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Introduction.

For a prime number $p$ , let $Q_{p}$ be the p-adic number field, $Z_{p}$ be the ring ofp-adic
integers in $Q_{p}$ , and $C_{p}$ be the completion of algebraic closure of $Q_{p}$ .

Let $F(X, Y)\in Z_{p}[[X, Y]]$ be the Lubin-Tate formal group and $h(X)\in\Theta((X))^{x}$ be a
meromorphic series where $\Theta$ is the ring of p-adic integers in $C_{p}$ . In [9], Shiratani and
Imada constructed a p-adic meromorphic function $\zeta_{p}(s, F, h)$ which was a generaliza-
tion of the ordinary p-adic zeta function $\zeta_{p}(s)$ . In fact, in the case that $F(X, Y)=$

$G_{m}(X, Y)=(X+1)(Y+1)-1$ and $h(X)=X$, we have $\zeta_{p}(s, G_{m}, X)=\zeta_{p}(s)$ . In the case that
$F(X, Y)=\xi(X, Y)$ which is the formal group associated with elliptic curves with complex
multiplication defined over $Z$ with ordinary reduction, $\zeta_{p}(s, \xi, X)$ coincides with the
p-adic zeta function defined by Lichtenbaum in [5].

In the present paper, we construct a function $T_{p,c}(s, F, h)$ for $c\in Z_{p}^{x}$ , which we can
regard as a generalization of the Morita p-adic $\log-\Gamma$-function (cf. [7]) twisted by $c$ .
By using $T_{p,c}(s, F, h)$ , we describe the values of $\zeta_{p}(s, F, h)$ at positive integers (see \S 3).

The author wishes to express his sincere gratitude to Professor Y. Morita for his
several pieces of helpful advice and proper instruction on this paper, and also wishes
to express his sincere gratitude to Professor K. Shiratani and Dr. K. Kozuka for their
encouragement.

1. Notations.

According to [2], [6], [9] and [10], we prepare some notations with respect to
the formal groups. Let $k/Q_{p}$ be a finite unramified extension and $\Theta_{k}$ be the ring of
p-adic integers in $k$ . Let $\pi$ be a prime element in $\Theta_{k}$ , and $f(x)\in\Theta_{k}[[X]]$ be the Frobenius
power series determined by $\pi$ , namely $f(X)$ is a power series which satisfies

$f(X)\equiv\pi X$ (mod degree 2) and $f(X)\equiv X^{p}(mod \pi)$ . (1.1)
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There exists a unique formal group $F(X, Y)\in\Theta_{k}[[X, Y]]$ such that $f$ is an endomorphisrr
of $F$. So $F(X, Y)$ is called the relative Lubin-Tate formal group associated with $f$ (see
[6]). We denote by $\lambda_{F}(X)$ and $e_{F}(X)$ respectively the logarithmic series and the exponentia
series of $F(X, Y)$ (cf. [2] Chap. 4 \S 1). Namely $\lambda_{F}(X)$ satisfies $\lambda_{F}(F(X, Y))=\lambda_{F}(X)+\lambda_{F}(Y$

and $\lambda_{F}^{\prime}(0)=1$ , and $e_{F}(X)$ is the inverse series $of\lambda_{F}(X)$ . In the case that $F(X, Y)=G_{m}(X, Y)$ ,

$\lambda_{G_{m}}(X)=\log(1+X)$ and $e_{G_{m}}(X)=e^{X}-1$ . $(1.2^{\backslash }$

We use the same notation as that in [9] and [10]. Let $K$ be the maximal unramifiec
extension of $k,\overline{K}$ be the completion of $K$, and $\varphi$ be the Frobenius automorphism of $\overline{f}$

over $k$ . There is an isomorphism $\phi_{F}$ : $G_{m}\simeq F$ over $\Theta\frac{x}{K}$ such that $\kappa^{\varphi-1}=p/\pi wher\{$

$\kappa=\phi_{F}^{\prime}(0)^{-1}\in\Theta_{\overline{K}}$. Note that $p$ is a prime element in $k$, since $k/Q_{p}$ is a finite unramifiec
extension. Then we have the following (see [10] Introduction):

$\phi_{F}(e^{z}-1)=e_{F}(\kappa^{-1}z)$ . $(1.3_{2}^{\backslash }$

2. The Shiratani-Imada p-adic zeta-function $\zeta_{p}(s, F, h)$ .
Now we reconstruct the Shiratani-Imada function $\zeta_{p}(s, F, h)$ by using the theory $ 0\rfloor$

p-adic F-transform.
Shiratani and Imada defined the numbers $\{B_{n}(F, h)\}$ by

$G(z, F, h)=\frac{zh^{\prime}(e_{F}(z))}{\lambda_{F}^{\prime}(e_{F}(z))h(e_{F}(z))}=\sum_{n=0}^{\infty}B_{n}(F, h)\frac{z^{n}}{n!}$

for $h(X)\in\Theta((X))^{x}$ . By (1.2), we have $B_{n}(G_{m}, X)=B_{n}$ , where $\{B_{n}\}$ is the ordinary Bemoull]

numbers. We let

$g(T, F, h)=\frac{h^{\prime}(\phi_{F}(T))}{\lambda_{F}^{\prime}(\phi_{F}(T))h(\phi_{F}(T))}$ .

Since $\lambda_{F}^{\prime}(X)\in\Theta[[X]]$ (see [9] \S 2) and $h(X)e\Theta((X))^{x}$ , we have

$g(T, F, h)\in\frac{1}{T}\Theta[[T]]$ .

By (1.3), we have

$\kappa^{-1}zg(e^{z}-1, F, h)=G(\kappa^{-1}z, F, h)$ (2.1)

Select $c\in Z_{p}^{x}$ with $c\neq 1$ , and let

$g_{c}(TF, h)=cg((1+T)^{c}-1, F, h)-g(T, F, h)$ . (2.2)

We can prove that $g_{c}(T, F, h)\in\Theta[[T]]$ . By (2.1) and (2.2), we have the following.

LEMMA 2.1. For ce $Z_{p}^{x}$ with $c\neq 1$ ,
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$\kappa^{-1}zg_{c}(e^{z}-1, F, h)=G(c\kappa^{-1}z, F, h)-G(\kappa^{-1}z, F, h)$ .

Now we recall Coleman’s norm operator $N_{F}$ associated with $F$. Namely, for any
$h(X)\in\Theta((X))$ , we can uniquely determine $N_{F}h(X)\in\Theta((X))$ which satisfies

$N_{F}h([\pi]_{F}(X))=\prod_{a\in A_{O}}h(F(X, a))$ ,

where $A_{0}=\{\phi_{F}(\xi-1);\xi^{p}=1\}$ and $[\pi]_{F}(X)=f(X)$ (see [1] Theorem 11).

LEMMA 2.2 (Shiratani-Imada).

$\pi g((1+T)^{\pi}-1, F, N_{F}h)=\sum_{\xi^{p}=1}g(\xi(1+T)-1, F, h)$ .

PROOF. See [9] Lemma 7.

LEMMA 2.3.
$\kappa^{-1}zUg_{c}(e^{z}-1, F, h)=G(c\kappa^{-1}z, F, h)-G(\kappa^{-1}z, F, h)$

$-\frac{1}{p}\{G(c\kappa^{-1}\pi z, F, N_{F}h)-G(\kappa^{-1}\pi z, F, N_{F}h)\}$ .

PROOF. By (2.2) and Lemma 2.2, we have

$Ug_{c}(T, F, h)=g_{c}(T, F, h)-\frac{\pi}{p}g_{c}((1+T)^{\pi}-1, F, N_{F}h)$ .

By Lemma 2.1, we have the assertion.

Let $\mu_{c,F,h}$ be a $\Theta$-valued measure which corresponds to $g_{c}(T, F, h)$ . By [12], we have
the following.

LEMMA 2.4. $Ug_{c}(T, F, h)=\int_{z_{p}^{x}}(1+T)^{x}d\mu_{c,F,h}(x)$ .

PROOF. See [12] Proposition 12.8.

PROPOSITION 2.5. For $n\in Z$ with $n\geq 1$ ,

$\int_{z_{p}^{x}}x^{n-1}d\mu_{c,F,h}(x)=\frac{(c^{n}-1)\kappa^{1-n}}{n}\{B_{n}(F, h)-\frac{\pi^{n}}{p}B_{n}(F, N_{F}h)\}$ .

$PR\infty F$ . By Lemma 2.3 and Lemma 2.4, we have

$\kappa^{-1}z\int_{z_{p}^{x}}e^{xz}d\mu_{c,F,h}(x)=\kappa^{-1}zUg_{c}(e^{z}-1, F, h)$

$=\sum_{m=0}^{\infty}(c^{m}-1)\kappa^{-m}\{B_{m}(F, h)-\frac{\pi^{m}}{p}B_{m}(F, N_{F}h)\}\frac{z^{m}}{m!}$ .
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Hence we have the assertion.

REMARK. By (2.2), we have

$g_{c}(T, G_{m}, X)=\frac{c(1+T)^{c}}{(1+T)^{c}-1}-\frac{1+T}{(1+T)-1}=\sum_{\xi^{c}=1}\frac{1+T}{(1+T)-\xi}$ . (2.3)

Hence we can see that $\mu_{c,G_{m},X}$ is essentially equal to the measure defined by Koblitz in
[3]. So $\mu_{c,F,h}$ can be regarded as a generalization of the Koblitz measure.

For $x\in Z_{p}^{x}$ , we use the notation $ x=\omega(x)\langle x\rangle$ corresponding to the usual
decomposition $Z_{p}^{x}=V\times(1+pZ_{p})$ , where $V$ is the group of roots of unity in $Z_{p}^{x}$ . Since
$\kappa e\Theta\frac{x}{K}$ , we can select $\kappa_{0}\in\Theta_{K}^{x}$ such that $\kappa\equiv\kappa_{0}(modp)$ . Moreover we can select $\kappa_{0}$ on
condition that $[Q_{p}(\kappa_{0}):Q_{p}]$ is the lowest. Let $E=Q_{p}(\kappa_{O})$ and $\Theta_{E}$ be the ring of p-adic
integers in $E$. For $x\in\Theta_{E}^{x}$ , we also use the same notation $ x=\omega(x)\langle x\rangle$ corresponding to

the usual decomposition $\Theta_{E}^{x}=V_{E}\times(1+p\Theta_{E})$ . Since $\kappa\equiv\kappa_{0}(modp)$, we define $\omega(\kappa)=\omega(\kappa_{0})$

and $\langle\kappa\rangle=\kappa/\omega(\kappa)$ . We denote by $r(\kappa)$ the number of elements of $V_{E}$ . Note that if
$n\equiv 0(mod r(\kappa))$ , then $\kappa^{n}=\langle\kappa\rangle^{n}$ . We define the following function.

$\zeta_{p}(s, F, h)=\frac{\langle\kappa\rangle^{1-s}}{\kappa(1-\langle c\rangle^{1-s})}\int_{z_{p}^{x}}\langle x\rangle^{-s}\omega^{-1}(x)d\mu_{c,F,h}(x)$ . (2.4)

By Proposition 2.5, we can immediately prove the following.

PROPOSITION 2.6. For $n\in Z$ with $n\geq 1$ and $n\equiv 0(mod r(\kappa))$ ,

$\zeta_{p}(1-n, F, h)=-\frac{1}{n}\{B_{n}(F, h)-\frac{\pi^{n}}{p}B_{n}(F, N_{F}h)\}$ .

REMARK 1. We can see that $\zeta_{p}(s, F, h)$ coincides with the Shiratani-Imada p-adic
$\zeta$-function defined in [9]. In fact, the result in Proposition 2.6 is the same as the one
in Theorem 9 in [9].

REMARK 2. As a generalization of the p-adic L-function $L_{p}(s, \omega^{j})$ for $j\in Z$ , we
define

$L_{p}(s, \omega^{j}, F, h)=\frac{\langle\kappa\rangle^{1-s}}{\kappa(1-\langle c\rangle^{1-s}\omega^{j}(c))}\int_{z_{p}^{x}}\langle x\rangle^{-s}\omega^{j-1}(x)d\mu_{c,F,h}(x)$ , (2.5

which is almost the same as the one defined by Kozuka in [4]. By the Koblitz resull
(see [3] (1.12)), we can see that $L_{p}(s, \omega^{j}, G_{m}, X)=L_{p}(s, \omega^{j})$ .

3. p-adic $\log-\Gamma$-functions $T_{p,c}(z, F, h)$.
Now we define the function $T_{p,c}(z, F, h)$ by
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$T_{p,c}(z, F, h)=-\int_{z_{p}^{x}}\log(x+z)d\mu_{c,F,h}(x)$

for $z\in C_{p}-Z_{p}^{x}$ . Later on, we will be able to see that $T_{p,c}(z, F, h)$ is a generalization of
the Morita p-adic log-F-function twisted by $c$ (see Proposition 3.3). Let $P^{1}(C_{p})$ be the
one dimensional projective space over $C_{p}$ . In [8], Morita investigated the properties of
analytic functions on an open subset of $P^{1}(C_{p})$ . According to Morita’s result, we prove
the following proposition.

PROPOSITION 3.1. $(d/dz)T_{p,c}(z, F, h)$ is an analytic function on $P^{1}(C_{p})-Z_{p}^{x}$ .

PROOF. For $m\in Z$ with $m\geq 1$ , let

$C_{m}=\{z\in C_{p} ; |z+a|>p^{-m}, a=1,2, \cdots,p^{m+1}-1, (a, p)=1\}$ .

For any $m\geq 1$ ,

$\frac{d}{dz}T_{p,c}(z, F, h)=-\int_{z_{p}^{x}}\frac{1}{x+z}d\mu_{c,F,h}(x)$

$=-\sum_{j=1}^{p^{m+1}}*\int_{j+p^{m+1}}z_{p}\frac{1}{x+z}d\mu_{c,F,h}(x)$ .

If $x=j+p^{m+1}y$ with $y\in Z_{p}$, then

$\frac{1}{x+z}=\frac{1}{j+z}\sum_{n=0}^{\infty}(-1)^{n}\frac{p^{n\langle m+1)}}{(j+z)^{n}}y^{n}$

So we have

$\int_{j+p^{m+1}Z_{p}}\frac{1}{x+z}d\mu_{c,F,h}(x)=\frac{1}{j+z}\sum_{n=0}^{\infty}(-1)^{n}(\frac{p^{m}}{j+z})^{n}p^{n}\int_{z_{p}}y^{n}d\mu_{c,F,h}^{\prime}(y)$ , (3.1)

where $\mu_{c,F,h}^{\prime}(y)=\mu_{c,F,h}(j+p^{m+1}y)$ . Since $|p^{m}/(j+z)|<1$ for $z\in C_{m}$ , and

$|\int_{z_{p}}y^{n}d\mu_{c,F,h}^{\prime}(y)|\leq 1$ ,

we can see that the right-hand side of (3.1) is uniformly convergent on $C_{m}$ for $m\geq 1$ .
Note that $P^{1}(C_{p})-Z_{p}^{x}=\bigcup_{m\geq 1}C_{m}$ . By Morita’s result (see [8] \S 2, \S 3), we can verify
that $(d/dz)T_{p,c}(z, F, h)$ is an analytic function on $P^{1}(C_{p})-Z_{p}^{x}$ .

PROPOSITION 3.2 (p-adic Stirling expansions). For $z\in C_{p}$ with $|z|>1$ ,

$\frac{d}{dz}T_{p,c}(z, F, h)=\sum_{n=0}^{\infty}\frac{(c^{n+1}-1)\kappa^{-n}}{n+1}\{B_{n+1}(F, h)-\frac{\pi^{n+1}}{p}B_{n+1}(F, N_{F}h)\}\frac{(-1)^{n+1}}{z^{n+1}}$ .

PROOF. If $|z|>1$ , then we have
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$\frac{d}{dz}T_{p,c}(z, F, h)=-\int_{z_{p}^{x}}\frac{1}{x+z}d\mu_{c,F,h}(x)=-\frac{1}{Z}\sum_{n=0}^{\infty}\frac{(-1)^{n}}{z^{n}}\int_{z_{p}^{x}}x^{n}d\mu_{c,F,h}(x)$ .

By Proposition 2.5, we have the assertion.

Now we recall the Morita p-adic log-T-function $\log\Gamma_{p}(z+1)$ (cf. [7], [8]). By [7]

Theorem 5, the following relation holds:

$(\frac{d}{dz})^{2}\log\Gamma_{p}(z+1)=\sum_{m=1}^{\infty}mL_{p}(1-m, \omega^{m})\frac{(-1)^{m+1}}{z^{m+1}}$ (3.2)

for $z\in C_{p}$ with $|z|>1$ . By Remark 2 of Proposition 2.6, we have the following:

PROPOSITION 3.3.

$(\frac{d}{dz})^{2}T_{p,c}(z, G_{m}, X)=(\frac{d}{dz})^{2}\{\log\Gamma_{p}(z+1)-c$ log $\Gamma_{p}(\frac{Z}{c}+1)\}$ .

$PR\infty F$ . By (2.5), we have

$(\frac{d}{dz})^{2}T_{p.c}(z, F, h)=-\sum_{m=1}^{\infty}m\int_{z_{p}^{x}}x^{m-1}d\mu_{c,F,h}(x)\frac{(-1)^{m}}{z^{m+1}}$

$=\sum_{m=1}^{\infty}m\int_{z_{p}^{x}}\langle x\rangle^{m-1}\omega^{m-1}(x)d\mu_{c,F,h}(x)\frac{(-1)^{m+1}}{z^{m+1}}$ ,

$=\sum_{m=1}^{\infty}\kappa\langle\kappa\rangle^{-m}(1-c^{m})mL_{p}(1-m, \omega^{m}, F, h)\frac{(-1)^{m+1}}{z^{m+1}}$ ,

for $zeC_{p}$ with $|z|>1$ . If $F=G_{m}$ and $h(X)=X$, then we have $\kappa=1$ . By (3.2), we have
the assertion.

By the relation in Proposition 3.3, we can regard $T_{p,c}(z, F, h)$ as a generalization
of log $\Gamma_{p}(z+1)-c\log\Gamma_{p}(z/c+1)$ . Finally, we describe the values of $\zeta_{p}(s, F, h)$ at positive
integers, by using $T_{p,c}(z, F, h)$ .

PROPOSITION 3.4. For $meZ$ with $m\geq 2$ and $m\equiv 1(mod r(\kappa))$ ,

$\zeta_{p}(m, F, h)=\frac{(-1)^{m}\kappa^{-m}}{(m-1)!(1-c^{1-m})}(\frac{d}{dz})^{m}T_{p,c}(z, F, h)|_{z=0}$

$PR\infty F$ . By induction, we can prove that

$(\frac{d}{dz})^{m}T_{p,c}(z, F, h)=(-1)^{m}(m-1)!\int_{z_{p}^{x}}\frac{1}{(x+z)^{m}}d\mu_{c,F,h}(x)$ ,

for $m\geq 2$ . By (2.4), we have the assertion.



p-ADIC LOG-F-FUNCTIONS 153

References

[1] R. COLEMAN, Division values in local fields, Invent. Math. 53 (1979), 91-116.
[2] A. FR\"oHLICH, Formal Groups, Lecture Notes in Math. 74 (1968), Springer.
[3] N. KOBLITZ, Anew proofofcertain formulas forp-adic L-functions, Duke Math. J. 46 (1979), 455A68.
[4] K. KOZUKA, On p-adic L-functions attached to the Lubin-Tate formal groups, preprint.
[5] S. LICHTENBAUM, Onp-adic L-functions associated to elliptic curves, Invent. Math. 56 (1980), 19-55.
[6] J. LUBIN and J. TATE, Formal complex multiplication in local fields, Ann. ofMath. 81 (1965), 380-387.
[7] Y. MORITA, A p-adic integral representation of the p-adic L-function, J. Reine Angew. Math. 302

(1978), 71-95.
[8] Y. MORITA, Analytic functions on an open subset of $P^{1}(C_{p})^{*}$ , J. Reine Angew. Math. 311/312 (1979),

361-383.
[9] K. SHIRATANI and T. IMADA, The exponential series of the Lubin-Tate groups and p-adic interpolation,

Mem. Fac. Sci. Kyushu Univ. 46 (1992), 351-365.
[10] K. SHIRATANI, Onp-adic zeta functions ofthe Lubin-Tate groups, Kyushu J. Math. 48 (1994), $55 2$ .
[11] H. TSUMURA, On a p-adic interpolation of the generalized Euler numbers and its applications, Tokyo

J. Math. 10 (1987), 281-294.
[12] L. C. WASHINGTON, Introduction to Cyclotomic Fields, Springer (1982).

Present Address:
AOYAMA GAKUIN HIGH SCHOOL,
SHIBUYA, SHIBUYA-KU, TOKYO, 150 JAPAN.


