{2}^{+}\leq g$ or $b_{2}^{-}\leq g$ . $\square $

In particular, by [1, Theorem $C$] the following corollary holds.

COROLLARY 5.4.1. There exist infinitely many knots with trivial Alexande
polynomial which cannot bound orientable surface with genus 2 in a 4-ball. $\square $
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