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1. Introduction.

Let $A=\{a_{1}, \cdots, a_{n}\}$ be a finite nonempty set of symbols and let $A^{*}$ and $A^{\omega}$

denote the sets of all finite words over $A$ and all sequences $x_{0}x_{1}\cdots x_{k}\cdots(x_{k}\in A)$ ,
respectively. Let $\lambda$ be the empty word. A substitution (over $A$) is a map $\sigma:A\rightarrow A^{*}\backslash $

$\{\lambda\}$ , which has a natural extension to $\Omega=A^{*}\cup A^{\omega}$ by concatenation: $\sigma(x_{O}x_{1}\cdots)=$

$\sigma(x_{0})\sigma(x_{1})\cdots$ . If $a_{i}$ is a prefix of $\sigma(a_{i})$ and the length of $\sigma(a_{i})$ is greater than 1, then
there is a unique $ w\in\Omega$ having a prefix $a_{i}$ and being a fixed point of $\sigma$ , which means
that $\sigma(w)=w$ . Any real algebraic irrational $\theta$ can be uniquely expressed as

$\theta=\sum_{k=-m}^{\infty}\epsilon_{k}2^{-k}$ , (1)

where $m$ is a nonnegative integer depending on $\theta$ and $\epsilon_{k}=0$ or 1. The problem we are
interested in is whether the sequence $\epsilon_{0}\epsilon_{1}\cdots\in\{0,1\}^{\omega}$ is a fixed point of any substitution
over $\{0,1\}$ or not.

Generally, for a fixed point $ w=x_{0}x_{1}\cdots$ of the given substitution $\sigma$ , we define the
generating function of $w$ for $a_{i}$ by

$f_{i}(z)=\sum_{k=0}^{\infty}\chi_{k}(w;a_{i})z^{k}$ , (2)

where $\chi_{k}(w;a_{i})=1$ if $x_{k}=a_{i}$ , and otherwise $\chi_{k}(w;a_{i})=0$ , so that

$\sum_{i=1}^{n}f_{i}(z)=\sum_{k=0}^{\infty}z^{k}=\frac{1}{1-z}$ .

It is known that $f_{i}(z)(1\leq i\leq n)$ satisfy a Mahler type functional equation if $\sigma$ is of
constant length, which means that each $\sigma(a_{i})(1\leq i\leq n)$ has the same length $\geq 2$ , and it
is also known that if $\sigma$ is of nonconstant length, i.e., the lengths of $\sigma(a_{i})(1\leq i\leq n)$ are
not equal, then we can construct $g_{1}(z),$ $\cdots,$ $g_{n}(z)\in Q[[z_{1}, \cdots, z_{n}]]$ satisfying a Mahler
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type functional equation and $g_{i}(z, \cdots, z)=f_{i}(z)(1\leq i\leq n)$ . We shall give here a detailed
explanation of these facts, following Loxton [3].

First we consider the case where the substitution $\sigma$ is of constant length. Suppose
that each $\sigma(a_{i})(1\leq i\leq n)$ has the same length $d\geq 2$ . Since $\sigma(w)=w$ , we observe that for
any $k$ , the string $x_{dk}x_{dk+1}\cdots x_{dk+d-1}$ coincides with $\sigma(a_{j})$ if

$x_{k}=a_{j}4$
If we set

$\psi_{ijl}=\left\{\begin{array}{ll}1 & if a_{i} is the (l+1)- st symbol of \sigma(a_{j})\\0 & otherwise ,\end{array}\right.$

we have

$\chi_{dk+l}(w;a_{i})=\sum_{j=1}^{n}\psi_{ijl}\chi_{k}(w;a_{j})$ .

We can now obtain a system offunctional equations for the functions $f_{i}(z)(1\leq i\leq n)$ , since

$\sum_{h=0}^{\infty}\chi_{h}(w;a_{i})z^{h}=\sum_{k=0}^{\infty}\sum_{l=0}^{d-1}\chi_{dk+l}(w;a_{i})z^{dk+l}=\sum_{j=1}^{n}(\sum_{l=0}^{d-1}\psi_{ijl}z^{l})(\sum_{k=0}^{\infty}\chi_{k}(w;a_{j})_{Z^{dk}})$ ,

that is

$f_{i}(z)=\sum_{j=1}^{n}p_{ij}(z)f_{j}(z^{d})$ $(1\leq i\leq n)$ , (3)

where $p_{ij}(z)=\sum_{l=0}^{d-1}\psi_{ijl}z^{l}$ are polynomials.
Next we consider the case where the substitution $\sigma$ is not necessarily of constanl

length. We adopt the usual vector notations: if $\mu=(\mu_{1}, \cdots, \mu_{n})\in N_{0}^{n}$ with $N_{O}$ the set 01
nonnegative integers, we write $z^{\mu}=z_{1}^{\mu_{1}}\cdots z_{n}^{\mu_{n}}$ and $|\mu|=\mu_{1}+\cdots+\mu_{n}$ . Define the functions
$g_{1}(z),$ $\cdots,$ $g_{n}(z)\in Q[[z_{1}, \cdots, z_{n}]]$ by

$g_{i}(z)=\sum_{\mu}\phi_{i\mu}z^{\mu}$
$(1\leq i\leq n)$ ,

where the sum is taken over all n-tuples $\mu=(\mu_{1}, \cdots, \mu_{n})\in N_{0}^{n},$ $\phi_{i\mu}=1$ whenever $x_{|\mu|}=a$

and for each $k$ there are exactly $\mu_{k}$ occurrences of $a_{k}$ in the string $x_{O}x_{1}\cdots x_{|\mu|-1}$ , and
$\phi_{i\mu}=0$ otherwise. Then $g_{i}(z, \cdots, z)=f_{i}(z)(1\leq i\leq n)$ .

In what follows, $|u|_{a_{i}}$ denotes the number of occurrences of the symbol $a_{i}$ in the
word $u\in A^{*}$ . Suppose that the term $z^{\mu}$ occurs in the series $g_{j}(z)$ . Imagine the fixec
point $ w=x_{O}x_{1}\cdots$ being constructed by applying the substitution $\sigma$ successively tc
$x_{O},$ $x_{1},$

$\cdots$ . When we reach $x_{|\mu|}$ , we must have examined the symbol $a_{i}$ exactly $\mu_{i}$ times
and so we must have written out the word $\sigma(a_{i})$ exactly $\mu_{i}$ times. Let $t_{ik}=|\sigma(a_{i})|_{a_{k}}$ . Ther
the part of the sequence constructed by the time the substitution $\sigma$ reaches $x_{|\mu|}$ contain
the symbol $a_{k}$ exactly $\sum_{i=1}^{n}\mu_{i}t_{ik}$ times and altogether $\sum_{i=1}^{n}\sum_{k=1}^{n}\mu_{i}t_{ik}$ symbols have beer
written down. The next symbol to be written will be the first symbol, say $a_{l}$ , of $\sigma(a_{j})$

so that $g_{l}(z)$ must contain the term $z^{v}$ with $v_{k}=\sum_{i=1}^{n}\mu_{i}t_{ik}$ . If $a_{m}$ , say, is the seconc
symbol of $\sigma(a_{j})$ , then $g_{m}(z)$ contains the term $z^{\lambda}$ with $\lambda_{k}=\nu_{k}(k\neq l),$ $\lambda_{i}=\nu_{l}+1$ , and so
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on. We introduce the $n\times n$ matrix $T=(t_{ik})$ . If $z=(z_{1}, \cdots, z_{n})$ is a point of $C^{n}$ with $C$

the set of complex numbers, we define a transformation $T:C^{n}\rightarrow C^{n}$ by

$Tz=(\prod_{k=1}^{n}z_{k}^{t_{1k}},$ $\cdots,\prod_{k=1}^{n}z_{k}^{t_{nk}})$ . (4)

Noting that

$(Tz)^{\mu}=z^{\mu T}$ ,

where the exponent $\mu T$ on the right-hand side is the usual product of the row vector
$\mu$ and the matrix $T$, and so $z^{v}=(Tz)^{\mu}$ , we can expect that each $g_{i}(z)$ will be expressible
by means of $g_{j}(Tz)(1\leq j\leq n)$ . This works as in the preceding case. Set $\psi_{ij\kappa}=1$ if $a_{i}$ is
the $(|\kappa|+1)- st$ symbol of $\sigma(a_{j})$ and is preceded by exactly $\kappa_{k}$ occurrences of the symbol
$a_{k}$ for each $k$ , and set $\psi_{ij\kappa}=0$ otherwise. Let the length of each $\sigma(a_{j})(1\leq j\leq n)$ be not
greater than $s$ . Then

$\sum_{\nu}\phi_{iv}z^{v}=\sum_{\mu}\sum_{j=1}^{n}\sum_{|\kappa|<s}\psi_{ij\kappa}\phi_{j\mu}z^{\mu T+\kappa}$

$=\sum_{j=1}^{n}\sum_{\mu}(\sum_{|\kappa|<s}\psi_{ij\kappa}z^{\kappa})\phi_{j\mu}z^{\mu T}$

$=\sum_{j=1}^{n}(\sum_{|\kappa|<s}\psi_{ij\kappa}z^{\kappa})(\sum_{\mu}\phi_{j\mu}z^{\mu T})$ ,

that is

$g_{i}(z)=\sum_{j=1}^{n}p_{ij}(z)g_{j}(Tz)$ $(1\leq i\leq n)$ , (5)

where $p_{ij}(z)$ are certain polynomials whose coefficients are $0$ and 1. The functional
equations such as (3) and (5) are called Mahler type functional equations.

In this paper we study substitutions in two symbols in connection with the dyadic
expansion of real algebraic irrationals. Hence, in what follows, we consider the case of
$n=2$ and write $a_{1}=a$ and $a_{2}=b$ for abbreviation, so that in this case $A=\{a, b\}$ . The
generating functions defined by (2) are denoted by $f_{1}(z)=f_{a}(z),$ $f_{2}(z)=f_{b}(z)$ . Similarly
we denote $g_{1}(z)=g_{a}(z),$ $g_{2}(z)=g_{b}(z)$ , which satisfy $g_{a}(z, z)=f_{a}(z),$ $g_{b}(z, z)=f_{b}(z)$ , and

$(_{g_{b}}^{g_{a}}\{z)z))=M(z)(g_{a}g_{b}\{Tz)Tz))$

where

$M(z)=\left(\begin{array}{l}p(z)q(z)\\r(z)s(z)\end{array}\right)$ , $p(z),$ $q(z),$ $r(z),$ $s(z)\in Z[z_{1}, z_{2}]$ .
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Further

$T=\left(\begin{array}{ll}t_{aa} & t_{ab}\\t_{ba} & t_{bb}\end{array}\right)$ , (6)

where $t_{\alpha\beta}=|\sigma(\alpha)|_{\beta}(\alpha, \beta\in A)$ , and the characteristic polynomial of the matrix $T$ is defined
by

$\Phi(X)=X^{2}-(t_{aa}+t_{bb})X+(t_{aa}t_{bb}-t_{ab}t_{ba})$ .

If we proved that the value $f_{a}(2^{-1})$ or $f_{b}(2^{-1})$ of the generating function of a
nonperiodic fixed point $w$ of a substitution $\sigma$ in two symbols is transcendental, we could
conclude that the sequence $\epsilon_{O}\epsilon_{1}\cdots$ appearing in the dyadic expansion (1) of any real
algebraic irrational is not a fixed point of any substitution over $\{0,1\}$ . This has not
been proved so far. In the present paper, we prove it in the case of constant length (see
Theorem 2 and Corollary below) and also in the case of nonconstant length, however,
with some exceptional cases.

THEOREM 1. Let $w$ be any fixed point of a substitution $\sigma$ in two symbols and
let $f_{a}(z)$ and $f_{b}(z)$ be the generating functions of $w$ for $a$ and for $b$ , respectively. If
$t_{ab}t_{ba}\Phi(1)\Phi(0)\Phi(-1)\neq 0$ , then the numbers $f_{a}(l^{-1})$ and $f_{b}(l^{-1})$ are transcendental for any
integer $l\geq 2$ .

EXAMPLE (cf. Wen and Wen [8]). We consider the substitution $(\sigma(a), \sigma(b))=$

(ab, $a$), which is called Fibonacci substitution and has a fixed point

$ w=abaababaabaababaababa\cdots$

Let $f_{a}(z)$ and $f_{b}(z)$ be the generating functions of $w$ for $a$ and for $b$ , respectively. Then
the numbers $f_{a}(l^{-1})$ and $f_{b}(l^{-1})$ are transcendental for any integer $l\geq 2$ .

THEOREM 2. Let $w$ be any nonperiodicfixedpoint ofa substitution $\sigma$ in two symbols
which is of constant length and let $f_{a}(z)$ and $f_{b}(z)$ be the generating functions of $w$ for a
andfor $b$ , respectively. Then the numbers $f_{a}(l^{-1})$ and $f_{b}(l^{-1})$ are transcendental for any
integer $l\geq 2$ .

COROLLARY. The dyadic expansion of any real algebraic irrational is not a fixed
point of any substitution over $\{0,1\}$ which is of constant length.

Therefore the problem which remains unsolved is to remove the condition
$t_{ab}t_{ba}\Phi(1)\Phi(0)\Phi(-1)\neq 0$ in Theorem 1, in the case of substitutions in two symbols of
nonconstant length.

This paper was written during the third author’s stay at Keio University. He is
grateful to Professor Yuji Ito for his hospitality.
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2. Lemmas.

Let $T=(t_{ij})$ be an $n\times n$ matrix with nonnegative integer entries. Then the maximum
$\rho$ of the absolute values of the eigenvalues of $T$ is itself an eigenvalue (cf. Gantmacher
[2]). We suppose that the matrix $T$ and an algebraic point $\alpha=(\alpha_{1}, \cdots, \alpha_{n})$ , where $\alpha_{i}$

are nonzero algebraic numbers, have the following four properties:
(I) $T$ is non-singular and none of its eigenvalues is a root of unity, so that in

particular $\rho>1$ .
(II) Every entry of the matrix $T^{k}$ is $O(\rho^{k})$ as $k$ tends to infinity.

(III) If we put $T^{k}\alpha=(\alpha_{1}^{\langle k)}, \cdots, \alpha_{n}^{(k)})$ , then

$\log|\alpha_{i}^{\langle k)}|\leq-c\rho^{k}$ $(1\leq i\leq n)$

for all sufficiently large $k$ , where $c$ is a positive constant.
(IV) For any nonzero power series $f(z)$ in $n$ variables with complex coefficients which

converges in some neighborhood of the origin, there are infinitely many positive
integers $k$ such that $f(T^{k}\alpha)\neq 0$ .

Let $K$ be an algebraic number field and $I_{K}$ the integer ring of $K$. We denote by
$K[[z_{1}, \cdots, z_{n}]]$ the ring of formal power series in variables $z_{1},$ $\cdots,$ $z_{n}$ with coefficients
in $K$. Suppose that $f(z)\in K[[z_{1}, \cdots, z_{n}]]$ converges in an n-polydisc $U$ around the origin
and satisfies the functional equation

$f(Tz)=\frac{\sum_{i=0}^{m}a_{i}(z)f(z)^{i}}{\sum_{i=0}^{m}b_{i}(z)f(z)^{i}}$ , (7)

where $ 1\leq m<\rho$ and $a_{i}(z),$ $b_{i}(z)$ are polynomials in $z_{1},$ $\cdots,$ $z_{n}$ with coefficients in $I_{K}$ . We
denote by $\Delta(z)$ the resultant of polynomials $\sum_{i=0}^{m}a_{i}(z)u^{i}$ and $\sum_{i=0}^{m}b_{i}(z)u^{i}$ in $u$ . If one of
them is a constant $c(z)$ in $u$ , we set $\Delta(z)=c(z)$ . Then Mahler proved the following:

LEMMA 1 (Mahler [4], cf. Nishioka [6]). Assume that $T$ and $\alpha$ have the properties
$(I)-(IV)$ and $f(z)$ is transcendental over the rationalfunctionfield $K(z_{1}, \cdots, z_{n})$ . If $T^{k}\alpha\in U$

and $\Delta(T^{k}\alpha)\neq 0$ for any $k\geq 0$ , then $f(\alpha)$ is transcendental.

The following lemma can be applied to the proof of Lemma 3 below.

LEMMA 2 (Masser [5]). Let $T$ be an $n\times n$ matrix with nonnegative integer entries
for which the property (I) holds. Let $\alpha$ be an n-dimensional vector whose components

$\alpha_{1},$ $\cdots,$ $\alpha_{n}$ are nonzero algebraic numbers such that $T^{k}\alpha\rightarrow(0, \cdots, 0)$ as $k$ tends to infinity.
Then the negation of the property (IV) is equivalent to the following:

There exist integers $i_{1},$ $\cdots,$ $i_{n}$ , not all zero, and positive integers $a,$
$b$ such that

$(\alpha_{1}^{\langle k)})^{i_{1}}\cdots(\alpha_{n}^{\langle k)})^{i_{n}}=1$

for all $k=a+lb(l=0,1,2, \cdots)$ .

In what follows, let $1=(1,1)$ and $x1=(x, x)$ .
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LEMMA 3. Suppose that $t_{aa}+t_{bb}>0,$ $t_{ab}t_{ba}\Phi(1)\Phi(0)\Phi(-1)\neq 0$ , and $t_{aa}+t_{ab}\neq t_{ba}+$

$t_{bb}$ . Then the matrix $T$ defined by (6) and $l^{-1}1$ , where $l$ is an integer greater than 1, have
the properties $(I)-(IV)$ .

REMARK. If a substitution $\sigma$ in two symbols has a fixed point, then $t_{aa}+t_{bb}>0$ .

PROOF OF LEMMA 3. We denote

$T=\left(\begin{array}{ll}t_{aa} & t_{ab}\\t_{ba} & t_{bb}\end{array}\right)=;\left(\begin{array}{ll}p & q\\r & s\end{array}\right)$

for abbreviation. The eigenvalues of $T$ are

$\Lambda=(p+s+\sqrt{D})/2$ , $\lambda=(p+s-\sqrt{D})/2$ ,

where $D=(p-s)^{2}+4qr>0$ . Hence the property (II) is satisfied, since $p+s>0$ and so
$\Lambda>|\lambda|$ , and the property (I) is also satisfied, since the characteristic polynomial of the
matrix $T$ is $\Phi(X)$ and so $\Lambda,$ $\lambda\neq 0,$ $\pm 1$ .

Letting

$\tau^{k}\left(\begin{array}{l}1\\1\end{array}\right)=\left(\begin{array}{l}x_{k}\\y_{k}\end{array}\right)$ $(k\geq 0)$ , (8)

we see that

$Pl^{-1}1=(l^{-x_{k}}, l^{-y_{k}})$

by (4) and that $x_{k},$ $y_{k}>0$ for any $k\geq 0$ . We can write

$x_{k}=\xi_{1}\Lambda^{k}+\xi_{2}\lambda^{k}$ , $y_{k}=\eta_{1}\Lambda^{k}+\eta_{2}\lambda^{k}$ , (9)

where $\xi_{1},$ $\xi_{2},$
$\eta_{1},$

$\eta_{2}\in Q(\sqrt{D})$ , and $\xi_{1},$ $\eta_{1}\geq 0$ since $\Lambda>|\lambda|$ . We assert that $\xi_{1},$ $\eta_{1}>0$ ,
which implies that the property (III) is satisfied. Since

$\left(\begin{array}{l}x_{k+1}\\y_{k+1}\end{array}\right)=T\left(\begin{array}{l}x_{k}\\y_{k}\end{array}\right)=(p_{\gamma}X_{k}x_{k}I_{sy_{k}}^{qy_{k}})$

with (9), we have

$\xi_{1}\Lambda\Lambda^{k}+\xi_{2}\lambda\lambda^{k}=(p\xi_{1}+q\eta_{1})\Lambda^{k}+(p\xi_{2}+q\eta_{2})\lambda^{k}$ ,

$\eta_{1}\Lambda\Lambda^{k}+\eta_{2}\lambda\lambda^{k}=(r\xi_{1}+s\eta_{1})\Lambda^{k}+(r\xi_{2}+s\eta_{2})\lambda^{k}$

for any $k\geq 0$ . Hence, by the assumption that $q,$ $r>0$ , we see that $\xi_{1}=(p\xi_{1}+q\eta_{1})/\Lambda>0$

if $\eta_{1}>0$ , and that $\eta_{1}=(r\xi_{1}+s\eta_{1})/\Lambda>0$ if $\xi_{1}>0$ . Therefore, noting that $\xi_{1}$ and $\eta_{1}$ are
not both zero, we can conclude that $\xi_{1},$ $\eta_{1}>0$ .

Finally, using Lemma 2, we prove that the property (IV) is satisfied. Assume
that there exist integers $t,$ $u$ , not both zero, and positive integers $m,$ $n$ such that
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$(l^{-x_{k}})^{t}(l^{-y_{k}})^{u}=l^{-\langle tx_{k}+uy_{k})}=1$

for all $k\in \mathscr{A}:=\{m+ln|l\in N_{0}\}$ . Then $w_{k}:=tx_{k}+uy_{k}=0(k\in \mathscr{A})$ . Since we can write
$w_{k}=\zeta_{1}\Lambda^{k}+\zeta_{2}\lambda^{k}$ , where $\zeta_{1},$ $\zeta_{2}\in Q(\sqrt{D})$ ,

$\zeta_{1}=-\zeta_{2}(\lambda/\Lambda)^{k}$ $(k\in \mathscr{A})$ .

Then the right-hand side converges to $0$ as $k\in \mathscr{A}$ tends to infinity, but the left-hand
side is a constant. Therefore $\zeta_{1}=0$ and so $\zeta_{2}=0$ . Hence $w_{k}=0$ for all $k\geq 0$ . By the
equations $w_{0}=t+u=0$ and $w_{1}=t(p+q)+u(r+s)=0$ , we have $p+q=r+s$ , which
contradicts the assumption in the lemma. Therefore the property (IV) is satisfied, and
the proof of the lemma is completed.

LEMMA 4. Let $w$ be any fixed point of a substitution $\sigma$ in two symbols. If
$t_{ab}t_{ba}\Phi(1)\Phi(0)\Phi(-1)\neq 0$ , then $w$ is nonperiodic.

PROOF. We may assume that $a$ is a prefix of $w$ without loss of generality. Suppose
that $w$ is periodic. Let $\Lambda,$ $\lambda(|\Lambda|\geq|\lambda|)$ be the eigenvalues of $T$. By the same reason as
in the proof of Lemma 3, we see that $\Lambda>|\lambda|$ . DePne the frequency of $\alpha\in A=\{a, b\}$

occurring in $ w=x_{O}x_{1}\cdots x_{n}\cdots$ by

$d_{\alpha}=\lim_{n\rightarrow\infty}(|x_{0}x_{1}\cdots x_{n}|_{\alpha}/n)$ ,

so that $d_{a}+d_{b}=1$ . Then

$(d_{a}, d_{b})T=\Lambda(d_{a}, d_{b})$ , (10)

since $t_{ab}t_{ba}\neq 0$ and $\Lambda>|\lambda|$ (cf. Queff\’elec [7]). By (10) and $ t_{aa}+t_{bb}=\Lambda+\lambda$ , we have

$T\left(\begin{array}{l}d_{b}\\-d_{a}\end{array}\right)=\lambda\left(\begin{array}{l}d_{b}\\-d_{a}\end{array}\right)$ . (11)

We can verify by induction that

$T^{n}=(\left|\begin{array}{l}\sigma^{n}(a)\\\sigma^{n}(b)\end{array}\right|\left|\begin{array}{l}\sigma^{n}(a)\\\sigma^{n}(b)\end{array}\right|)$ $(n\geq 0)$ , (12)

where $\sigma^{n}(\alpha)(\alpha\in A)$ denotes the n-fold iteration of $\sigma$ . Then by (11) and (12),

$\lambda^{n}\left(\begin{array}{l}d_{b}\\-d_{a}\end{array}\right)=T^{n}\left(\begin{array}{l}d_{b}\\-d_{a}\end{array}\right)=(\left|\begin{array}{l}\sigma^{n}(a)\\\sigma^{n}(b)\end{array}\right|\left|\begin{array}{l}\sigma^{n}(a)\\\sigma^{n}(b)\end{array}\right|.)\left(\begin{array}{l}d_{b}\\-d_{a}\end{array}\right)$

and so
$\lambda^{n}d_{b}=|\sigma^{n}(a)|_{a}d_{b}-|\sigma^{n}(a)|_{b}d_{a}$ $(n\geq 0)$ , (13)

where $d_{b}\neq 0$ by (10) and $t_{ab}\neq 0$ . Since $w$ is periodic, we can write $ w=luu\cdots$ with
1, $u\in A^{*}$ ; thereby
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$|u|_{a}d_{b}-|u|_{b}d_{a}=0$ . (14)

Noting that $\sigma^{n}(a)$ isaprefix ofw for anyn $\geq 0$ , we can write

$\sigma^{n}(a)=lu_{k\langle n)}\cdot ur_{n}\vee$

$(n\geq 0)$ ,

where $k(n)$ is an integer depending on $n$ and $r_{n}$ is a word over $A$ whose length is less
than that of $u$ . Therefore

$|\sigma^{n}(a)|_{\alpha}=|l|_{\alpha}+k(n)|u|_{\alpha}+|r_{n}|_{\alpha}$ $(n\geq 0)$ (15)

for $\alpha\in A$ . By (13), (14), and (15), we have

$\lambda^{n}d_{b}=(|l|_{a}+|r_{n}|_{a})d_{b}-(|l|_{b}+|r_{n}|_{b})d_{a}$ $(n\geq 0)$ ,

where the right-hand side is bounded since the length of $r_{n}$ is less than that of $u$ .
Hence $|\lambda|\leq 1$ . By (11) and (14), $\lambda$ is a rational number. Since $\lambda$ is an algebraic
integer, it is a rational integer. Hence $\lambda$ is 1, $0$ , or $-1$ , and the proof of the lemma is
completed.

3. Proof of theorems.

PROOF OF THEOREM 1. First we consider the case where the substitution $\sigma$ is of
nonconstant length, i.e., $t_{aa}+t_{ab}\neq t_{ba}+t_{bb}$ . As mentioned in Section 1, we can construct
$g_{a}(z),$ $g_{b}(z)\in Q[[z]]=Q[[z_{1}, z_{2}]]$ satisfying $g_{a}(z, z)=f_{a}(z),$ $g_{b}(z, z)=f_{b}(z)$, and

$\left(\begin{array}{l}g_{a}(z)\\g_{b}(z)\end{array}\right)=M(z)\left(\begin{array}{l}g_{a}(Tz)\\g_{b}(Tz)\end{array}\right)$ , (16)

where

$M(z)=\left(\begin{array}{ll}p(z) & q(z)\\r(z) & s(z)\end{array}\right)$ , $p(z),$ $q(z),$ $r(z),$ $s(z)\in Z[z_{1}, z_{2}]$ .

Letting $h(z)=g_{a}(z)/g_{b}(z)$ , we get

$h(z)=\frac{p(z)h(Tz)+q(z)}{r(z)h(Tz)+s(z)}$

by (16), so that

$h(Tz)=\underline{-s(z)h(z)+q(z)}$

$r(z)h(z)-p(z)$

which is a functional equation of the form (7).

We shall apply Lemma 1. The properties $(I)-(IV)$ are satisfied by Lemma 3. We
have to check the remaining conditions in Lemma 1. We firstly verify that the function
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$h(z)$ is transcendental over the field $C(z_{1}, z_{2})$ . For this, we show that $g_{b}(z, z)=f_{b}(z)$ is
transcendental over the field $C(z)$ . Noting that the coefficients of the power series $f_{b}(z)$

are $0$ and 1, we see by the theorem of Carlson [1] that if $f_{b}(z)$ is algebraic over $C(z)$ ,

then $f_{b}(z)\in C(z)$ ; thereby the sequence of its coefficients is a linear recurrence, so that it
is periodic, which contradicts Lemma 4. Therefore $g_{b}(z, z)$ is transcendental over $C(z)$ .
Since $g_{a}(z, z)+g_{b}(z, z)=1/(1-z)$ and so $h(z, z)+1=1/((1-z)g_{b}(z, z)),$ $h(z, z)$ is transcenden-
tal over $C(z)$ . Hence $h(z)$ is transcendental over $C(z_{1}, z_{2})$ . Secondly we verify that $h(z)$

converges at all the $T^{k}l^{-1}1(k\geq 0)$ . We have $T^{k}l^{-1}1=(l^{-x_{k}}, l^{-y_{k}})$ , where $x_{k}$ and $y_{k}$ are
defined by (8). Since $x_{k},$ $y_{k}>0,$ $g_{a}(z)$ and $g_{b}(z)$ converge at $T^{k}l^{-1}1$ for any $k\geq 0$ .
Hence $h(z)$ converges at all the $T^{k}l^{-1}1(k\geq 0)$ , since $g_{b}(T^{k}l^{-1}1)>0$ . Finally we assert
that the resultant $\Delta(z)$ of polynomials $-s(z)u+q(z)$ and $r(z)u-p(z)$ in $u$ satisfies
$\Delta(T^{k}l^{-1}1)\neq 0$ for any $k\geq 0$ . Noting that $\Delta(z)$ divides det $M(z)=p(z)s(z)-q(z)r(z)$ and
letting $M^{(n)}(z)=M(z)M(Tz)\cdots M(T^{n-1}z)$ , we see that if $\prod_{k=0}^{n-1}\Delta(T^{k}l^{-1}1)=0$ , then
det $M^{(n)}(l^{-1}1)=\prod_{k=0}^{n-1}$ det $M(T^{k}l^{-1}1)=0$ . Hence it suffices to prove that det $M^{\langle n)}(l^{-1}1)\neq 0$

for any $n\geq 1$ . To the contrary we assume that det $M^{(n)}(l^{-1}1)=0$ for some $n$ . Since the
entries of $M^{(n)}(z)$ are elements of $Z[z_{1}, z_{2}]$ , those of $M^{\langle n)}(l^{-1}1)$ are rational numbers.
Hence there exist integers $t$ and $u$ , not both zero, such that $(t, u)M^{\langle n)}(l^{-1}1)=(0,0)$ . Noting
that

$\left(\begin{array}{l}g_{a}(z)\\g_{b}(z)\end{array}\right)=M^{\langle n)}(z)(g_{a}g_{b}\{T^{n}z)T^{n}z))$ ,

we have $tg_{a}(l^{-1}1)+ug_{b}(l^{-1}1)=0$ , so that th$(l^{-1}1)+u=0$ . Hence $t\neq 0$ and so $h(l^{-1}1)=$

$-u/t$ . Since $h(z, z)+1=1/((1-z)g_{b}(z, z)),$ $g_{b}(l^{-1}1)$ is a rational number. Therefore the
l-adic decimal expansion of $g_{b}(l^{-1}1)$ , which is given by

$g_{b}(l^{-1}1)=f_{b}(l^{-1})=\sum_{k\geq 0}\chi_{k}(w;b)l^{-k}$ ,

is periodic, which contradicts Lemma 4, and the assertion is proved. Therefore
it follows from Lemma 1 that $h(l^{-1}1)$ is transcendental. Hence $f_{b}(l^{-1})=g_{b}(l^{-1}1)=$

$l/((l-1)(h(l^{-1}1)+1))$ and $f_{a}(l^{-1})=l/(l-1)-f_{b}(l^{-1})$ are transcendental.
Next we consider the case where the substitution $\sigma$ is of constant length, i.e.,

$t_{aa}+t_{ab}=t_{ba}+t_{bb}=d\geq 2$ . As mentioned in Section 1, $f_{a}(z),$ $f_{b}(z)$ satisfy

$(_{f_{b}}^{f_{a}}\{z)z))=M(z)\left(\begin{array}{l}f_{a}(z^{d})\\f_{b}(z^{d})\end{array}\right)$ ,

where

$M(z)=\left(\begin{array}{ll}p(z) & q(z)\\r(z) & s(z)\end{array}\right)$ , $p(z),$ $q(z),$ $r(z),$ $s(z)\in Z[z]$ .

In this case, a matrix $T=(d)$ and a point $l^{-1}$ obviously have the properties $(I)(IV)$

and the rest of the proof is similar to that of the preceding case.
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We omit the proof of Theorem 2, since it is the same as the latter case in the proof
of Theorem 1.

REMARK. The referee kindly informed us that S. Ferenczi and Ch. Mauduit
(Transcendence of numbers with a low complexity expansion, to appear in J. Number
Theory) and J.-P. Allouche and L. Q. Zamboni (Algebraic irrational binary numbers
cannot be fixed points ofnon-trivial constant length or primitive substitutions, to appear)
proved our Theorem 1 and 2 by a completely different method.
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