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Abstract. Weshow that if a differentiable map of a smooth manifold has a non-atomic ergodic hyperbolic
measure then the topological entropy is positive and the space contains a hyperbolic horseshoe. Moreover
we give some relations between hyperbolic measures and periodic points for differentiable maps. These are
generalized contents of the results obtained by Katok for diffeomorphisms.

We know that for diffeomorphisms transversal homoclinic points imply the exis-
tence of (non-trivial) hyperbolic horseshoes [Sm]. Using the Pesin theory ([Pel],
[Pe2]), Katok [K] has proved that if a difftfomorphism has a non-atomic ergodic
hyperbolic measure, then there exists a hyperbolic periodic point having a transversal
homoclinic point, and then by the homoclinic point theorem there is a hyperbolic
horseshoe and infinitely many hyperbolic periodic points of saddle type.

We consider a differentiable map f: M —M of a smooth closed manifold M. In
case f is non-invertible, the manifold M may have a point x such that the derivative
at x, D, f, is not injective. Such a point x is called a singular point of f. If f has a
singular point, then the behavior of f is quite different from that of diffeomorphisms.
In this case it is not true that the forward and backward images of a submanifold I of
M by iterations of f are manifolds with the same dimension as I. However, by taking
advantage of results obtained by Katok [K] for difftomorphisms, we have the fol-
lowing:

THEOREM A. Letf:M—M bea C'** map (x> 0). Suppose that f has a non-atomic
ergodic hyperbolic measure. Then there exists a hyperbolic horseshoe of f, and the
topological entropy of f, h(f), is positive.

From Theorem A we can take infinitely many hyperbolic periodic points under
the assumption that f has a non-atomic ergodic hyperbolic measure. Then we must
notice that these periodic points may not be of saddle type if f is non-invertible. This
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phenomenon does not occur for any diffeomorphism.

For the proof of Theorem A we need a result called the shadowing lemma for
non-invertible maps (Key Lemma 2). Thus the shadowing lemma is an important
ingredient of this paper.

Using the shadowing lemma we shall also give here some relations between
hyperbolic measures and periodic points for differentiable maps, which are extended
contents of results in [K], as follows:

THEOREM B. Let p be a hyperbolic measure of a C*'** map f:M—M. Then the
support of u, supp(u), is a subset of the closure of the set Per(f) of periodic points, i.e.

supp(p) <= Per(f) .

THEOREM C. Let u be as in Theorem B. If the metric entropy of p, h,(f), is positive,
then for any £>0 there exists a hyperbolic horseshoe I', of f such that

hf )= hf)—¢ -

THEOREM D. Let u be as in Theorem B. Then we have

n— oo

h,(f)<max {O, lim sup % log #Fix(f ")}

where Fix(g) denotes the set of all fixed points of a map g, and %A the cardinality of a set A.

1. Lyapunov chart and shadowing property.

Let f: M—M be a C***map (x> 0) of a finite dimensional smooth closed manifold
M.
To definite the inverse limit of f: M —M we consider a compact metric space

Mf={£=(x,,)e [IM: f(x)=x,4, forall neZ} ,
equipped with the distance d defined by
dx = Y 27Md(x, y,)

for £=(x,), y=(y,)€ M, where d is the distance on M induced by the Riemannian
metric. Let f: M ;=M be defined by F((x,))=(x,+,). Then f is a homeomorphism and
no f=fom holds, where n: M s —M is the projection defined by =((x,)) =x,. The map
f:M—M, is called the inverse limit of f:M—M. For a periodic point j of fitis
obvious that n( §) is also a periodic point of f with the same period as j. For I' = M we set

Iy={X=(x,)eM; : x,eI forall neZj.
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A compact f-invariant set I' is called hyperbolic for f if there are constants C>1
and 0 <A <1 such that for all X=(x,) eI, the tangent space T, M at the 0-coordinate
X, splits into a direct sum 7T, M = E%X) @ E*(X) satisfying:

D f(ESE)CE(F(R), Dy f(E"®)=E"(f(%),
D, /") < CAMv|  for ve EXX),
MDDy S |pug-ny) ~ WIS CA"lw||  for we E%(X)

where || * | denotes the Riemannian metric.
We say that a compact f-invariant set I' is a horseshoe of f if there exist positive
integers I, m and subsets I', -+, I',,_; of M such that

I'=lov---uly_y, f(I)=ri; (modm),

and the inverse limit f™ '(ro),mi(ro) gm=>(Lo)ym of f™|. :[y—T, is topologically con-
jugate to a full-shift in /-symbols. For such a set I' and integers I, m we have

L7
W 1) = BT gy ) = Tog

V<#Fix(f™|)<ml

for j>1. If f has a hyperbolic horseshoe I', then for a small C! neighborhood # of f
and g e % there exists a hyperbolic horseshoe I'(g) of g such that § | ra),: I'(g),—I'(g), is
topologically conjugate to f|. : I';/—I', ([AM], [Mo]).

For xe M and ve T, M we put

1" (v, f)=lim sup-L log| D, /")
n— o

The number " (v, f) is called the Lyapunov exponent for v. Then, for xe M there are

at most dimM numbers x;(x), - -, pxn(X) With —o0 <y;(X)< " <yp<o0, and a

filtration of subspaces

{O} =L0(X)$L1(X) ; e _C'_ Lr(x)(x):' TxM
such that x*(v, f)=yx:(x) holds for ve L,(x)\L;_(x), 1<i<r(x). The numbers x,(x),
", Xro(X) are called the Lyapunov exponents at x. We set
ki{(x)=dimL,(x)—dimL,_,(x)

for 1 <i<r(x). Then r(x), x;(x), k;(x) are measurable and f-invariant functions with respect
to any f-invariant Borel probability measure u. If u is ergodic, then these functions are
constant almost everywhere. In this case we denote these values by r*, x, k¥, respec-
tively. An f-invariant Borel probability measure u is called Ayperbolic if all the Lyapunov
exponents are different from zero for u-almost everywhere. If u is ergodic and all the
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Lyapunov exponents are negative almost everywhere, i.e. x4 <0, then u is concen-
trated on the orbit of a periodic sink, and the metric entropy, A,(f), is zero.

In order to state the shadowing lemma we need some preparations.

For 0<k<dimM, x>0 and />1, we define a subset AX, of M, consisting of
X=(x,)e M, for which there exists a sequence of splittings 7, M = E*(X, n) ® E*(%, n),
neZ, satisfying:

(a) dimE*(X, n)=k;

(b) D, f(E%X,n)<E*%, n+1), D, f(EYX,n)=E"X,n+1),

(c) form=0

I D, /™)l <exp{—xm} - exp{(x/100)(! +|n )} |||
for ve E5(%, n),

(D ™ |uin—my) ~ W) S€xp{—xm} - exp{(x/100)(! +|n )} | w]|
for we E%(X, n);
and if 1<k<dimM —1 then
(d) sin L (ES(X, n), EXX, n)) =exp{—(x/100)(/+|n})}.
It is easy to see that for 0<k<dimM, x>0 and />1, ;1',’(‘,, is compact, and that
A%, Ak, and f*Y(Ak)<= Ak, hold. Therefore A¥=|);>, A%, is an f-invariant
Borel set of M, and

EXJ®),mcE® n+1), EYF&),n)=E“"% n+1)

hold for J?:(x,,)e/T,’(‘ and neZ. The subspaces E*(%X, n), E“(X, n) of T, M depend on X
continuously on the set A% ,.
For a differentiable map f we know the following:

MULTIPLICATIVE ERGODIC THEOREM ([PS], Theorem 5.2). Let u be an f-invariant
Borel probability measure on M. We denote by i the f-invariant Borel probability measure
on M, such that n ji=p, ie ("~ 'EY=w(E) holds for each Borel set Ec M. Then for
f-almost all ¥=(x,)e M, and n€Z the tangent space T, M splits into a direct sum

Tng=E1(-f, n)@ e @Er(xo)(i’ n)

satisfying:
(1) dimE;(X, n)=k;(x,);
(2) D, f(E(% n)cE(X n+1), and for ve Ei(X, n)\{0}

lim L log| Dy_f™(0)ll = x:(xo) ;

m— oo

(3)  if xi(xo)# — o0, then DxanE.'(i.n) :E (X, n)—>E(X, n+1) is an isomorphism, and
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Jor ve E (X, n)\{0}

lim _1

m— oo m

10g||(Ds,_, /™ £ gm—m) O =2:(X0) ;
4) ifi#j then

) 1 )
lim —logsin/ (E;(%, n), E/(X, n)=0,

n>two N
where [ (V, W) denotes the angle between subspaces V and W.

For a hyperbolic measure u by the multiplicative ergodic theorem we have

AUZS Uy oA =1 (1.1
In particular, if u is ergodic then we have
A =1 (1.2)
for k=) . okt and O<y<min, ;.| x|

For 1<k<dimM and #>0 we put
D¥(n)={zeR*: |z|<n}

where | - | denotes the usual norm on R¥.
We take a finite open cover #={U,, -+ -, U;} of M such that each U, is C®
diffeomorphic to an open set of R*™M  Then we have the following:

Lemma 1 (Existence of Lyapunov charts). For 0 <k <dimM and 3 >0, put
A=A(x)=exp{—(9x)/10} (0, 1),
and fix a small number B= B(y)>0 such that
I+p(A+2p, (1-p 1A 128 ""'<1-p.
Then there exists a family of C* diffeomorphisms
{Pz,: D" Moy) > M : 1<i<d Xedinn U},
where ao>1 depends only on f, and a family of C* maps
{Fz;:RIPMSRINM - 1< j<d, e Ak nn Y (U;n f71U))}

satisfying the following properties:
(1) P5,:(0)=n(%); .
Q) Fzij@)=Pjg,;° [ Pz:(2) if zeDImM(1);
(3) Fyi,;;:RY™MREmM has the form

Fz;;(2°, 2")=(A43,; 2° + hz; j(z°,2%), A%, ;2" +hE, (2%, 2Y),
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| A3 ;25 <A z°], |Af. 2" 1247 2", |Dhi;|<B, |Dh%;;|<P
for z=(z°, z*) e R¥ x RIMM~k_RdimM 5,4
h?i.i.j(oa 0)=0, hg,i,j(os 0)=0, D(O,O)hé.i,j':‘o > D(O,O)h£,i.j=0 >
(@) ifxeAt,nn"'U; then
o 1D, Pz (W <|V|<c| D, P5, (V)

for ze D™ M(q ), ve RY™M  where c,, c;=c(k, x) =1 are independent of %;
(5) for I>1, &5 ; depends on X continuously on the set AX, nn~1U,.

PrOOF. For i=(x,,)e)ﬂ§ we define a norm |[-|; on T, M as follows: for
v=v,+v,€ T, M with v,e E(%, 0), v, € E*(X, 0)

e (9 :
“Us”?c—"go exp( 100 X”)”onf (vs)“ s

2 99
Uy ,§= EXp\ A1 Dx " w(X, — —lvu s
loal ,.;o p(loox )Il( B A PR e OB
lollz=max{[lvlz llvallz} -

Then we have

99
1D f 0 7 Sexp( — x>llvsll§ )

100
1D, f @l 7 > ex (9-9 )nv B (13)
X0. u f(x)— p IOOX ullX s .
Mol <lols<aldol  if %=(x)e Ak, (1.4)

where

&, 1 1
a,-——a,(x)———{ ;0 e:xp(—Ea xn)} . exp<§)~ xl) .

We denote by exp, the exponential map associated to the Riemannian metric || - ||, and
defined on a neighborhood of the origin in the tangent space 7, M at xe M. Since M
is compact, there exists a; >0 such that for every xe M, exp, is a C* diffeomorphism
from 7, M(a,) (the closed a,-ball around the origin in T, M), onto B(x, a,) (the closed
a,-ball around x in M). Then

d(x, exp(v)) = ||v|

holds for ve T, M(a,). By retaking o, small enough if necessary, we may assume that
O<a;<1 and
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HDueprHSZ for UETxM(a1)5
| Dyexp; <2 for ye B(x, «;) . (1.5)

By the uniform continuity of f there exists a constant a, with 0 <o, <a; such that
d(f(x), f(y))<a, holds whenever d(x, y)<a,. Since f:M—M is of class C'** by
applying the same method to the proof of Proposition 7 obtained in [FHY] we can
take a family of C! maps {f;: T, ,M—T, M:%=(x,) e A%}, and a measurable function
&: A¥—>(0, a,/2) such that, for £=(x,)e A% :

@ 1D fs®) =D f0)l 75 <2 ™ * exp(—1/100)B]|v]l% for v, we Ty, M;

(B) fx(v)=(expy," o foexpy )v) if ||vllz < E(X);

() EF (D) <exp(is0 21nDER) for all neZ; _

(6) for I>1, f;z and &(X) depend on X% continuously on the set A% ,.
For 1 <i<d and ¥=(x,) € A* n n™ ' U, we take an isomorphism Lz ;: R4™™ T, M such
that:

Ly (R*x {0})=E%(%,0), L; ({0} xRU¥™M-¥)=FE*x,0);
1Lz (DIz=E®|y]  for yeR*x {0} ;
Ly (2)|5=¢X)|z|  for ze{0} x REmM K,

and that depends on X continuously on the set A¥, "z~ 'U; for />1. Then by the
definition of Ly,

3@ z| <Lz (@) |3 <E(X)|z]| <] z| (1.6)
holds for ze R¥™M We put ay=0a,/a,>1. Then by (1.4) and (1.6) for 1<i<d and
feA*nn~'U; we have

1Lz, :{(2) || <2[| Lz ;(2) |3 <28(X)| 2| <2+ 005/2 - ;g =014
whenever ze D4™M(y,), and so
Lz (D™ M(a)) = T, M(2ty) -
Thus a C* diffeomorphism
(Di,i =expxo° (L'J'c,i ‘Ddim M(ao)) : DdimM(aO)_)M
is well-defined. We define a C! map F;; ;: R4™M,R4mM by

X,l,]
F?c,i,j':Lf(.é),jOf%OL?c,i
for 1<i,j<d and fe A nn~Y(U,n f710)).
We want to show that families {®;;} and {Fy,;} satisfy the properties (1)—(5)

stated in Lemma 1. The properties (1) and (2) are obvious from the definitions. The
property (3) is checked as follows. By the definition of F;; ; we have

X,1,]
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oFz.i ;R x {0 =(L74 oDy f o Lz )(R* x {0})
=(L7d).;° D S NE(Z, 0))
< Ljz),;(E%(%, 1))
=L (E(f(%), 0))=R*x {0},
DoFy; ({0} x RUIMM =Ky —(LzL oD, foLg )({0} x REmMM k)
=(L7d).j° Dx NE“Z, 0))
=L ;(E“(%, 1)

=L]7(,~l¢),j(E“(i'()E), 0))={0} x RYImM—k

From (1.3) and (1.7) it follows that for ve R* x {0}
|D0F3‘:,i,j(v) | =|L]_’(§)j°D of°L~ (M|

1D o f (Lz,i (V)| 7)

é(f' (X))
1

99
gm)—exp< 100 )lle i(Mlz

1 99
N5 exp( 100 >€(x) M

98
< —_— <A|v]|,
exp( 100 x)IVI Iv]

and from (1.3) and (1.8) for we {0} x R¥mM &
lDO xlj(w)l—lLf(x)joonf L ,(W)l
1
D, f(Lz,; %
f(f'(~)) | Do f (Lz i (W) 7z)
1 9 ,
zmexp(wo )ll L; (w)l%

1 99
zmexp<100 )é(x)IWI

98 _
Zexp(Tda;()lwl?_/l Hwi.

Combining (1.7), (1.8), (1.9) and (1.10) we can express D,Fy ; ; as follows:
xi;(z zu) (AJC!]Z A;z_; u);
|45z |<Az°|,  |Af. 2" 1247z

(1.7)

(1.8)

1.9

(1.10)

(1.11)

for z=(z*, z*) e R* x R¥™M~*=R%™M_On the other hand, by the definition of Fx; ; we
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have

Fi,i,j(o) = (Lf_(%),j © fi °© L?c,i)(o)
=(Ljd) j°exps,' o foexpy,°Lz;)(0)=0, (1.12)
and by (1.6) for z, ve R4mM
| DzFi,i,j(V) —DoFy,; (V)|
= | (Lj;(%),jODL;,i(z)f?cOLS,i)(V)_(Lf_(Tlc),joonfoLi.i)(v)|

2
= m I (DLz,,-(z)f?c oLz  )(V) —(Dy.f oLz Y5z

2
46169))
< &(X)

&%)
By (1.11), (1.12) and (1.13), F;,; has the form as in the property (3). If 1<i<d and
fefl',’(‘,,mn‘lU,- for some />1, then by (1.4), (1.5) and (1.6) we have
D, P ; (V)| =4[ Dz(expy,° Lz )W)l

=% (DL;,i(z) exPxo) oLz ; (V)|

<3 LM< Lz, (Mx<]v|

<28(X) MLy, (MIIZ<28(X) " 'ayl| Ly (V)]

<2%a)| Ly (V)| <4¢q ”(DLg,i(z) €XPx,)° Lz (V)]

=481a;|| D,(expy,° L, )(V) | =4&,a,[ D, P5 (V) |
for zeD¥™M(g,) and ve R4™M where

&i=8i(k, ) =max{{(X) "' : Xe Ay}

Letting co=4 and ¢;=c¢,(k, ) =4&,a,, we have the property (4). From the continuity of
L;;on /T)'C", nn~1U, for /> 1, the property (5) follows. Lemma 1 was proved. []

< 27 exp(—y/100)B|| Lx (V)%

exp(—yx/100)B|v|<Blv]|. (1.13)

We denote by r, >0 the Lebesgue number of the finite open cover % ={U,, - - U,}
of M. For each xe M take i(x) with 1<i(x)<d such that B(x, ro/2) = Uy,
For a sequence ¢, (/>1) of positive real numbers we say that

oA ={F"=(xMedr : meZ}

is a (9,);2 -pseudo orbit of /T,’C‘ if there is a sequence /,,>1 (meZ) of positive integers
such that for meZ: '

gredk, , dFfEm Y, xm<s, and L., <l,+1.

For 0<n<1/4 we say that a point y=(y,)eM, is an n-shadowing point of a
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(8,2 1-pseudo orbit o if

e [V T o Brn i) BHD)

where
B n) {D"(n)xD‘""‘M”"(r]) if 1<k<dimM-1,
n)= .
D™ M(n) if k=0 or dimM .

Now we give the shadowing lemma as follows:

Key LEmMMA 2 (Shadowing lemma). For 0<k<dimM, x>0 and O0<n<1/4
there exists a sequence 8,(n)=90,(k, x,n) (I=1) of positive numbers such that every
(0,(M)2 1-pseudo orbit o/ of /T)’(‘ has a unique n-shadowing point y=(y,)e M,. For ne L
the tangent space T, M splits into a direct sum T, M = E*(§, n)@® E*(J, n) such that:

(1) dimE*(J, n)=k;

(2) D, f(EAy,n)<=E(y,n+1), D, f(E*(y, n))=E*(y,n+1)

3) for m=>0

ID,, fm" Wl <crAcllvl  for ve EX(F,n),
(D, _,.S™

where |, (meZ) is a sequence as in the definition of pseudo orbit, and
c=c/k,x)=1(=1), Lg=2A¢(x) with 0<Ay<] are numbers independent of n,
oA .

Eega-m)  WI<c AZIwll  for we E*(J,n)

If we establish Key Lemma 2, then we have the following:

LemMmA 3 (Closing lemma). For 0<k<dimM, x>0, I>1 and p>O0 there exists
a number y,(p)=y,(k, x, p) >0 such that, if X=(x,) eZ,’(‘J satisfies

fr®edy,, A&, H=<np)

for some m=>1, then there is a hyperbolic periodic point p=p(X)e M of f with f™(p)=p
such that

d(fj(p)a xj)Sp
Jorall 0<j<m—1.
Proor. For />1 and p>0 we put
n=min{p/(2co), 1/4}>0 and y,(p)=35,(n),

where c,>1 is as in Lemma 1, and 6,(n) =9,(k, x, n) >0 the number found from Key
Lemma 2. We show that y,(p) satisfies the assertion of Lemma 3. To do that, we assume
that = (x,)e A¥, satisfies
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fr@edy, and d(f"(3), % <(p)
for some m>1. Then the sequence
o ={F"H=fi%) : neZ,0<j<m—1}
is a (0,(n)){2 1-pseudo orbit of /T,’C‘. Therefore there is an n-shadowing point y=(y,)e M,
of o/. It is easy to see that f™(J) is also an -shadowing point of .. By the uniqueness
of shadowing point we have f™(5)=7, and thus p=p(¥)=y, is a hyperbolic periodic
point of f with f™(p)=p. For 0<j<m—1 since
Xj» Vi€ ¢fj(§),i(xj)(Bk(n)) )
by Lemma 1 (4) we have
d(fj( ), xj) = d(yja xj) <diam @f’i(i),i(xj)(B k(’?))
<cq* diam(B¥(n))<2con<p

where diam A denotes the diameter of a set 4. Lemma 3 was proved. []

2. Proof of Key Lemma 2.

Let 0<k<dimM, x>0 and 0<n<1/4. By Lemma 1 (5), for />1 we can choose
a number ,(n)=9J,(k, x, n) with 0<d,(n) <r,/2 so small that if ¥=(x,), )7=(y,,)e/~1';'(‘,,
and d(%, ) <6,(n) then

(qji_, i}yo) ° ¢J~c,i(y0))(B k(’1)) < Dd(l) >
| (D5.ityo) © Ps.icyo)(0) | < B, @2.1)
| Dz(@’i;—'l}yo) o ¢’J‘C,i(yo)) - idl S B fOI’ Z E Bk(n) (2.2)

where B=p(x)>0 is the number as in Lemma 1 and id the identity map of R%™M,
From now on, we show that the sequence §,(n) (/= 1) satisfies the assertion of Key
Lemma 2. We put

c;=c((k, x)=2coc;=>1 (=1,
Ao=Ao(x)=max{(1+p)A+2p),1-p) (A" '=2p)"'}e(0,1-p),

where ¢, ¢;=1 (I=1) and 0 <A< 1 are numbers as in Lemma 1.

Let of ={%"=(x"):meZ} be a (5,(n))i>,-pseudo orbit of A% and I, (meZ) the
sequence as in the definition of pseudo orbit. We check that there exists a unique
n-shadowing point of ./, and which has the property stated in Key Lemma 2. To
simplify the notations we write

¢n = ¢§".i(x3) ’

— -1
Gn = ((p;cn»r Li(xp+1) ° ¢]‘(3’cn),i(x6+ 1)) ° Fl%ﬂ,i(xg),i(xg+ 1)
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for neZ.
The proof is done by dividing into three cases:
I 1<k<dimM-1;
an k=0,
() k=dimM.

Case (I). We define the stable and unstable cones C*, C*cR%™M py
Cs={z=(zs,Z“)GRkXRdimM_k : Izslzlzul}s
C*={z=(z°,z*)eR* x R¥™M~k . |25 <|z"|}.

Then from Lemma 1 (3) and (2.2) it follows that for ze B*(n), v=(v*, v*)e Rk x
R¥™M~k and neZ:

(1) if veC¥ then

D,G,(v)eC* and |v*|<Ay|n“D,G(V)|; 2.3)
(2) if D,G,(v)eC?, then
veC® and |n°D,G,(V)|<4ol¥v*|, 2.4

where n°: R4™M_,RE v RIMM_,RAimM—k are natural projections defined by
(v, v)=v’ (c=s,u).

We say that a (dimM —k) dimensional submanifold 7=B¥*(n) is an admissible
(u, n)-manifold if 7 has the form

I=graph() ={(Y(v), V) eD () x DI M) : veDImM=K(z)}

where  :DY™M k) DK () is a C' map such that |Dy|<1 for veD%mM k@),
Combining Lemma 1 (3) with (2.1), (2.3) and (2.4), it can be checked that if 7 is an
admissible (u, n)-manifold then G,(I) N B*(n) is also an admissible (u, n)-manifold for
neZ, even if f is non-invertible.

For m>1 subsets

17, ={0} x DH" M~ XK@ = BX(n)
L'y =GIHnBY )  (-m<n<m-—1)
are admissible (u, 7)-manifolds which satisfy
Py 1174 1) =P+ 1(Go(I) N B ()
= (¢f(5'c"),i(x3 +1)° F?cr-,i(xg),i(x;;+ M) NP,y 1(B¥(m))
=f(PI)) O Py 1 (B¥))

for —m<n<m-—1. If yjed®,(I;), then by induction on 1<;<2m there is y,_;€
®@,,_;(In_;) such that f(yn_;)=ym—;+1. Then we have
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Vo= lim yre ® (I = ®,(B (n))
m-— oo

(take a subsequence if necessary) for ne Z. Thus j=(y,) € M, is an n-shadowing point
of o/.

The uniqueness of y-shadowing point follows immediately from:
CLAM (*).
diam(("\I'_ _ 7™~ Lo ®,)B 1)) < 12¢onAZ/* +4 - diamM - 27 ™2

In order to prove Claim (*), we take

F=,  I=()e () J (e d,)Bm)) .

and show that
d(7, 2)<12conA2'* +4 - diamM - 27 ™2
For —m<n<m put'
Yo=Y =P '(¥a) , z,=(z;, )=, '(z,) e B*(n) .
Then
|Yn—2,| <4nmax{ig*", 45"} .

This follows from the fact that: if | y$—z5| <|y*—z"|, then since yZ, z* e D4™M ~¥(y) by
(2.3) we have

IYr =22 | < A5 7" Ym—2a <2045 7",

|Yn—2a | <|Ya—Za |+ ¥n — 27 | <4nig ™"
if |y,—z;|>=|ys—z,|, then by (2.4)

Yo — 22| ATy w—2s | <2045 7",

| Yo =2, |<4nAG"".
Thus we have
|Yn—2, | <4nmax{ig™", 45"} .
Combining this and Lemma 1 (4), we have
AV 2) =APy(Y 1), Pol(Z,)) <Co * | Yn—2,| <dconmax{Ag ™", 5" "}

for —m<n<m. Then

A5, n= Y 27"d(y, z,)
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[m/2]
= Z 2‘|n|d(ym z")+( Z + Z )2‘|nld(yn, z,)
n=—[m/2] n<—[m/2] n>[m/2]
[m/2] o0
< Y 274eopmax{AZT" ARt 42 Y. 27"-diamM
n=—[m/2] n=[m/2]+1

[m/2]
< ) 2 IMgeopamtm2l 4 2 m2* L digm M
n=—[m/2]

<12conAd'*+4 - diamM -2~ ™2
where [ - ] denotes the Gauss’ symbols. Claim (*) was proved.

For the n-shadowing point y=(y,) of &/ and ne Z we denote

EXy, n)= 60 D, @, (D) (Gpim-1°"""°Gn)) (CY),

E'(5.m)= () Dy 8Dy, (Gyro" = GyonCY),

where y,=®, '(»,) €B*(n). Then these are subspaces of T, M such that
T, M=Ey,n®E“(y,n), dimE(y,n)=k,

D, f(E*(,n))<E(§,n+1), D, f(EXy,n)=E*(J,n+1).
By Lemma 1 (4) and (2.4) we have that for ve E(J, n)
1Dy, f™(0) = | Dy Pr 4 m°(Cram—1°" " 2Gp)o @y W)
<col Dy, (Gpim-1°" " °Gp)o @y (V)|
<2co|m*o Dy, ((Guim-1° " °Gp)o®, ()|
<2¢oAg| 7D, P, (V)| <2¢o45| D, @, ()]
<2coAgcy vl =c Aol ,
and by (2.3) for we E*(J, n)
Wl = 1Dy, S ™Dy ™ gy~ Wl
=Dy, (Pno(Gp— 1o °Grop)o Py X)) oDy, ™ |pugm—m) W
> 1Dy, (Guoyo 2Gu )o@ L))o Dy, ™ |pugn—m) W)
¢ | mo (D, (Guoro 2 Cuo)o @y ) oDy, " |pugm—m) W)
>cp, Ao m o (D, Putw) oDy, S | pugn—m) W)
>4e;, 2™ Dy, B tw) oDy, " |pugn—m) W)
>4er A6 "o Dy, ™ pum—my) W
=ci A6 "Dy, S ™ | pugn—my) ~ W)

for all m>1. Key Lemma 2 was concluded in the case of (I).
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Case (II). By Lemma 1 (3) and (2.2) we have
| D,G,(v)| =45 | V]
for ze D™ M) veR4™M and neZ. Combining this and (2.1), for ne Z we have
DU M) c DU M((Ag 1 —Bn) = G DM (1)),
and thus |
P, + (DU M) =(Dy 4 10 GID U M((Ag ' = BIm))
=f (@D M(n))) . (2.5)
For m>1 take y"e®, (D%™M(y)). By (2.5) and induction on j>1 we can choose

Vm— ;€ Py _ (D™ M(y)) such that f(yy_;)=ym_;+,. For neZ we have

yp=lim yre @ D™ M(n))

m-— oo

(take a subsequence if necessary). Then y=(y,) e M is an #-shadowing point of «/. By
similar calculation as in the case of (I), it can be checked that the assertion of
Claim( *) holds even if k=0. Thus we have the uniqueness of shadowing point. By
Lemma 1 (4) and (2.2) the n-shadowing point y=(y,) € M, ensures that for neZ

1Dy, /@) | =D, (®y11°Gro @, HW) 2 0 Ao o 0]
forveT, M. Thus, D, f:T, M—T, M isanisomorphism, and forve 7T, M and m>1

Yn+1
ol =D, _, ™D, _ Ml
=H{Dy,_ (Puo(Gyoro 2 Gy ) o B ) o (D, ™7 )
>, Ao "eo Dy, /™M N = ¢t ™Dy, S )
Since k=0, we have the conclusion of Key Lemma 2 if E5(J, n)={0} and E*(J, n)=
T, M.

Case (ITI). The proof is similar to that of (II), and so we omit it. Key Lemma
2 was proved. []

3. Proofs of theorems.

Using Key Lemma 2 and Lemma 3 we prove our theorems.
PrOOF OF THEOREM A. We conclude the proof using a technique as follows:

CLAM. Under the assumption of Theorem A, there are N>1 and f*"-invariant set
I'y such that

(1) =fy is a hyperbolic set of f*¥;
@ J*ip,iFumly is topologically conjugate 1o a fll shift in Zsymbob.
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0,:2,02,.
In fact, if it is true, then F'=xnly U - - 2N~ !(nl’y) is a hyperbolic horseshoe of
f, and

1 1 1
W) =hD)=——h(T?™) 2 —— (T | ) =— ,
() =h(f) 5N (" 5N (1) o 1082>0

Theorem A holds.

Thus it is enough to see the claim. Let 4 be a non-atomic ergodic hyperbolic
measure of f and /i the f-invariant Borel probability measure on M ¢ such that p=mn_f.
Then by (1.2) there are 0 <k <dim M, x>0 and />1 such that ﬁ(;f,’(‘,,)>0. To simplify
the notation we write @ instead of Py, for j=(y,) € AX. Take K= A¥, satisfying

AK)>0 and diam(K)<d,(1/4) 3.1

where 6,(1/4)=9,(k, x, 1/4)>0 is a number found from Key Lemma 2. Since j is non-
atomic, by Poincaré’s recurrence theorem, there are ! =(x}!), ¥2=(x2)e K with £! #£x2.
such that for i=1, 2

FmEh, fMEhHek (j=1) (3.2)
where 1 <mi<mi<---, 1<ni<ni<---. Then,
N 7@ o Pgign)B/D) N (™ o Pyiaa))B*(1/)) = . (3.3)

j==w

Indeed, if (3.3) is not true, then there exists a point
ye [} Fn™" o Ppe )B1/4) N (7' o Briza))(BH(1/4))) -
J=— o0

On the other hand, for i=1, 2 the orbit
OpF)={--, f1&), %, J(&), - - -}

of ' by f'is a (8,(1/4)){Z -pseudo orbit of A%. Since the (1/4)-shadowing point of O7(%)
is unique, we have %'=j. This contradicts %! # %2. Thus (3.3) holds. By (3.3) we can
choose N, >1 such that

Ni—1
() F((mn o Prug))BX1/4)) N (™ o Py )(BH(1/4))) = . (3.9

Jj=-—Ny

Take j, >1 so large that m;=m}, n,=nj > N, hold for i=1, 2, and put
N=(m1 +n1)(m2 +n2)2N1 .
For i=1, 2 define a (5,(1/4)){2 ,-pseudo orbit {§*":neZ} of A by

phmmtmyti—fi(ghy  (meZ, —m;<j<n;—1) (3.5)
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and put

Fi= ") 77 'o dy.)(BH(1/4Y).

j=-N

By (3.4) we have

Py Fi= () TG 0y JBH1) 1 (17 03 JBH14)
Ni—-1

= [} J7E" o @pan)BH1/4) O (7 1o By )(BH(1/4)))

=0, (3.6)

We define a compact f*M-invariant set 'y of M, by

Fy= () F™T¥oli),

m= — o

and show that Iy satisfies the properties (1) and (2) of the claim. To do that we define
amap ¢:2,—Iy as follows. For qd=(q,)€e 2, we put

Z2mN*i(g) = pami (meZ, —-N<j<N-1).
Then by (3.1), (3.2) and (3.5)
A(§)={2"(q) : neZ}
is a (0,(1/4))2 ;-pseudo orbit of /T)’C‘. Thus there is an unique (1/4)-shadowing point
o(q)e M, of </(g). Then,

QO

(g€ D J (@™ o Pyng)(BH(1/4)))

© N-1
= [N N T e s, )(BH1/A))
m=—o j=—
— m f—Zme]%me‘N.
On the other hand, for ey take §=(q,)€ X, satisfying £e(\>___ f~ 2" [, then
we have ¢(g)=%. Thus ¢(Z,)=y. The continuity of ¢ follows from Claim (*) in the
proof of Key Lemma 2. To see the injectivity of ¢, we assume that §=(q,,), ¢ =(G,)€Z,
satisfy g,,#¢,, for some meZ. Since

o@ef ™ Fan,  p@G)ef >N,

by (3.6) we have ¢(3)#®(g3). Thus ¢:X,—Iy is a homeomorphism. Obviously,
(f*Mr)o@=@pc0, holds, and thus f2V|p :[y—Iy is topologically conjugate to
0,:2,—X,. We obtained the property (2) of the claim. To get (1), we fix = (y,)ely.
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Since ¢ : X, — Iy is surjective, there is §=(g,,) € £, such that ¢(g) =j. By the definition
of ¢, j is a (1/4)-shadowing point of a (,(1/4));2 ,-pseudo orbit of «/(§)={2"(q):neZ}
of A x. ForneZlet T, M=E*(y, n)® E"(J, n) be the splitting as in Key Lemma 2. Then
we have

D, f*ME*(7,0) = Ej,2N)=E(f*"(9),0),

D,, f*ME*(7,0)=E“(J, 2N)=E“(f*"(7),0) .
For me Z since

PN =prO=xmeKc A},

we have
ID,, 2™ )l <ciad™ vl for ve EXJ,0),
1Dy _ e > ™ gz - 2mnr0)) ~ W <c{AZ™|wl  for we E%(#,0).

Thus nly is a hyperbolic set of f2~. We proved the property (1), and thus the claim.
This completes the proof of Theorem A. [J

REMARK. In case f is a diffeomorphism, every non-atomic ergodic hyperbolic
measure u is of saddle type (x4 <O0<yxh). Thus we have a hyperbolic horseshoe
of saddle type. However, if f is non-invertible, then it may have a non-atomic ergodic
hyperbolic measure u such that all the Lyapunov exponents are positive almost
everywhere. Then the hyperbolic horseshoe obtained in Theorem A is a repellor, and
it has infinitely many source periodic points.

REMARK. The homoclinic point theorem for differentiable maps can be found
in [SW]. However, it was not used in our proof.

Proor oF THEOREM B. Let u be a hyperbolic measure of f. We denote ji as the
f-invariant Borel probability measure on M, with n,fi=pu. For xesupp(u) and p>0,
by (1.1) we have

i(n " B(x, p/2) 0 (Uemo" Uy»o A9 =i(n ™ B(x, p/2))
= u(B(x, p/2))>0.
Thus there are 0 <k <dimM, x>0 and />1 such that
Jr'B(x, p/2) n AX)>0.
Let y,(p/2) =7(k, 3, p/2)>0be asin Lemma 3, and take K<~ 'B(x, p/2) n A¥ satisfying
diamK<y,(p/2), [HK)>0.

By Poincaré’s recurrence theorem, there exist y=(y,) € K and m>1 such that f™(5)e k.
Since 7, f™(7)e Ak, and
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d(f"(9), §) <diamK <y,(p/2) ,

by Lemma 3 there exists a hyperbolic periodic point p=p(¥) of f with f™(p)=p such
that d(y,, p) <p/2. Since

J=(yneR=n""B(x, p/2),
we have d(x, yo)<p/2 and so
d(x, p)<d(x, yo) +d(yo, D)<p .
Therefore, supp(u) =Per(f). [

ProOF OF THEOREM C. We assume without loss of generality that u is ergodic.
By (1.2), ﬁ(ﬁ;) =1 holds for some 0 <k <dim M and x>0. We choose />1 so large that
f(A% ) =3/4, and write A= A¥ to simplify the notation. For n> 1 we define the distance
df on M by
df(x, y)=max{d(fi(x), f(y) : 0<i<n—1}

for x, ye M. Denote by N,(n, p) the minimal number of p-balls with respect to the

d{-distance which cover the set with the value of yu-measure more than or equal to 1/2.
Then it holds that

h,(f)=lim lim inf% log N (n, p) .

p—0 n—oo

(Katok [K] has proved this fact for homeomorphisms. We know that it is valid for all
continuous maps.)
Thus, for y>0 we can choose p >0 such that

lim inf 1 log N,(n, p)=h,(/) 7 . (3.7

n— o

Put n=min{p/(8¢c,), 1/4} >0, where co=c,=>1 is a number as in Lemma 1, and
take a finite partition é={4, - - -, 4,} of M, such that

diam&<8,(n),  E<{A, M,\A}
where 6,(n) =9d,(k, x, 1) >0 is a number found from Key Lemma 2. For n>1 we write
A,={%ed : fM(X)e&X) for some n<m<(l1+y)n},
where £(X) denotes the element of £ containing X. By Birkhéff ’s ergodic theorem we have
MA) =} A)—1/4=1/2

for n>1 large enough. Let E,={y!, ---, y?} be an (n, p)-separated set of nA, for f
with the maximal cardinality, and choose j?¢ /T,, such that n(79) =y%for 1 <g<p,. Then
we have
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~ p"
nd,< U BI(»% p),
g=1
w(Uow BIG4, p)y=in= (52, BI (Y, )z iiA)=1/2,
where B/(y, p)={zeM : d{(y, z)<p}. Thus,
8E,=p,>N(n, p) .
By (3.7) there exists ny>1 such that
$E,> N (n, p) =exp{n(h,(f)—2y)} (3.8)
for n>n,. We fix n>n,, and for m with n<m<[(1 +y)n] put
X,={1<q<p,: ["(F)e&(79} .
Since #(| )" X,,)=p,=4#E,, by (3.8) we can choose n <m,<[(1+7)n] such that

$ X o = ! ¥E,>exp{n(h,(f)—37)} . 3.9
ny+1

For 1<j<t we put
Yi={qeX,,: EGY=4;}.

Since {Ji_, Y;= X, by (3.9) there exists 1<, <7 such that

mo?

# onz% #Xmoz%exp{n(hu( =39} (3.10)
For ge Y;, we put
mo— 1 .
rg= _ﬂo T oD pi50(B M)
L

where ;=5 ;,,, for y=( y,,)e/'f)’;. We claim that for a pair g, ¢'€ Y;,, ¢#q’ implies
Fa~ T8¢ =g Indeed, if £=(z,)e['§ ~ T, then for 0<j<m,—1 we have

z;€ Bi50(B (1)) N Prige (B (1))
and hence, by Lemma 1 (4)
d(f (¥, ff(rM) <d(fi(y9), z;) +d(fH(y?), z))
<2con+2con=4con<p/2.
On the other hand, since {y?:qe Y, } E, is an (n, p)-separated set of f, we have
d(f(y?), ffyT)>p

for some 0<j<n—1<my—1. It is a contradiction, and so ['§ " ['§ = &.
Let
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Fo= () 77 (Uger, TO -

Then it is a compact f™-invariant set of M ;. By the same fashion as the proof of
Theorem A, it is checked that 7™|z : 'y — T, is topologically conjugate to a full shift
in #Y; -symbols, and that

F=nlyu---ufm laly)cM

is a hyperbolic horseshoe of f. Then by (3.10) we have
1 1
h =——h(fm™|x)=——Ilog#Y;
(f1p) o (7lx) e g#Y;,

n 1
> (h,(f)—3y)——log?
mgy my

1 1

=>——(h,(f)=3y)——Ilogt.
1+y n

By choosing n > 1 large and y > 0 small enough, we have h(f|,) > &,(f) —e&. This completes

the proof of Theorem C. [

PROOF OF THEOREM D. It is enough to see the case when 4,(f)>0. For ¢>0 take
a hyperbolic horseshoe I', of f as in Theorem C, and integers [, m as in the definition
of horseshoe. Then,

W)= log!

and for j>1
ljs#Fix(f"‘jlrs)Sml".
Then,
hu(f)sh(f|r5)+s=—n%logl+s

. 1 .
= lim — log #Fix(f™ |, )+
j—= o My

<lim sup 71 log #Fix(f™) +¢ .

By letting e—0, we have
h,(f)<lim sup _71; log $Fix(f™) .

n— oo
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Theorem D was proved. [
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