Linkage Property of Witt Ring and Torsion Quadratic Forms with Trivial Witt Invariant

Hidemoto KASHIMA

University of Osaka Prefecture
(Communicated by T. Nagano)

1. Introduction.

Let F be a field of characteristic different from 2. Let $W(F)$ be the Witt ring of quadratic forms over F. We denote by $W_{t}(F)$ and $I F$ the maximal torsion subgroup of $W(F)$ and a fundamental ideal of $W(F)$ generated by all even dimensional quadratic forms respectively. For a positive integer $n \geqq 2$, we denote n-th power of $I F$ by $I^{n} F$. For elements $a_{1}, a_{2}, \cdots, a_{n}$ of the multiplicative group \dot{F} of $F,\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle$ denotes a diagonal quadratic form $a_{1} X_{1}^{2}+\cdots+a_{n} X_{n}^{2}$. A quadratic form of the form $\left\langle 1, a_{1}\right\rangle \otimes \cdots \otimes\left\langle 1, a_{n}\right\rangle$ is called an n-fold Pfister form.

Let φ_{1} and φ_{2} be two n-fold Pfister forms. If there exist an ($n-1$)-fold Pfister form σ and two 1 -fold Pfister forms τ_{1} and τ_{2} such that $\varphi_{i} \cong \sigma \otimes \tau_{i}(i=1,2)$, we say φ_{1} and φ_{2} are linked (cf. Definition 2.2 of [4]). Further we say $I^{n} F$ (resp. $I^{n} F \cap W_{t}(F)$) is linked if any pair of n-fold Pfister forms (resp. torsion n-fold Pfister forms) is linked. If F is non-formally real, then we know $W(F)=W_{t}(F)$ (cf. [4]). Thus, in this case, the notion $I^{n} F$ is linked coincides with the notion $I^{n} F \cap W_{t}(F)$ is linked. Let us denote by $u(F)$ the u-invariant of F, which is defined to be the maximal dimension of anisotropic torsion quadratic forms over F. Elman and Lam showed following results (cf. Theorems $3.4,4.3$, of [4]).
(1.1) Let $I^{2} F$ be linked. Then possible value of $u(F)$ is $0,1,2,4$ or 8 . Further $u(F) \leqq 4$ if and only if $I^{3} F \cap W_{t}(F)=\{0\}$,
(1.2) Let F be formally real. Assume $I^{n} F \cap W_{t}(F)$ is linked for every positive integer n. Then possible value of $u(F)$ is $0,2,4,8,16$ or 18 .

If the condition of (1.1) is replaced by that $I^{3} F$ is linked, then the linkage property of $I^{3} F$ seems to limit $c u(F)$, which is the maximal dimension of anisotropic torsion forms with trivial Witt invariant, rather than $u(F)$. We show in this paper:

Theorem 1.1. Let $I^{3} F$ be linked. Then we have
(1) $c u(F)=0,1,2,8$ or 16 ,
(2) $c u(F)=0,1,2$ or $8 \Leftrightarrow I^{4} F \cap W_{t}(F)=\{0\}$.

Further we determine possible value of $c u(F)$ under a condition weaker than that of (1.2). We know the condition of (1.2) is equivalent to the assertion (T) (cf. Proposition 4.1 of [4]):
(T) For any positive integer n, any form of $I^{n} F \cap W_{t}(F)$ is congruent to an n-fold Pfister form modulo $I^{n+1} F$.

Let us consider the following assertion $\left(\mathrm{T}_{l}\right)$ which is weaker than (T), where l is a positive integer $\geqq 3$.
(T_{l}) For any positive integer $n \geqq l$, any form of $I^{n} F \cap W_{t}(F)$ is congruent to an n-fold Pfister form modulo $I^{n+1} F$.

Then we show:
Theorem 1.2. Let F be formally real. Assume $\left(\mathrm{T}_{3}\right)$. Then we have
(1) $c u(F)=0,2,8,16$ or 18 ,
(2) $c u(F)=0,2$ or $8 \Leftrightarrow I^{4} F \cap W_{t}(F)=\{0\}$.

We prove these theorems in $\S 3$ and $\S 4$ respectively. In $\S 2$, we give auxiliary results needed to prove the theorems. We use the following notation. For a quadratic form φ, the dimension (resp. the signed determinant, the Witt invariant) of φ is denoted by $\operatorname{dim} \varphi$ (resp. $d_{ \pm} \varphi, c(\varphi)$). For $a_{1}, \cdots, a_{n} \in \dot{F}=F-\{0\}$, an n-fold Pfister form $\left\langle 1, a_{1}\right\rangle \otimes \cdots \otimes\left\langle 1, a_{n}\right\rangle$ is denoted by $\left\langle a_{1}, \cdots, a_{n}\right\rangle$. We refer to Lam [5] for other basic definitions and notation concerning quadratic forms.

2. Preliminaries.

First of all, we recall some basic results needed below in the following theorems $2.1 \sim 2.4$.

Theorem 2.1 (Corollary 2.8, 2.11 of [4]). Suppose $I^{n} F$ is linked. Then
(1) $I^{n+2} F \cap W_{t}(F)=\{0\}$,
(2) if φ is an anisotropic form of $I^{n} F \cap W_{t}(F)$, then $\operatorname{dim} \varphi=0,2^{n}$ or 2^{n+1} and $\varphi=\langle x\rangle \otimes \mu_{1}-\mu_{2}$ in $W(F)$, where $x \in \dot{F}, \mu_{1}$ and μ_{2} are n-fold Pfister forms.

Theorem 2.2 ([6]). Let φ be a quadratic form of $W(F)$. Then we have $\varphi \in I^{3} F \Leftrightarrow$ $\operatorname{dim} \varphi$ is even, $d_{ \pm} \varphi=1, c(\varphi)=1$.

Theorem 2.3 ([1]). Let n be a positive integer. Then the dimension of any anisotropic form in $I^{n} F$ is at least 2^{n}.

Theorem 2.4 (Theorem 4.8 of [2]). Let $\varphi_{1}, \varphi_{2}, \varphi_{3}$ be n-fold Pfister forms such that $\varphi_{1}+\varphi_{2}+\varphi_{3} \in I^{n+1} F$. Then any pair of φ_{1}, φ_{2} and φ_{3} is linked.

Let us denote by $c u(F)$ the maximal dimension of anisotropic torsion forms of which Witt invariant is 1 . Let $I_{3}(F)$ be the maximal dimension of anisotropic forms in $I^{3} F \cap W_{t}(F)$. Since the field F is fixed throughout this paper, henceforth we write simply $u, c u$ and I_{3} instead of $u(F), c u(F)$ and $I_{3}(F)$. By the definition of $c u$ and by Theorem 2.2, we have
(2.1) $\quad I_{3} \leqq c u \leqq u$.

If the field F is formally real, then a torsion form is of even dimension (cf. Satz 22 of [7]). Therefore we have
(2.2) if F is formally real, then $c u$ is even.

Lemma 2.5. For a quadratic form φ over F with $c(\varphi)=1$, define a form $\varphi^{\text {ass }}$ by
(2.3) $\quad \varphi^{\text {ass }}= \begin{cases}\left\langle-1, d_{ \pm} \varphi\right\rangle \perp \varphi, & \text { if } \operatorname{dim} \varphi \text { is even, } \\ \left\langle-d_{ \pm} \varphi\right\rangle \perp \varphi, & \text { if } \operatorname{dim} \varphi \text { is odd. }\end{cases}$

Then we have $\varphi^{\text {ass }} \in I^{3} F$. Further if φ is a torsion form, then $\varphi^{a s s} \in I^{3} F \cap W_{t}(F)$.
Proof. By the properties of signed determinant and Witt invariant (cf. p. 38, p. 120 of [5]), we easily obtain $d_{ \pm} \varphi^{a s s}=1, c\left(\varphi^{a s s}\right)=1$. Thus by Theorem 2.2, we have $\varphi^{a s s} \in I^{3} F$. If F is non-formally real, then we see $W(F)=W_{t}(F)$. Thus $\varphi^{a s s} \in I^{3} F \cap W_{t}(F)$. Let F be formally real. Assume φ is a torsion form. Then φ is hyperbolic over any real closure of F. Therefore we have $d_{ \pm} \varphi$ is totally positive. This shows a form $\left\langle-1, d_{ \pm} \varphi\right\rangle$ is torsion (cf. [7]). Hence we have $\varphi^{a s s} \in I^{3} F \cap W_{t}(F)$.

Proposition 2.6. If $c u$ is even, then $c u=I_{3}$ or $I_{3}+2$. If $c u$ is odd, then $c u=I_{3}+1$.
Proof. Let φ be a $c u$-dimensional anisotropic torsion form with $c(\varphi)=1$. Let $\varphi^{\text {ass }}$ be the form defined by (2.3). Then $\varphi^{\text {ass }} \in I^{3} F \cap W_{t}(F)$ by Lemma 2.5. Since $\operatorname{dim} \varphi^{a s s}>c u$ and $c\left(\varphi^{a s s}\right)=1$, we know $\varphi^{\text {ass }}$ is isotropic. Let m be the Witt index of $\varphi^{\text {ass }}$. Then $m \geqq 1$ and we have an isometry:

$$
\varphi^{a s s} \cong m\langle 1,-1\rangle \perp \varphi_{0},
$$

where φ_{0} is an anisotropic form of $I^{3} F \cap W_{t}(F)$. Let $c u$ be even. If $m>2$, then we have

$$
\begin{aligned}
\varphi^{a s s} & =\left\langle-1, d_{ \pm} \varphi\right\rangle \perp \varphi \\
& \cong\langle-1,1\rangle \perp\left\langle-d_{ \pm} \varphi, d_{ \pm} \varphi\right\rangle \perp(m-2)\langle-1,1\rangle \perp \varphi_{0} .
\end{aligned}
$$

By Witt's cancellation theorem, we have

$$
\varphi \cong\left\langle 1,-d_{ \pm} \varphi\right\rangle \perp(m-2)\langle-1,1\rangle \perp \varphi_{0} .
$$

Since φ is anisotropic, we have a contradiction. Hence $m=1$ or 2 . Since the dimension of φ_{0} is $c u-2(m-1)$, we have

$$
c u-2(m-1) \leqq I_{3} \leqq c u .
$$

Thus we see $c u=I_{3}$ or $I_{3}+2$. Let $c u$ be odd. Then a similar argument shows $m=1$.

Thus we have

$$
c u-1 \leqq I_{3} \leqq c u .
$$

Since $c u$ is odd and I_{3} is even, we have $c u=I_{3}+1$.
Proposition 2.7. If $I^{4} F$ is torsion free and $c u>2$, then there exists an anisotropic cu-dimensional form φ in $I^{3} F \cap W_{t}(F)$. In particular we have $c u=I_{3}$.

Proof. Let φ be an anisotropic torsion form of dimension $c u$ with $c(\varphi)=1$ and $\varphi^{\text {ass }}$ the form defined by (2.3). First of all, we prove $c u$ is even. Suppose $c u$ is odd. Since in the proof of Proposition 2.6 we see the Witt index of $\varphi^{a s s}=1$, we have

$$
\varphi^{a s s}=\left\langle-d_{ \pm} \varphi\right\rangle \perp \varphi \cong\left\langle-d_{ \pm} \varphi, d_{ \pm} \varphi\right\rangle \perp \varphi_{0},
$$

where φ_{0} is an anisotropic form in $I^{3} F \cap W_{t}(F)$. By Witt's cancellation theorem, we have $\varphi \cong\left\langle d_{ \pm} \varphi\right\rangle \perp \varphi_{0}$. Since $I^{4} F$ is torsion free, we know φ_{0} is universal. This shows φ is isotropic. Hence $c u$ is even and Witt index m of $\varphi^{a s s}$ is 1 or 2 . Suppose $m=2$. Then we have

$$
\begin{aligned}
\varphi^{a s s} & =\left\langle-1, d_{ \pm} \varphi\right\rangle \perp \varphi \\
& \cong\langle 1,-1\rangle \perp\left\langle d_{ \pm} \varphi,-d_{ \pm} \varphi\right\rangle \perp \varphi_{0},
\end{aligned}
$$

where φ_{0} is anisotropic and $\varphi_{0} \in I^{3} F \cap W_{t}(F)$. By Witt's cancellation theorem, we have

$$
\varphi \cong\left\langle 1,-d_{ \pm} \varphi\right\rangle \perp \varphi_{0}
$$

By assumption, we know φ_{0} is universal. Thus φ is isotropic. This is a contradiction. Hence $m=1$ and the anisotropic part of $\varphi^{a s s}$ is of dimension $c u$ and is in $I^{3} F \cap W_{t}(F)$. This shows our assertion.

Corollary 2.8. Assume $I^{4} F$ is torsion free. Then we have $c u=0,1,2$ or $c u \geqq 8$.
Proof. Suppose $c u>2$. Then by Proposition 2.7 we know there exists an anisotropic form φ of dimension $c u$ in $I^{3} F \cap W_{t}(F)$. By Theorem 2.3, we have $c u \geqq 8$. \square

Proposition 2.9. The number cu equals $0,1,2$ or 8 if and only if $I^{4} F$ is torsion free and every anisotropic form φ of $I^{3} F \cap W_{t}(F)$ is a 3-fold Pfister form.

Proof. Let $c u=0,1$ or 2 . Then our assertion is trivial because of $I^{3} F \cap W_{t}(F)=\{0\}$. Assume now $c u=8$. Then Theorem 2.3 shows $I^{4} F \cap W_{t}(F)=\{0\}$ and the dimension of any anisotropic form of $I^{3} F \cap W_{t}(F)$ is 8 . Let φ be an anisotropic form $\in I^{3} F \cap W_{t}(F)$. Then there exists $a \in \dot{F}$ and a 3 -fold Pfister form σ such that

$$
\varphi \cong\langle a\rangle \otimes \sigma
$$

(cf. Chapter 10 of [5]). Since $\langle 1,-a\rangle \otimes \varphi \in I^{4} F \cap W_{t}(F)=\{0\}$, we have

$$
\varphi \cong\langle a\rangle \otimes \varphi .
$$

Therefore we have

$$
\varphi \cong\langle a\rangle \otimes \varphi \cong\langle a\rangle \otimes\langle a\rangle \otimes \sigma \cong \sigma .
$$

Hence φ is a 3－fold Pfister form．The converse part of our assertion is deduced from Proposition 2．7．

3．The proof of Theorem 1．1．

In this section we give a proof of Theorem 1.1 in $\S 1$.
First of all，we shall prove the assertion（2）of Theorem 1．1．The only if part of （2）is obvious by Theorem 2．3．To prove the if part，by Proposition 2．9，it is sufficient to show the following：

If $I^{3} F$ is linked and $I^{4} F$ is torsion free，then any anisotropic form $\varphi \in I^{3} F \cap W_{t}(F)$ is a 3－fold Pfister form．

Let φ be an anisotropic form of $I^{3} F \cap W_{t}(F)$ ．Since $I^{3} F$ is linked，we may write

$$
\varphi=\left\langle\left\langle a_{1}, a_{2}, a_{3}\right\rangle \perp \psi,\right.
$$

where $a_{1}, a_{2}, a_{3} \in \dot{F}$ and $\psi \in I^{4} F$ by Proposition 2.1 of［4］．Since $2 \varphi \in I^{4} F \cap W_{t}(F)$ and $I^{4} F$ is torsion free，we have

$$
\left.2 《 a_{1}, a_{2}, a_{3}\right\rangle=-2 \psi \in I^{5} F .
$$

Since $\left.\left.2 《 a_{1}, a_{2}, a_{3}\right\rangle \in I^{5} F, 2 《 a_{1}, a_{2}, a_{3}\right\rangle$ is isotropic by Theorem 2．3．Now it is known that an isotropic Pfister form is 0 in $W(F)$（cf．Corollary 2.3 of［2］），we deduce

$$
\left.2 《 a_{1}, a_{2}, a_{3}\right\rangle=0=-2 \psi .
$$

This implies ψ is a torsion form．Therefore $\psi \in I^{4} F \cap W_{t}(F)=\{0\}$ ．Hence we have φ is a 3－fold Pfister form $\left.《 a_{1}, a_{2}, a_{3}\right\rangle$ ．

Next we shall prove the assertion（1）．Let $I^{4} F$ be torsion free．Then we have $c u=0,1,2$ or 8 by（2）．Let $I^{4} F$ be not torsion free．Then we know $c u \geqq 16$ ．Thus we have only to show $c u \leqq 16$ ．To obtain $c u \leqq 16$ ，we prove first the following：
（3．1）if ψ is an anisotropic form of $I F \cap W_{t}(F)$ with $c(\psi)=1$ ，then $\operatorname{dim} \psi \leqq 16$ ．
Let ψ be an anisotropic form of $I F \cap W_{t}(F)$ with $c(\psi)=1$ ．Let $\psi^{\text {ass }}$ be the form defined by（2．3）．By Lemma 2．5，we have $\psi^{a s s} \in I^{3} F \cap W_{t}(F)$ ．By（2）of Theorem 2．1， we may write $\psi^{a s s}=\langle x\rangle \otimes \mu_{1}-\mu_{2}$ ，where $x \in \dot{F}, \mu_{1}$ and μ_{2} are 3 －fold Pfister forms．Since we have

$$
\psi=\left\langle 1,-d_{ \pm} \psi\right\rangle \perp \psi^{a s s}=\left\langle 1,-d_{ \pm} \psi\right\rangle-\mu_{2}+\langle x\rangle \otimes \mu_{1}
$$

in $W(F)$ ，and the form at RHS contains at least one hyperbolic plane，we know $\operatorname{dim} \psi \leqq 16$ ．This shows（3．1）．

Next we prove that $c u$ is even under the assumption．Suppose $c u$ is odd．Let φ be an anisotropic form of dimension $c u$ with $c(\varphi)=1$ ．If necessary，after replacing φ by
$\left\langle d_{ \pm} \varphi\right\rangle \otimes \varphi$, we may assume that $d_{ \pm} \varphi=1$. Let $\varphi^{\text {ass }}$ be the form defined by (2.3). Then $\varphi^{a s s} \in I^{3} F \cap W_{t}(F)$ and the Witt index of $\varphi^{a s s}=1$. Thus we have:

$$
\varphi^{a s s}=\varphi \perp\langle-1\rangle \cong\langle 1,-1\rangle \perp \varphi_{0},
$$

where φ_{0} is an anisotropic form $\in I^{3} F \cap W_{t}(F)$ (cf. the proof of Proposition 2.6). Therefore we know

$$
\varphi \cong\langle 1\rangle \perp \varphi_{0} .
$$

Since $\varphi_{0} \in I^{3} F \cap W_{t}(F)$, we have $\varphi_{0}=\langle x\rangle \otimes \mu_{1}-\mu_{2}$ for $x \in \dot{F}, \mu_{1}$ and μ_{2} are 3-fold Pfister forms. Therefore we see

$$
\varphi \cong\langle 1\rangle-\mu_{2}+\langle x\rangle \otimes \mu_{1}
$$

Since μ_{2} contains a subform $\langle 1\rangle$, we have $\operatorname{dim} \varphi \leqq 15$. This contradicts $c u \geqq 16$. Thus $c u$ is even. Hence by (3.1) we have $c u \leqq 16$.

Remark. In the case $I^{2} F$ is linked, by (1.1), Theorem 2.1, Corollary 2.8, we know $c u=0,1,2$ or 8 . Further in this case, we see $c u=8 \Leftrightarrow u=8 \Leftrightarrow I^{3} F$ is not torsion free. If $u \leqq 4$, then we have $c u=0,1$ or 2 .

4. The proof of Theorem 1.2.

In this section, we give a proof of Theorem 1.2 in $\S 1$.
We begin with the proof of some Lemmas.
Lemma 4.1. Let n be a positive integer $\geqq 2$. Assume that any form of $I^{n} F \cap W_{t}(F)$ is congruent to an n-fold Pfister form modulo $I^{n+1} F$. Then any pair of torsion n-fold Pfister forms is linked.

Proof. Let φ_{1} and φ_{2} be two torsion n-fold Pfister forms. Then by assumption, there exists an n-fold Pfister form φ_{3} such that

$$
\varphi_{1}+\varphi_{2}+\varphi_{3} \in I^{n+1} F
$$

By Theorem 2.4, we have φ_{1} and φ_{2} are linked.
Lemma 4.2. Let l be a positive integer $\geqq 3$. Assume the condition $\left(\mathrm{T}_{l}\right)$ given in $\S 1$. Then $I^{l+2} F \cap W_{t}(F)=\{0\}$.

Proof. Assume $I^{l+2} F \cap W_{t}(F) \neq\{0\}$. Then there exists a form $\varphi \in I^{l+2} F$ of order 2 (cf. Satz 10 of [7]). Let $m \geqq l+2$ be the largest integer such that $\varphi \in I^{m} F$. By assumption, we know $\varphi=\varphi_{1}+\varphi_{2}$, where φ_{1} is an m-fold Pfister form and $\varphi_{2} \in I^{m+1} F$. Since $2 \varphi=0$, we have $2 \varphi_{1}=-2 \varphi_{2} \in I^{m+2} F$. Since $\operatorname{dim}\left(2 \varphi_{1}\right)=2^{m+1}$, Theorem 2.3 implies $2 \varphi_{1}$ is isotropic. Thus we have $2 \varphi_{1}=0$. By Corollary 2.3 of [3], we have an isometry:

$$
\left.\varphi_{1} \cong 《-\omega, a_{2}, \cdots, a_{m}\right\rangle
$$

where $a_{2}, \cdots, a_{m} \in \dot{F}$ and ω is a sum of two squares．Consider two torsion（ $m-2$ ）－fold Pfister forms：

$$
\begin{array}{r}
\left.\psi_{1} \cong 《-\omega, a_{2}, \cdots, a_{l-2}, a_{l-1}, a_{l}, a_{l+3}, \cdots, a_{m}\right\rangle \\
\left.\psi_{2} \cong 《-\omega, a_{2}, \cdots, a_{l-2}, a_{l+1}, a_{l+2}, a_{l+3}, \cdots, a_{m}\right\rangle .
\end{array}
$$

Since any pair of torsion l－fold Pfister forms is linked by Lemma 4．1，we have：

$$
\begin{aligned}
\psi_{1} & \left.\cong 《-\omega, a_{2}, \cdots, a_{l-2}, b_{l-1}, c_{l}, a_{l+3}, \cdots, a_{m}\right\rangle \\
\psi_{2} & \cong 《-\omega, a_{2}, \cdots, a_{l-2}, b_{l-1}, d_{l}, a_{l+3}, \cdots, a_{m} 》
\end{aligned}
$$

（cf．proof of Proposition 4.2 of［4］）．Therefore we have following isometries：

$$
\begin{aligned}
\varphi_{1} & \left.\cong 《 a_{l-1}, a_{l}\right\rangle \otimes \psi_{2} \\
& \cong\left\langle b_{l-1}, d_{l}\right\rangle \otimes \psi_{1} \\
& \left.\cong 《<-\omega, a_{2}, \cdots, a_{l-2}, b_{l-1}, b_{l-1}, c_{l}, d_{l}, a_{l+3}, \cdots, a_{m}\right\rangle \\
& \left.\cong 2 《-\omega, a_{2}, \cdots, a_{l-2}, b_{l-1}, c_{l}, d_{l}, a_{l+3}, \cdots, a_{m}\right\rangle .
\end{aligned}
$$

Since ω is a sum of two squares，the above isometries imply $\varphi_{1}=0$ ．Hence $\varphi=\varphi_{2} \in I^{m+1} F$ ． This contradicts the choice of m ．

Lemma 4．3．Assume the condition $\left(\mathrm{T}_{3}\right)$ ．Let φ be any form of $I^{3} F \cap W_{t}(F)$ ．Then there exists a 3－fold torsion Pfister form ψ_{1} and a 4－fold torsion Pfister form ψ_{2} such that $\varphi=\psi_{1}+\psi_{2}$ in $W_{t}(F)$ ．

Proof．Let φ be any form of $I^{3} F \cap W_{t}(F)$ ．Then we write $\varphi=\psi_{1}+\phi_{2}$ where ψ_{1} is a 3 －fold Pfister form and $\phi_{2} \in I^{4} F$ ．By Lemma 4.2 we have $I^{5} F$ is torsion free．Since $4 \varphi \in I^{5} F \cap W_{t}(F)$ ，we have $4 \varphi=0$ ．Therefore $4 \psi_{1}=-4 \phi_{2} \in I^{6} F$ ．We can verify $4 \psi_{1}=0$ by Theorem 2.3 as in the first step of the proof of Theorem 1．1．Therefore ϕ_{2} is also a torsion form．By the assumption，we can write $\phi_{2}=\psi_{2}+\phi_{3}$ where ψ_{2} is a 4－fold Pfister form and $\phi_{3} \in I^{5} F$ ．By the same argument as above，ψ_{2} and ϕ_{3} are torsion forms． Thus $\phi_{3} \in I^{5} F \cap W_{t}(F)=\{0\}$ ．This implies $\phi_{2}=\psi_{2}$ ．Therefore we obtain $\varphi=\psi_{1}+\psi_{2}$ ． Hence we have our assertion．

Now we prove Theorem 1．2．Assume $I^{4} F \cap W_{t}(F)=\{0\}$ ．Then by Lemma 4．3，we know any form of $I^{3} F \cap W_{t}(F)$ is a 3 －fold Pfister form．Thus from Proposition 2.9 we deduce $c u=0,2$ or 8 ．Assume $I^{4} F \cap W_{t}(F) \neq\{0\}$ ．Then by Theorem 2．3，we have $I_{3} \geqq 16$ ． If we prove $I_{3} \leqq 16$ ，then Proposition 2.6 gives $c u=16$ or 18．Let φ be an anisotropic form of $I^{3} F \cap W_{t}(F)$ ．Then by Lemma 4．3，we can write $\varphi=\psi_{1}+\psi_{2}$ ，where ψ_{1} is a torsion 3－fold Pfister form and ψ_{2} is a torsion 4－fold Pfister form．Since $I^{5} F \cap W_{t}(F)=\{0\}$ by Lemma 4．2，we have $2 \psi_{2}=0$ ．Thus we have an isometry from Corollary 2.3 of［3］：

$$
\left.\psi_{2} \cong 《-\omega, a_{2}, a_{3}, a_{4}\right\rangle,
$$

where $a_{2}, a_{3}, a_{4} \in \dot{F}$ and ω is a sum of two squares．Since $I^{3} F \cap W_{t}(F)$ is linked by Lemma 4．1，ψ_{1} and $《-\omega, a_{2}, a_{3} 》$ are linked．Therefore there exists a 2 －fold Pfister form $\sigma, 1$－fold Pfister forms τ_{1} and τ_{2} such that

$$
\psi_{1} \cong \sigma \otimes \tau_{1}, \quad 《-\omega, a_{2}, a_{3} 》 \cong \sigma \otimes \tau_{2}
$$

Thus we have，in $W(F)$ ，

$$
\left.\left.\varphi=\psi_{1}+\psi_{2}=\psi_{1}-\psi_{2}=\sigma \otimes \tau_{1}-\sigma \otimes \tau_{2} \otimes 《 a_{4}\right\rangle=\sigma \otimes\left(\tau_{1}-\tau_{2} \otimes 《 a_{4}\right\rangle\right) .
$$

Since τ_{1} and $\tau_{2} \otimes 《 a_{4} 》$ both contain a subform $\langle 1\rangle$ ，the dimension of the anisotropic part of $\left.\sigma \otimes\left(\tau_{1}-\tau_{2} \otimes 《 a_{4}\right\rangle\right) \leqq 16$ ．Therefore we have $\operatorname{dim} \varphi \leqq 16$ ．Hence we have $I_{3} \leqq 16$ ． This completes the proof of Theorem 1．2．

References

［1］J．Kr．Arason and A．Pfister，Beweis des Krullschen Durchschnittsatzes für den Wittring，Invent． Math． 12 （1971），173－176．
［2］R．Elman and T．Y．Lam，Pfister forms and K－theory of fields，J．Algebra 23 （1972），181－213．
［3］R．Elman and T．Y．Lam，Quadratic forms and the u－invariant I，Math．Z． 131 （1973），283－304．
［4］R．Elman and T．Y．Lam，Quadratic forms and the u－invariant II，Invent．Math． 21 （1973），125－137．
［5］T．Y．LAM，The algebraic theory of quadratic forms，Benjamin（1973）．
［6］A．Merkurjev，On the norm residue symbol of degree 2，Dokl．Akad．Nauk SSSR 261 （1981），542－547．
［7］A．Pfister，Quadratische Formen in beliebigen Körpern，Invent．Math． 1 （1966），116－132．

Present Address：
Graduate School of Science，College of Integrated Arts and Science， University of Osaka Prefecture，
Gakuen－cho，Sakai－shi，Osaka， 593 Japan．

