A Class Number Problem in the Cyclotomic \mathbf{Z}_{3}-extension of \mathbf{Q}

Takayuki MORISAWA
Waseda University
(Communicated by J. Murakami)

Abstract

Let Ω_{n} be the n-th layer of the cyclotomic \mathbf{Z}_{3}-extension of \mathbf{Q} and h_{n} the class number of Ω_{n}. We claim that if ℓ is a prime number less than 10^{4}, then ℓ does not divide h_{n} for any positive integer n.

1. Introduction

Let p be a prime number. It is one of the basic cases of class number problem to ask whether a prime number ℓ divides the class numbers of the intermediate fields of the cyclotomic \mathbf{Z}_{p}-extension of \mathbf{Q}. In the case $\ell=p$, Iwasawa [4] proved that p does not divide any of the class numbers of the n-th layers of the cyclotomic \mathbf{Z}_{p}-extension of \mathbf{Q}. In the case $p=2$, Fukuda and Komatsu [1] showed that ℓ does not divide any of the class numbers of the n-th layers of the cyclotomic \mathbf{Z}_{2}-extension of \mathbf{Q} for $\ell<10^{7}$.

In this paper, we investigate the case $p=3$. Put $\Omega_{n}=\mathbf{Q}\left(2 \cos \left(2 \pi / 3^{n+1}\right)\right)$. Then Ω_{n} is a cyclic extension of degree 3^{n} over \mathbf{Q} and the n-th layer of the cyclotomic \mathbf{Z}_{3}-extension of Q. We denote the class number of Ω_{n} by h_{n}. Masley [6] showed $h_{1}=h_{2}=h_{3}=1$. Linden [5] showed $h_{4}=1$ if GRH (the Generalized Riemann Hypothesis) is valid.

Horie [3] proved the following theorem.
THEOREM 1 (Horie). Let the notation be as above for $p=3$ and ℓ a prime number. If $\ell \equiv 2,4,5,7(\bmod 9)$, then ℓ does not divide h_{n} for any positive integer n.
In this paper, we prove the following result.
THEOREM 2 . Let $\ell \geqq 5$ be a prime number and 3^{s} the exact power of 3 dividing $\ell^{2}-1$.
Put

$$
m_{\ell}=3 s+2+\left[\log _{3}(\ell-1)\right]+\left[\log _{3} \frac{\ell-1}{2}\right]+\left[\log _{3}\left(2 s+1+\left[\log _{3}(\ell-1)\right]\right)\right]
$$

where $[x]$ denotes the greatest integer not exceeding a real number x. If ℓ does not divide $h_{m_{\ell}}$, then ℓ does not divide h_{n} for any positive integer n.

As a corollary to Theorem 2, we obtained the following result by numerical calculation.

Corollary 1. Let ℓ be a prime number less than 10000. Then ℓ does not divide h_{n} for any positive integer n.

We prove Theorem 2 in Section 2. In Section 3, we show a criterion in each of four disjoint cases to determine that a prime number ℓ does not divide h_{n}.

2. Proof of Theorem 2

Let n be a positive integer, ℓ a prime number with $\ell \geqq 5$, χ a character $\bmod \ell$ with $\chi(-1)=-1$ and ψ_{n} an even character $\bmod 3^{n+1}$ whose order is 3^{n}. Then the generalized Bernoulli number is defined by

$$
B_{1, \chi \psi_{n}}=\frac{1}{3^{n+1} \ell} \sum_{b=1}^{3^{n+1} \ell} b \chi \psi_{n}(b) .
$$

Let s be as in Theorem 2 and $\zeta_{\psi_{n}}$ such a primitive 3^{n+1}-th root of unity as

$$
\zeta_{\psi_{n}}^{3^{n+1-s}}=\psi_{n}\left(1+3^{n+1-s}\right)
$$

We define a rational function $f_{1}(T)$ in the rational function field $\mathbf{Q}_{\ell}(T)$ by

$$
f_{1}(T)=\left(\sum_{\substack{b=1\left(\bmod 3^{s}\right) \\ 0<b<3^{s} \ell}} \chi(b) T^{b}\right)\left(T^{3^{s} \ell}-1\right)^{-1}
$$

We put $d=s+1+\left[\log _{3}(\ell-1)\right]$. We also put $\zeta_{\ell}=\cos \frac{2 \pi}{\ell}+\sqrt{-1} \sin \frac{2 \pi}{\ell}$ and $K_{n, \ell}=$ $\Omega_{n}\left(\zeta_{\ell}\right)$. Let $h_{n, \ell}^{-}$be the relative class number of $K_{n, \ell}$. Then we have the following result by [7] p. 387:

LEMMA 1. Let χ, ψ_{n} be as above and $n \geqq 2 s-1$. If $B_{1, \chi \psi_{n}} \equiv 0(\bmod \bar{\ell})$ in $\mathbf{Z}_{\ell}\left[\zeta_{\psi_{n}}\right]$, then $f_{1}\left(\zeta_{\psi_{n}}\right) \equiv 0(\bmod \bar{\ell})$ in $\mathbf{Z}_{\ell}\left[\zeta_{\psi_{n}}\right]$, where $\bar{\ell}$ is the ideal of $\mathbf{Z}_{\ell}\left[\zeta_{\psi_{n}}\right]$ generated by ℓ.

Lemma 2. If $d+s-1 \leqq n$, then the prime number ℓ does not divide $h_{n, \ell}^{-} / h_{d+s-1, \ell}^{-}$.
Proof. Assume that $d+s-1 \leqq n$. We put

$$
g(T)=\frac{\left(T^{3^{s} \ell}-1\right) f_{1}(T)}{T} .
$$

Since

$$
g(T)=\sum_{\substack{\left.b \equiv 1 \bmod 3^{s}\right) \\ 0<b \leqq 1+3^{s}(\ell-1)}} \chi(b) T^{b-1},
$$

we have $\operatorname{deg} g(T) \leqq 3^{s}(\ell-1)$ where $\operatorname{deg} g(T)$ means the degree of the polynomial $g(T)$. Since

$$
\left[\mathbf{Q}_{\ell}(\zeta): \mathbf{Q}_{\ell}\right] \geqq 3^{n+1-s} \geqq 3^{d}>3^{s}(\ell-1) \geqq \operatorname{deg} g(T)
$$

for a primitive 3^{n+1}-th root of unity $\zeta \in \overline{\mathbf{Q}_{\ell}}$, we have

$$
g(\zeta) \not \equiv 0(\bmod \bar{\ell}),
$$

and hence

$$
f_{1}(\zeta) \not \equiv 0(\bmod \bar{\ell})
$$

In particular, we obtain $f_{1}\left(\zeta_{\psi_{n}}\right) \not \equiv 0(\bmod \bar{\ell})$. By Lemma 1 , we see $B_{1, \chi \psi_{n}} \not \equiv 0(\bmod \bar{\ell})$. Hence we obtain

$$
\frac{h_{n, \ell}^{-}}{h_{d+s-1, \ell}^{-}} \not \equiv 0(\bmod \bar{\ell})
$$

by the class number formula

$$
h_{n, \ell}^{-}=Q_{n, \ell} \cdot 2 \cdot \ell \prod_{\chi} \prod_{b=1}^{3^{n}}\left(-\frac{1}{2} B_{1, \chi \psi_{n}^{b}}\right),
$$

where $Q_{n, \ell}=1$ or 2 and χ runs over all characters $\bmod \ell$ with $\chi(-1)=-1$.
We denote the plus part and the minus part of the ideal class group of $K_{n, \ell}$ by $C^{+}\left(K_{n, \ell}\right)$ and by $C^{-}\left(K_{n, \ell}\right)$ respectively. We also denote the ℓ-rank of $C^{+}\left(K_{n, \ell}\right)$ and $C^{-}\left(K_{n, \ell}\right)$ by $r_{n, \ell}^{+}$ and by $r_{n, \ell}^{-}$respectively. Then Theorem 10.11 in [7] implies

$$
r_{n, \ell}^{+} \leqq r_{n, \ell}^{-}
$$

Lemma 3. Suppose $s+1 \leqq n$. If ℓ divides h_{n} and if ℓ does not divide h_{n-1}, then $3^{n-s-1}<r_{n, \ell}^{-}$.

Proof. Let r_{n} be the ℓ-rank of the ideal class group of Ω_{n}. By Theorem 10.8 in [7], we have $r_{n} \geqq 3^{n-s}$ if $\ell \equiv 1(\bmod 3)$ and $r_{n} \geqq 2 \cdot 3^{n-s}$ if $\ell \equiv 2(\bmod 3)$. Since $r_{n} \leqq r_{n, \ell}^{+}$, we have $3^{n-s-1}<r_{n, \ell}^{-}$.

Now we prove Theorem 2.

Since $\left|B_{1, \chi \psi_{n}^{b}}\right| \leqq 3^{n+1} \ell$, we have

$$
\begin{aligned}
h_{n, \ell}^{-} & \leqq 2 \cdot 2 \cdot \ell\left(\frac{1}{2} 3^{n+1} \ell\right)^{\frac{\ell-1}{2} 3^{n}} \\
& <\ell^{3^{n}(n+1) \frac{\ell-1}{2}+2}
\end{aligned}
$$

Hence we obtain

$$
r_{n, \ell}^{-}<3^{n}(n+1) \frac{\ell-1}{2}+2
$$

and then

$$
\begin{equation*}
r_{n, \ell}^{-}<3^{d+s-1}(d+s) \frac{\ell-1}{2}+2 \tag{1}
\end{equation*}
$$

by Lemma 2.
Let m_{ℓ} be as in Theorem 2 and assume that ℓ does not divide $h_{m_{\ell}}$. We also assume that there exists a positive integer n such that ℓ divides h_{n} but does not divide h_{n-1}. Then we have $m_{\ell}<n$. By Lemma 3 and (1), we obtain

$$
3^{n-s-1} \leqq 3^{d+s-1}(d+s) \frac{\ell-1}{2}
$$

Hence we have

$$
n-s-1 \leqq d+s-1+\log _{3}(d+s)+\log _{3} \frac{\ell-1}{2}
$$

this implies

$$
n \leqq 3 s+1+\left[\log _{3}(\ell-1)\right]+\log _{3}(d+s)+\log _{3} \frac{\ell-1}{2}
$$

Therefore we have

$$
n \leqq 3 s+2+\left[\log _{3}(\ell-1)\right]+\left[\log _{3} \frac{\ell-1}{2}\right]+\left[\log _{3}\left(2 s+1+\left[\log _{3}(\ell-1)\right]\right)\right]=m_{\ell}
$$

This is a contradiction.

3. Calculation

Let $\Delta_{n}=\operatorname{Gal}\left(\Omega_{n} / \mathbf{Q}\right)$ be the Galois group of Ω_{n} over \mathbf{Q} and A_{n} the ℓ-part of the ideal class group of Ω_{n}.

For a character $\chi: \Delta_{n} \rightarrow \overline{\mathbf{Q}}_{\ell}$, we define e_{χ} by

$$
e_{\chi}=\frac{1}{\left|\Delta_{n}\right|} \sum_{\sigma \in \Delta_{n}} \operatorname{Tr}\left(\chi^{-1}(\sigma)\right) \sigma \in \mathbf{Z}_{\ell}\left[\Delta_{n}\right]
$$

where Tr is the trace map of $\mathbf{Q}_{\ell}\left(\chi\left(\Delta_{n}\right)\right) / \mathbf{Q}_{\ell}$. We denote by $A_{n, \chi}$ the χ-part $e_{\chi} A_{n}$ of A_{n}. Then we have $A_{n}=\bigoplus_{\chi} A_{n, \chi}$ where χ runs over all representatives of \mathbf{Q}_{ℓ}-conjugacy classes of characters of Δ_{n}.

In order to prove that ℓ does not divide h_{n}, it is sufficient to prove that ℓ does not divide the order of $A_{n, \chi}$ for each χ. If χ is not injective, then there exists a positive integer k such that $\Omega_{k}=\Omega_{n}^{\text {Ker } \chi}$ and $A_{n, \chi} \cong A_{k, \chi}$. Therefore we may assume χ is injective.

Now, for $n \geqq 1$, let ζ_{n} denote a primitive 3^{n}-th root of unity in \mathbf{C} and put

$$
\xi_{n}=\left(\zeta_{n+1}-1\right)\left(\zeta_{n+1}^{-1}-1\right)=2-\left(\zeta_{n+1}+\zeta_{n+1}^{-1}\right) \in \Omega_{n}
$$

We fix a truncation $e_{\chi, \ell} \in \mathbf{Z}\left[\Delta_{n}\right]$ of e_{χ} satisfying

$$
e_{\chi, \ell} \equiv e_{\chi}(\bmod \ell)
$$

in order to consider an action on ξ_{n}. The following lemma is a special case of Lemma 1 in [2].

Lemma 4. If there exists a prime number p which is congruent to 1 modulo $3^{n+1} \ell$ and satisfies

$$
\left(\xi_{n}^{e_{X}, \ell}\right)^{\frac{p-1}{\ell}} \not \equiv 1(\bmod \mathfrak{p})
$$

for some prime ideal \mathfrak{p} of Ω_{n} lying above p, then we have $\left|A_{n, \chi}\right|=1$; here $\left|A_{n, \chi}\right|$ denotes the order of $A_{n, \chi}$.

Owing to Lemma 4 , we may regard χ as a character of Δ_{n} into $\overline{\mathbf{F}}_{\ell}$ and define e_{χ} to be an element of $\mathbf{F}_{\ell}\left[\Delta_{n}\right]$ where $\overline{\mathbf{F}}_{\ell}$ is an algebraic closure of the finite field $\mathbf{F}_{\ell}=\mathbf{Z} / \ell \mathbf{Z}$. Let η_{n} be a primitive 3^{n}-th root of unity in $\overline{\mathbf{F}}_{\ell}$ and put $K=\mathbf{F}_{\ell}\left(\eta_{n}\right)$. Let ρ be the generator of Δ_{n} determined by $\zeta_{n+1} \mapsto \zeta_{n+1}^{4}$ and χ the character of Δ_{n} defined by $\chi(\rho)=\eta_{n}^{-1}$. Then

$$
e_{\chi^{j}}=\frac{1}{3^{n}} \sum_{i=0}^{3^{n}-1} \operatorname{Tr}_{K / \mathbf{F}_{\ell}}\left(\eta_{n}^{i j}\right) \rho^{i}
$$

Let p be a prime number congruent to 1 modulo $3^{n+1} \ell$ and g_{p} a primitive root of p. Then

$$
\zeta_{n+1} \equiv g_{p}^{\frac{p-1}{3 n+1}}(\bmod \mathfrak{p})
$$

for some prime ideal \mathfrak{p} of Ω_{n} lying above p.
Therefore, if $e_{\chi^{j}}=\sum_{i} a_{i j} \rho^{i}$, then we have

$$
\xi_{n}^{e} x^{j}=\prod_{i=0}^{3^{n}-1}\left(2-\zeta_{n+1}-\zeta_{n+1}^{-1}\right)^{a_{i j} \rho^{i}}
$$

$$
\begin{aligned}
& =\prod_{i=0}^{3^{n}-1}\left(2-\zeta_{n+1}^{4^{i}}-\zeta_{n+1}^{-4^{i}} a^{a_{i j}}\right. \\
& \equiv \prod_{i=0}^{3^{n}-1}\left(2-g_{p}^{\frac{p-1}{3^{n+1}} 4^{i}}-g_{p}^{-\frac{p-1}{3^{n+1}} 4^{i}}\right)^{a_{i j}}(\bmod \mathfrak{p})
\end{aligned}
$$

The last product should be calculated modulo p. We fix positive integers z_{1} and z_{2} satisfying

$$
\begin{aligned}
& z_{1} \equiv g_{p}^{\frac{p-1}{3 n+1}}(\bmod p) \\
& z_{2} \equiv z_{1}^{-1}(\bmod p)
\end{aligned}
$$

3.1. The case $\ell \equiv 1(\bmod 3)$ and $2 \leqq n \leqq s$. Since $\eta_{n} \in \mathbf{F}_{\ell}$, we have $\operatorname{Tr}_{K / \mathbf{F}_{\ell}}\left(\eta_{n}\right)=$ η_{n} and

$$
e_{\chi^{j}}=\frac{1}{3^{n}} \sum_{i=0}^{3^{n}-1} \eta_{n}^{i j} \rho^{i}
$$

Let g_{ℓ} be a primitive root of ℓ and fix integers $a_{i j}$ satisfying

$$
a_{i j} \equiv g_{\ell}^{\frac{\ell-1}{3^{n}} i j}(\bmod \ell)
$$

There are $2 \cdot 3^{n-1}$ injective characters of Δ_{n} and none of them is conjugate over \mathbf{F}_{ℓ}. If we put

$$
X=\left\{j \in \mathbf{Z} \mid 1 \leqq j<3^{n},(j, 3)=1\right\}
$$

then $\left\{\chi^{j} \mid j \in X\right\}$ is the set of all injective characters of Δ_{n}. Then Lemma 4 implies the following criterion.

Criterion 1. Put $b=4$. If there exists a prime number p which is congruent to 1 modulo $3^{n+1} \ell$ and satisfies

$$
\left(\prod_{i=0}^{3^{n}-1}\left(2-z_{1}^{b^{i}}-z_{2}^{b^{i}}\right)^{a_{i j}}\right)^{\frac{p-1}{\ell}} \not \equiv 1(\bmod p) \quad \text { for each } j \in X
$$

then ℓ does not divide h_{n} / h_{n-1}.
3.2. The case $\ell \equiv 1(\bmod 3)$ and $s+1 \leqq n$. We have $\left[K: \mathbf{F}_{\ell}\right]=3^{n-s}$. The minimal polynomial of η_{n} over \mathbf{F}_{ℓ} is

$$
X^{3^{n-s}}-\eta_{n}^{3^{n-s}}
$$

Therefore $\operatorname{Tr}_{K / \mathbf{F}_{\ell}}\left(\eta_{n}^{i}\right)=0$ if i is not divisible by 3^{n-s}. Hence we have

$$
e_{\chi^{j}}=\frac{1}{3^{n}} \sum_{i=0}^{3^{s}-1} \operatorname{Tr}_{K / \mathbf{F}_{\ell}}\left(\eta_{n}^{3^{n-s} i j}\right) \rho^{3^{n-s_{i}}}
$$

$$
=\frac{1}{3^{s}} \sum_{i=0}^{3^{s}-1} \eta_{s}^{i j} \rho^{3^{n-s} i}
$$

Since there are $2 \cdot 3^{s-1}$ non-conjugate primitive 3^{n}-th roots of unity in $\overline{\mathbf{F}}_{\ell}$, there are the same number of \mathbf{F}_{ℓ}-conjugacy classes of injective characters of Δ_{n}. In this case, we put

$$
X=\left\{j \in \mathbf{Z} \mid 1 \leqq j<3^{s},(j, 3)=1\right\}
$$

Then $\left\{\chi^{j} \mid j \in X\right\}$ is a set of representatives of \mathbf{F}_{ℓ}-conjugacy classes of injective characters of Δ_{n}.

Let g_{ℓ} be a primitive root of ℓ and fix integers $a_{i j}$ satisfying

$$
a_{i j} \equiv g_{\ell}^{\frac{\ell-1}{3^{5} i j}}(\bmod \ell)
$$

CRITERION 2. Put $b=4^{3^{n-s}}$. If there exists a prime number p which is congruent to 1 modulo $3^{n+1} \ell$ and satisfies

$$
\left(\prod_{i=0}^{3^{s}-1}\left(2-z_{1}^{b^{i}}-z_{2}^{b^{i}}\right)^{a_{i j}}\right)^{\frac{p-1}{\ell}} \not \equiv 1(\bmod p) \quad \text { for each } j \in X
$$

then ℓ does not divide h_{n} / h_{n-1}.
3.3. The case $\ell \equiv-1(\bmod 3)$ and $2 \leqq n \leqq s$. We have $\left[K: \mathbf{F}_{\ell}\right]=2$. Since there are 3^{n-1} non-conjugate primitive 3^{n}-th roots of unity in $\overline{\mathbf{F}}_{\ell}$, there are the same number of \mathbf{F}_{ℓ}-conjugacy classes of injective characters of Δ_{n}. In this case, we put

$$
X=\left\{j \in \mathbf{Z} \left\lvert\, 1 \leqq j \leqq \frac{3^{n}-1}{2}\right.,(j, 3)=1\right\} .
$$

Then $\left\{\chi^{j} \mid j \in X\right\}$ is a set of representatives of \mathbf{F}_{ℓ}-conjugacy classes of injective characters of Δ_{n}.

In this case, we have

$$
\begin{aligned}
e_{\chi^{j}} & =\frac{1}{3^{n}} \sum_{i=0}^{3^{n}-1} \operatorname{Tr}_{K / \mathbf{F}_{\ell}}\left(\eta_{n}^{i j}\right) \rho^{i} \\
& =\frac{1}{3^{n}} \sum_{i=0}^{3^{n}-1} \operatorname{Tr}_{\mathbf{F}_{\ell}\left(\eta_{s}\right) / \mathbf{F}_{\ell}}\left(\eta_{s}^{3^{s-n} i j}\right) \rho^{i}
\end{aligned}
$$

Fix integers $a_{i j}$ satisfying

$$
a_{i j} \equiv t_{3^{s-n}}(\bmod \ell)
$$

where t_{i} is the element of \mathbf{F}_{ℓ} defined by (2) in 3.4.

CRITERION 3. Put $b=4$. If there exists a prime number p which is congruent to 1 modulo $3^{n+1} \ell$ and satisfies

$$
\left(\prod_{i=0}^{3^{n}-1}\left(2-z_{1}^{b^{i}}-z_{2}^{b^{i}}\right)^{a_{i j}}\right)^{\frac{p-1}{\ell}} \not \equiv 1(\bmod p) \quad \text { for each } j \in X
$$

then ℓ does not divide h_{n} / h_{n-1}.
3.4. The case $\ell \equiv-1(\bmod 3)$ and $s+1 \leqq n$. We have $\left[K: \mathbf{F}_{\ell}\right]=2 \cdot 3^{n-s}$. Let

$$
X^{2}-a X+1
$$

be the minimal polynomial of η_{s} over \mathbf{F}_{ℓ}. Then the minimal polynomial of η_{n} over \mathbf{F}_{ℓ} is

$$
X^{2 \cdot 3^{n-s}}-a X^{3^{n-s}}+1
$$

therefore $\operatorname{Tr}_{K / \mathbf{F}_{\ell}}\left(\eta_{n}^{i}\right)=0$ if i is not divisible by 3^{n-s}. Hence we have

$$
\begin{aligned}
e_{\chi^{j}} & =\frac{1}{3^{n}} \sum_{i=0}^{3^{s}-1} \operatorname{Tr}_{K / \mathbf{F}_{\ell}}\left(\eta_{n}^{3^{n-s} i j}\right) \rho^{3^{n-s} i} \\
& =\frac{1}{3^{s}} \sum_{i=0}^{3^{s}-1} \operatorname{Tr}_{\mathbf{F}_{\ell}\left(\eta_{s}\right) / \mathbf{F}_{\ell}}\left(\eta_{s}^{i j}\right) \rho^{3^{n-s} i}
\end{aligned}
$$

We need to calculate

$$
\begin{equation*}
t_{i}=\operatorname{Tr}_{\mathbf{F}_{\ell}\left(\eta_{s}\right) / \mathbf{F}_{\ell}}\left(\eta_{s}^{i}\right) \tag{2}
\end{equation*}
$$

We start from $t_{1}=\eta_{s}+\eta_{s}^{-1}$ and proceed to

$$
\begin{aligned}
t_{3} & =\eta_{s}^{3}+\eta_{s}^{3 \ell}=\left(\eta_{s}+\eta_{s}^{\ell}\right)^{3}-3 \eta_{s}^{(\ell+1)}\left(\eta_{s}+\eta_{s}^{\ell}\right)=t_{1}^{3}-3 t_{1} \\
t_{3^{2}} & =\eta_{s}^{3^{2}}+\eta_{s}^{3^{2} \ell}=\left(\eta_{s}^{3}+\eta_{s}^{3 \ell}\right)^{3}-3 \eta_{s}^{3(\ell+1)}\left(\eta_{s}^{3}+\eta_{s}^{3 \ell}\right)=t_{3}^{3}-3 t_{3} \\
& \vdots \\
t_{3^{s-1}} & =\eta_{s}^{3^{s-1}}+\eta_{s}^{3^{s-1} \ell}=t_{3^{s-2}}^{3}-3 t_{3^{s-2}}=-1
\end{aligned}
$$

noting $\eta_{s}^{\ell+1}=1$. Reversing this procedure, we obtain t_{1} recursively.
LEMmA 5. Let $b_{1}=-1 \in \mathbf{F}_{\ell}$. If $s \geqq 2$, we choose $b_{i} \in \mathbf{F}_{\ell}(2 \leqq i \leqq s)$ by

$$
b_{i+1}^{3}-3 b_{i+1}=b_{i}
$$

Then we have $t_{1}=b_{s}$.
REMARK. For each step, we have three roots. Hence we have just $3^{s-1} t_{1}$ which correspond to 3^{s-1} non-conjugate primitive 3^{s}-th roots of unity in $\overline{\mathbf{F}}_{\ell}$. We fix arbitrary one.

We obtain $t_{i}\left(2 \leqq i \leqq 3^{s}-1\right)$ from $t_{0}=2$ and t_{1} using the following recurrence formula.

Lemma 6. There holds $t_{i+2}=t_{i+1} t_{1}-t_{i}$.
Proof. We have

$$
\begin{aligned}
t_{1} t_{i+1} & =\left(\eta_{s}+\eta_{s}^{\ell}\right)\left(\eta_{s}^{i+1}+\eta_{s}^{(i+1) \ell}\right) \\
& =\eta_{s}^{i+2}+\eta_{s}^{(i+2) \ell}+\eta_{s}^{i+\ell+1}+\eta_{s}^{i \ell+\ell+1} \\
& =\left(\eta_{s}^{i+2}+\eta_{s}^{(i+2) \ell}\right)+\eta_{s}^{\ell+1}\left(\eta_{s}^{i}+\eta_{s}^{i \ell}\right) \\
& =t_{i+2}+t_{i} .
\end{aligned}
$$

Since there are 3^{s-1} non-conjugate primitive 3^{n}-th roots of unity in $\overline{\mathbf{F}}_{\ell}$, there are the

$$
X=\left\{j \in \mathbf{Z} \left\lvert\, 1 \leqq j \leqq \frac{3^{s}-1}{2}\right.,(j, 3)=1\right\}
$$

Then $\left\{\chi^{j} \mid j \in X\right\}$ is a set of representatives of $\mathbf{F}_{\ell \text {-conjugacy classes of injective characters }}$ of Δ_{n}. We fix integers $a_{i j}$ satisfying

$$
a_{i j} \equiv t_{i j}(\bmod \ell)
$$

Note that $i j$ in the left hand side is a subscript with two indices and that in the right is the product of i and j.

Criterion 4. Put $b=4^{3^{n-s}}$. If there exists a prime number p which is congruent to 1 modulo $3^{n+1} \ell$ and satisfies

$$
\left(\prod_{i=0}^{3^{s}-1}\left(2-z_{1}^{b^{i}}-z_{2}^{b^{i}}\right)^{a_{i j}}\right)^{\frac{p-1}{\ell}} \not \equiv 1(\bmod p) \quad \text { for each } j \in X
$$

then ℓ does not divide h_{n} / h_{n-1}.

References

[1] T. Fukuda and K. Komatsu, Weber's Class Number Problem in the Cyclotomic \mathbf{Z}_{2}-Extension of \mathbf{Q}, to appear in Experiment. Math.
[2] M. Aoki and T. Fukuda, An Algorithm for Computing p-Class Groups of Abelian Number Fields, Algorithmic Number Theory, 56-71,Lecture Notes in Computer Science, vol. 4076, Springer, Berlin, 2006.
[3] K. Horie, Certain Primary Components of the Ideal Class Group of the \mathbf{Z}_{p}-Extension over the Rationals, Tohoku Math. J. 59 (2007), 259-291.
[4] K. IWASAWA, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258.
[5] F. J. VAN DER Linden, Class Number Computations of Real Abelian Number Fields, Math. Comp. 39 (1982), 693-707.
[6] J. M. MASLEY, Class numbers of real cyclic number fields with small conductor, Compositio Math. 37 (1978), 297-319.
[7] L. C. Washington, Introduction to Cyclotomic Fields, 2nd edition, Graduate Texts in Math. 83, SpringerVerlag, New York, Heidelberg, Berlin, 1997.

Present Address:
Department of Mathematics, School of Science and Engineering,
Waseda University,
Okubo, Shinjuku, Tokyo, 169-8555 Japan.
e-mail: da-vinci-0415@moegi.waseda.jp

