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Abstract. Let Ωn be the n-th layer of the cyclotomic Z3-extension of Q and hn the class number of Ωn. We

claim that if � is a prime number less than 104, then � does not divide hn for any positive integer n.

1. Introduction

Let p be a prime number. It is one of the basic cases of class number problem to ask
whether a prime number � divides the class numbers of the intermediate fields of the cyclo-
tomic Zp-extension of Q. In the case � = p, Iwasawa [4] proved that p does not divide any of
the class numbers of the n-th layers of the cyclotomic Zp-extension of Q. In the case p = 2,
Fukuda and Komatsu [1] showed that � does not divide any of the class numbers of the n-th
layers of the cyclotomic Z2-extension of Q for � < 107.

In this paper, we investigate the case p = 3. Put Ωn = Q(2 cos(2π/3n+1)). Then Ωn is
a cyclic extension of degree 3n over Q and the n-th layer of the cyclotomic Z3-extension of
Q. We denote the class number of Ωn by hn. Masley [6] showed h1 = h2 = h3 = 1. Linden
[5] showed h4 = 1 if GRH (the Generalized Riemann Hypothesis) is valid.

Horie [3] proved the following theorem.

THEOREM 1 (Horie). Let the notation be as above for p = 3 and � a prime number.
If � ≡ 2, 4, 5, 7 (mod 9), then � does not divide hn for any positive integer n.

In this paper, we prove the following result.

THEOREM 2. Let � � 5 be a prime number and 3s the exact power of 3 dividing �2−1.
Put

m� = 3s + 2 + [log3(�− 1)] +
[

log3
�− 1

2

]
+ [log3(2s + 1 + [log3(�− 1)])] ,

where [x] denotes the greatest integer not exceeding a real number x. If � does not divide
hm� , then � does not divide hn for any positive integer n.

As a corollary to Theorem 2, we obtained the following result by numerical calculation.
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COROLLARY 1. Let � be a prime number less than 10000. Then � does not divide hn
for any positive integer n.

We prove Theorem 2 in Section 2. In Section 3, we show a criterion in each of four
disjoint cases to determine that a prime number � does not divide hn.

2. Proof of Theorem 2

Let n be a positive integer, � a prime number with � � 5, χ a character mod � with

χ(−1) = −1 and ψn an even character mod 3n+1 whose order is 3n. Then the generalized
Bernoulli number is defined by

B1,χψn = 1

3n+1�

3n+1�∑
b=1

bχψn(b) .

Let s be as in Theorem 2 and ζψn such a primitive 3n+1-th root of unity as

ζ 3n+1−s
ψn

= ψn(1 + 3n+1−s ) .

We define a rational function f1(T ) in the rational function field Q�(T ) by

f1(T ) =




∑
b≡1 (mod 3s )

0<b<3s�

χ(b)T b


 (T 3s� − 1)−1 .

We put d = s + 1 + [log3(�− 1)]. We also put ζ� = cos 2π
�

+ √−1 sin 2π
�

and Kn,� =
Ωn(ζ�). Let h−

n,� be the relative class number of Kn,�. Then we have the following result by

[7] p. 387:

LEMMA 1. Let χ,ψn be as above and n � 2s − 1. If B1,χψn ≡ 0 (mod �) in Z�[ζψn],
then f1(ζψn) ≡ 0 (mod �) in Z�[ζψn ], where � is the ideal of Z�[ζψn] generated by �.

LEMMA 2. If d + s − 1 � n, then the prime number � does not divide h−
n,�/h

−
d+s−1,�.

PROOF. Assume that d + s − 1 � n. We put

g(T ) = (T 3s� − 1)f1(T )

T
.
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Since

g(T ) =
∑

b≡1 (mod 3s )
0<b�1+3s(�−1)

χ(b)T b−1 ,

we have deg g(T ) � 3s(� − 1) where deg g(T ) means the degree of the polynomial g(T ).
Since

[Q�(ζ ) : Q�] � 3n+1−s � 3d > 3s(�− 1) � deg g(T )

for a primitive 3n+1-th root of unity ζ ∈ Q�, we have

g(ζ ) �≡ 0 (mod �) ,

and hence

f1(ζ ) �≡ 0 (mod �) .

In particular, we obtain f1(ζψn) �≡ 0 (mod �). By Lemma 1, we see B1,χψn �≡ 0 (mod �).
Hence we obtain

h−
n,�

h−
d+s−1,�

�≡ 0 (mod �)

by the class number formula

h−
n,� = Qn,� · 2 · �

∏
χ

3n∏
b=1

(
− 1

2
B1,χψbn

)
,

whereQn,� = 1 or 2 and χ runs over all characters mod � with χ(−1) = −1. �

We denote the plus part and the minus part of the ideal class group of Kn,� by C+(Kn,�)
and by C−(Kn,�) respectively. We also denote the �-rank of C+(Kn,�) and C−(Kn,�) by r+n,�
and by r−n,� respectively. Then Theorem 10.11 in [7] implies

r+n,� � r−n,� .

LEMMA 3. Suppose s + 1 � n. If � divides hn and if � does not divide hn−1, then

3n−s−1 < r−n,�.

PROOF. Let rn be the �-rank of the ideal class group of Ωn. By Theorem 10.8 in [7],
we have rn � 3n−s if � ≡ 1 (mod 3) and rn � 2 · 3n−s if � ≡ 2 (mod 3). Since rn � r+n,�, we

have 3n−s−1 < r−n,�. �

Now we prove Theorem 2.
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Since |B1,χψbn
| � 3n+1�, we have

h−
n,� � 2 · 2 · �

(
1

2
3n+1�

) �−1
2 3n

< �3n(n+1) �−1
2 +2.

Hence we obtain

r−n,� < 3n(n+ 1)
�− 1

2
+ 2 ,

and then

r−n,� < 3d+s−1(d + s)
�− 1

2
+ 2 (1)

by Lemma 2.
Let m� be as in Theorem 2 and assume that � does not divide hm� . We also assume that

there exists a positive integer n such that � divides hn but does not divide hn−1. Then we have
m� < n. By Lemma 3 and (1), we obtain

3n−s−1 � 3d+s−1(d + s)
�− 1

2
.

Hence we have

n− s − 1 � d + s − 1 + log3(d + s)+ log3
�− 1

2
;

this implies

n � 3s + 1 + [log3(�− 1)] + log3(d + s)+ log3
�− 1

2
.

Therefore we have

n � 3s + 2 + [log3(�− 1)] +
[

log3
�− 1

2

]
+ [log3(2s + 1 + [log3(�− 1)])] = m� .

This is a contradiction.

3. Calculation

Let ∆n = Gal(Ωn/Q) be the Galois group of Ωn over Q and An the �-part of the ideal
class group ofΩn.

For a character χ : ∆n → Q�, we define eχ by

eχ = 1

|∆n|
∑
σ∈∆n

Tr(χ−1(σ ))σ ∈ Z�[∆n] ,
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where Tr is the trace map of Q�(χ(∆n))/Q�. We denote by An,χ the χ-part eχAn of An.
Then we have An = ⊕

χ An,χ where χ runs over all representatives of Q�-conjugacy classes

of characters of ∆n.
In order to prove that � does not divide hn, it is sufficient to prove that � does not divide

the order of An,χ for each χ . If χ is not injective, then there exists a positive integer k such

that Ωk = Ω
Kerχ
n and An,χ ∼= Ak,χ . Therefore we may assume χ is injective.

Now, for n � 1, let ζn denote a primitive 3n-th root of unity in C and put

ξn = (ζn+1 − 1)(ζ−1
n+1 − 1) = 2 − (ζn+1 + ζ−1

n+1) ∈ Ωn .

We fix a truncation eχ,� ∈ Z[∆n] of eχ satisfying

eχ,� ≡ eχ (mod �)

in order to consider an action on ξn. The following lemma is a special case of Lemma 1 in
[2].

LEMMA 4. If there exists a prime number p which is congruent to 1 modulo 3n+1�

and satisfies

(ξ
eχ,�
n )

p−1
� �≡ 1 (mod p)

for some prime ideal p of Ωn lying above p, then we have |An,χ | = 1; here |An,χ | denotes
the order of An,χ .

Owing to Lemma 4 , we may regard χ as a character of ∆n into F� and define eχ to be

an element of F�[∆n] where F� is an algebraic closure of the finite field F� = Z/�Z . Let ηn
be a primitive 3n-th root of unity in F� and put K = F�(ηn). Let ρ be the generator of ∆n
determined by ζn+1 �→ ζ 4

n+1 and χ the character of ∆n defined by χ(ρ) = η−1
n . Then

eχj = 1

3n

3n−1∑
i=0

TrK/F�(η
ij
n )ρ

i .

Let p be a prime number congruent to 1 modulo 3n+1� and gp a primitive root of p.
Then

ζn+1 ≡ g
p−1
3n+1
p (mod p)

for some prime ideal p of Ωn lying above p.
Therefore, if eχj = ∑

i aij ρ
i , then we have

ξ
e
χj

n =
3n−1∏
i=0

(2 − ζn+1 − ζ−1
n+1)

aij ρ
i
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=
3n−1∏
i=0

(2 − ζ 4i
n+1 − ζ−4i

n+1)
aij

≡
3n−1∏
i=0

(2 − g
p−1
3n+1 4i

p − g
− p−1

3n+1 4i

p )aij (mod p) .

The last product should be calculated modulo p. We fix positive integers z1 and z2 satisfying

z1 ≡ g
p−1
3n+1
p (mod p)

z2 ≡ z−1
1 (mod p).

3.1. The case � ≡ 1 (mod 3) and 2 � n � s. Since ηn ∈ F�, we have TrK/F� (ηn) =
ηn and

eχj = 1

3n

3n−1∑
i=0

η
ij
n ρ

i .

Let g� be a primitive root of � and fix integers aij satisfying

aij ≡ g
�−1
3n ij

� (mod �) .

There are 2 · 3n−1 injective characters of∆n and none of them is conjugate over F�. If we put

X = {j ∈ Z | 1 � j < 3n, (j, 3) = 1} ,
then {χj | j ∈ X} is the set of all injective characters of ∆n. Then Lemma 4 implies the
following criterion.

CRITERION 1. Put b = 4. If there exists a prime number p which is congruent to 1

modulo 3n+1� and satisfies

( 3n−1∏
i=0

(2 − zb
i

1 − zb
i

2 )
aij

) p−1
�

�≡ 1 (mod p) for each j ∈ X ,

then � does not divide hn/hn−1.

3.2. The case � ≡ 1 (mod 3) and s+1 � n. We have [K : F�] = 3n−s . The minimal
polynomial of ηn over F� is

X3n−s − η3n−s
n .

Therefore TrK/F� (η
i
n) = 0 if i is not divisible by 3n−s . Hence we have

eχj = 1

3n

3s−1∑
i=0

TrK/F� (η
3n−s ij
n )ρ3n−s i
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= 1

3s

3s−1∑
i=0

η
ij
s ρ

3n−s i .

Since there are 2 · 3s−1 non-conjugate primitive 3n-th roots of unity in F�, there are the
same number of F�-conjugacy classes of injective characters of ∆n. In this case, we put

X = {j ∈ Z | 1 � j < 3s, (j, 3) = 1} .
Then {χj | j ∈ X} is a set of representatives of F�-conjugacy classes of injective characters
of ∆n.

Let g� be a primitive root of � and fix integers aij satisfying

aij ≡ g
�−1
3s ij

� (mod �) .

CRITERION 2. Put b = 43n−s . If there exists a prime number p which is congruent to

1 modulo 3n+1� and satisfies

( 3s−1∏
i=0

(2 − zb
i

1 − zb
i

2 )
aij

) p−1
�

�≡ 1 (mod p) for each j ∈ X ,

then � does not divide hn/hn−1.

3.3. The case � ≡ −1 (mod 3) and 2 � n � s. We have [K : F�] = 2. Since

there are 3n−1 non-conjugate primitive 3n-th roots of unity in F�, there are the same number
of F�-conjugacy classes of injective characters of ∆n. In this case, we put

X =
{
j ∈ Z | 1 � j � 3n − 1

2
, (j, 3) = 1

}
.

Then {χj | j ∈ X} is a set of representatives of F�-conjugacy classes of injective characters
of ∆n.

In this case, we have

eχj = 1

3n

3n−1∑
i=0

TrK/F�(η
ij
n )ρ

i

= 1

3n

3n−1∑
i=0

TrF�(ηs)/F� (η
3s−nij
s )ρi .

Fix integers aij satisfying

aij ≡ t3s−nij (mod �) ,

where ti is the element of F� defined by (2) in 3.4.
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CRITERION 3. Put b = 4. If there exists a prime number p which is congruent to 1

modulo 3n+1� and satisfies

( 3n−1∏
i=0

(2 − zb
i

1 − zb
i

2 )
aij

) p−1
�

�≡ 1 (mod p) for each j ∈ X,

then � does not divide hn/hn−1.

3.4. The case � ≡ −1 (mod 3) and s + 1 � n. We have [K : F�] = 2 · 3n−s . Let

X2 − aX + 1

be the minimal polynomial of ηs over F�. Then the minimal polynomial of ηn over F� is

X2·3n−s − aX3n−s + 1 .

therefore TrK/F�(η
i
n) = 0 if i is not divisible by 3n−s . Hence we have

eχj = 1

3n

3s−1∑
i=0

TrK/F�(η
3n−s ij
n )ρ3n−s i

= 1

3s

3s−1∑
i=0

TrF�(ηs)/F� (η
ij
s )ρ

3n−s i .

We need to calculate

ti = TrF�(ηs)/F� (η
i
s) . (2)

We start from t1 = ηs + η−1
s and proceed to

t3 = η3
s + η3�

s = (ηs + η�s )
3 − 3η(�+1)

s (ηs + η�s ) = t31 − 3t1

t32 = η32

s + η32�
s = (η3

s + η3�
s )

3 − 3η3(�+1)
s (η3

s + η3�
s ) = t33 − 3t3

...

t3s−1 = η3s−1

s + η3s−1�
s = t33s−2 − 3t3s−2 = −1 ,

noting η�+1
s = 1. Reversing this procedure, we obtain t1 recursively.

LEMMA 5. Let b1 = −1 ∈ F�. If s � 2, we choose bi ∈ F� (2 � i � s) by

b3
i+1 − 3bi+1 = bi .

Then we have t1 = bs .

REMARK. For each step, we have three roots. Hence we have just 3s−1 t1 which cor-

respond to 3s−1 non-conjugate primitive 3s-th roots of unity in F�. We fix arbitrary one.

We obtain ti (2 � i � 3s−1) from t0 = 2 and t1 using the following recurrence formula.
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LEMMA 6. There holds ti+2 = ti+1t1 − ti .

PROOF. We have

t1ti+1 = (ηs + η�s )(η
i+1
s + η(i+1)�

s )

= ηi+2
s + η(i+2)�

s + ηi+�+1
s + ηi�+�+1

s

= (ηi+2
s + η(i+2)�

s )+ η�+1
s (ηis + ηi�s )

= ti+2 + ti .

�

Since there are 3s−1 non-conjugate primitive 3n-th roots of unity in F�, there are the
same number of F�-conjugacy classes of injective characters of ∆n. In this case, we put

X = {j ∈ Z | 1 � j � 3s − 1

2
, (j, 3) = 1} .

Then {χj | j ∈ X} is a set of representatives of F�-conjugacy classes of injective characters
of ∆n. We fix integers aij satisfying

aij ≡ tij (mod �) .

Note that ij in the left hand side is a subscript with two indices and that in the right is the
product of i and j .

CRITERION 4. Put b = 43n−s . If there exists a prime number p which is congruent to
1 modulo 3n+1� and satisfies

( 3s−1∏
i=0

(2 − zb
i

1 − zb
i

2 )
aij

) p−1
�

�≡ 1 (mod p) for each j ∈ X ,

then � does not divide hn/hn−1.
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