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Abstract. It is well known that 2-interval exchange transformation is isomorphic to the odometer transforma-
tion on some symbolic space and isomorphism is given by Ostrowski representation formula. The purpose of this
paper is to extend these results to the case of 3-interval exchange transformation.

1. Introduction

For each irrational number α, 0 < α < 1, let us introduce 2-interval exchange transfor-
mation Rα of Iα = (−α, 1] by

Rα(x) =
{

x + α if − α < x < 1 − α ,

x − 1 if 1 − α < x ≤ 1 .

For the transformation Rα , it is a well-known fact that there exist a symbolic space Ωα , a
symbolic dynamics Od called odometer transformation and the isomorphic map Φ : Ωα → Iα

which connects Od and Rα as explained in Theorem 1 below.
The symbolic space Ωα and the odometer transformation Od can be obtained by the

following procedure. First, let us introduce the continued fraction transformation T : [0, 1) →
[0, 1) by

T (α) = 1

α
− a(α) ,

where a(α) = � 1
α
�, and put α0 = α, αn = T (αn−1), and an = a(αn−1). Using the sequence

of digits (a1, a2, . . . ) continued fraction expansion of α, we secondly obtain the following
expansion of β ∈ (−α, 1] called Ostrowski type expansion ([3], [2], [6]):

β =
∞∑

N=1

(−1)N−1αα1 · · ·αN−1bN ,
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where digits (b1, b2, . . . ) satisfy

bn ≤ an, if bn = an then bn−1 = 0 ,

which is obtained by the skew product algorithm of continued fraction transformation. (See
[2],[3] for detail). Using digits (b1, b2, . . . ), let us define a symbolic space Ωα by

Ωα = {b = (· · · b2b1) | bn ≤ an, if bn = an then bn−1 = 0 } .

Finally by using a partial order ≺ on Ωα introduced below, the odometer transformation Od
is defined as follows: for b = (· · · bn · · · b1), b′ = (· · · b′

n · · · b′
1) ∈ Ωα, we say that b ≺ b′ if

there exists n0 such that

bn = b′
n , if n > n0 and bn0 < b′

n0
.

Then, define

Od(b) = min{b′| b ≺ b′, b′ ∈ Ωα} .

Then we have the following symbolic odometer representation of the 2-interval exchange
transformation Rα.

THEOREM 1. The following diagram commutes:

Ωα

Φ

��

Od ��

�

Ωα

Φ

��
Iα

Rα

�� Iα

where Φ(b) = ∑∞
N=1(−1)N−1αα1 · · ·αN−1bN .

The purpose of the paper is to study the symbolic odometer representation of a 3-interval
exchange transformation Rα,β which is shown in Figure 1. The precise definition is given in
Section 2.

To study the odometer representation of a 3-interval exchange transformation, we need
to introduce some algorithm for induction, related to a 3-interval exchange transformation,

FIGURE 1. Figure of the 3-interval exchange transformation Rα,β .
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instead of the continued fraction algorithm related to the 2-interval exchange transformation
Rα . By virtue of NIR-algorithm (see [4]), we obtain the symbolic space Ωα,β and the Os-
trowski type expansion of x ∈ Iα,β are obtained in Section 5 and 6. And using the expansion
and symbolic space we arrive at the main theorem in Section 6.

2. Three interval exchange transformations and their induced transformations

Let us introduce the following 3-interval exchange transformation (See Figure 1). For
real numbers α, β (0 < α < β), let us consider the interval Iα,β = [xα,β, xα,β + α + 1 + β]
and partition {Ii | i = 1, 2, 3} of Iα,β given by I1 = [xα,β, xα,β + α], I3 = (xα,β + α, xα,β +
α + 1),I2 = [xα,β + α + 1, xα,β + α + 1 + β] and let us define the 3-interval exchange
transformation Rα,β by

Rα,β(x) :=




x + 1 + β x ∈ I1 ,

x + β − α x ∈ I3 ,

x − (1 + α) x ∈ I2 ,

(1)

where the endpoint xα,β of Iα,β is given explicitly later (the equation (6) in Section 3).

Now let us consider the induced transformation R
(1)
α,β of Rα,β induced on Î (1) :=

[xα,β, xα,β + β] which is the image of I2 by Rα,β . If 1
β−α

/∈ N, then R
(1)
α,β is a 3-interval

exchange transformation again. We name the middle interval Î
(1)
3 and shorter (longer) of the

FIGURE 2. Construction the induced transformation when m1 = 2, ε1 = −1.
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FIGURE 3. Construction the induced transformation when m1 = 2, ε1 = 1.

other two intervals Î
(1)
1 (Î

(1)
2 ), respectively, (see Figure 2 and 3), and whose length are denoted

by

|Î (1)
1 | = α̂1, |Î (1)

2 | = β̂1, |Î (1)
3 | = λ̂1 .

These are concretely given as follows.

λ̂1 = 1 − m1(β − α) = |Î (1)
3 | ,

α̂1 = min{α, β − α − λ̂1} = |Î (1)
1 | ,

β̂1 = max{α, β − α − λ̂1} = |Î (1)
2 | ,

where m1 = ⌊ 1
β−α

⌋
, and define

ε1 =
{

1 if α̂1 = α ,

−1 if β̂1 = α .

In Section 4, as we need another notation of these intervals, here we prepare the notations

J α,β = Î (1), J
α,β
i = Î

(1)
i , i = 1, 2, 3. For convenience, we set λ̂0 = ε0 = 1. If

λ̂1 	= 0, that is equivalent to 1
β−α

/∈ N, and α̂1 	= β̂1, then we can repeat this process

to construct the induced transformation R
(2)
α,β of R

(1)
α,β on Î (2) := R

(1)
α,β(Î

(1)
2 ). In general,
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let us assume that the 3-interval exchange transformation R
(k−1)
α,β on I (k−1) has been given,

then we obtain the 3-interval exchange transformation R
(k)
α,β which is induced from R

(k−1)
α,β on

Î (k) := R
(k−1)
α,β (Î

(k−1)
2 ). Intervals associated with R

(k)
α,β are denoted by {Î (k)

i | i = 1, 2, 3} and

their length |Î (k)
1 | = α̂k, |Î (k)

2 | = β̂k, |Î (k)
3 | = λ̂k are given by

λ̂k = λ̂k−1 − mk(β̂k−1 − α̂k−1) ,

α̂k = min{α̂k−1, β̂k−1 − α̂k−1 − λ̂k} ,

β̂k = max{α̂k−1, β̂k−1 − α̂k−1 − λ̂k} ,

(2)

where mk =
⌊

λ̂k−1

β̂k−1−α̂k−1

⌋
and put

εk =
{

1 if α̂k = α̂k−1 ,

−1 if β̂k = α̂k−1 .

Moreover, we see that Î
(k)
1 and Î

(k)
2 are closed intervals and Î

(k)
3 is an open interval for all k.

Then, we have the following formulae.

PROPOSITION 1. Define matrices A[
m

ε

] as

A[
m

1

] :=

1 0 0

1 1 1
0 m m + 1


 , A[

m

−1

] :=

0 1 0

1 1 1
m 0 m + 1


 ,

then 
α̂k−1

β̂k−1

λ̂k−1


 = A[

mk
εk

]

α̂k

β̂k

λ̂k


 . (3)

PROOF. By the equation (2) we know that

α̂k = min{α̂k−1, (mk + 1)(β̂k−1 − α̂k−1) − λ̂k−1} ,

β̂k = max{α̂k−1, (mk + 1)(β̂k−1 − α̂k−1) − λ̂k−1} ,

then the the formulae (2) can be written as follows: if εk = 1 then


α̂k

β̂k

λ̂k


 =


 1 0 0

−(1 + mk) 1 + mk −1
mk −mk 1





α̂k−1

β̂k−1

λ̂k−1


 = A−1[

mk
1

]

α̂k−1

β̂k−1

λ̂k−1


 ,
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and if εk = −1 then
α̂k

β̂k

λ̂k


 =


−(1 + mk) 1 + mk −1

1 0 0
mk −mk 1





α̂k−1

β̂k−1

λ̂k−1


 = A−1[

mk
−1

]

α̂k−1

β̂k−1

λ̂k−1


 .

Therefore, we obtain the conclusion. �

If λ̂k 	= 0 and α̂k 	= β̂k for any k ∈ N, we obtain an infinite sequence(
m1 m2 · · · mk · · ·
ε1 ε2 · · · εk · · ·

)
.

We call it the digits of (α, β) from the induction of 3-interval exchange transformation Rα,β .

PROPOSITION 2. Let us assume that α, β (0 < α < β) produce the digits(
m1 · · · mk · · ·
ε1 · · · εk · · ·

)
, that is, let us assume that λ̂k 	= 0, α̂k 	= β̂k for all k ∈ N. Then

we have
(1) α̂n, β̂n, λ̂n → 0 as n → ∞.
(2) For infinitely many k ∈ N, mk 	= 0.
(3) For infinitely many k ∈ N, εk = −1.

PROOF. From the definition {α̂n},{β̂n},{λ̂n} are positive and not increasing. Suppose

that there exists C > 0 such that α̂k + λ̂k > C for all k ∈ N. Then by the equation (3) we
know that

β̂k = α̂k+1 + λ̂k+1 + β̂k+1 > C + β̂k+1 > nC + β̂k+n .

Thus we have β̂k > nC for any n ∈ N. This contradicts the fact that β(≥ β̂k) is bounded.

Therefore we have α̂k + λ̂k ↘ 0, and then α̂k ↘ 0 and λ̂k ↘ 0.
Suppose that εk = 1 for all k ≥ k0. Then α̂k0 = α̂k0+1 = · · · = α̂k . On the other hand

β̂k0+n = β̂k0+n−1 − α̂k0+n − λ̂k0+n

< β̂k0+n−1 − α̂k0+n = β̂k0+n−1 − α̂k0

< β̂k0+n−2 − 2α̂k0 < · · · < βk0 − nα̂k0 < β − nα̂k0 ,

for all n ≥ k0. This contradicts β̂n > 0. Therefore statement (3) holds.

Suppose that mk = 0 for all k ≥ k0. Then from the definition we get λ̂k = λ̂k−1 −
mk(β̂k − α̂k) = λ̂k−1, this contradicts the fact that λ̂k ↘ 0. Therefore the statement (2) holds.

Suppose that there exists k0 ∈ N and C > 0 such that β̂k > C > 0 for all k ≥ k0.

Then we see that there exists k1 ∈ N such that β̂k > C > α̂k + λ̂k for all k ≥ k1 and then

λ̂k < β̂k − α̂k . This means that mk = 0 for all k > k1. We get the desired contradiction to the

statement (2). Therefore, we have β̂k ↘ 0 and the the statement (1) holds. �
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3. Renormalization of induced transformation and NIR-algorithm

In Section 2, we study the induced transformation R
(1)
α,β of Rα,β on Î (1) = Rα,β(I2) and

R
(1)
α,β is given explicitly by Figure 2 and 3. Let us recall the length of interval Î

(1)
i is given by

|Î (1)
3 | = λ̂1 = 1 − m1(β − α) ,

|Î (1)
1 | = α̂1 = min{α, β − α − λ̂1} = min{α, (m1 + 1)(β − α) − 1} ,

|Î (1)
2 | = β̂1 = max{α, β − α − λ̂1} = max{α, (m1 + 1)(β − α) − 1} .

Now let us consider the renormalization of 3-interval exchange transformation by linear iso-

morphism θ1 to keep the length of θ1(I
(1)
3 ) equals 1. Namely, let us consider the following

map T : X → X, T (α, β) = (α1, β1), where X := {(α, β)| α < β, α, β > 0} and

α1 = α̂1

λ̂1
, β1 = β̂1

λ̂1
. (4)

Define cylinder sets D

(
p

q

)
= {(α, β) ∈ X

∣∣m1(α, β) = p, ε1(α, β) = q}, then{
D

(
p

q

) ∣∣∣∣p = 0, 1, 2 . . . , q = ±1

}
is a partition of X and we see that

D

(
m

1

)
=

{
(α, β) ∈ X

∣∣∣∣ α + 1

m + 1
< β < α + 1

m
,β >

m + 2

m + 1
α + 1

m + 1

}
,

D

(
m

−1

)
=

{
(α, β) ∈ X

∣∣∣∣ α + 1

m + 1
< β < α + 1

m
,β <

m + 2

m + 1
α + 1

m + 1

}
,

(See Figure 4.) We can see that the restriction of T on D

(
m

ε

)
is an one-to-one onto map to

X. Moreover we have the following theorem.

THEOREM 2. Let R
(1)
α,β be the induced transformation of Rα,β on Î (1), and let Rα1,β1

be the 3-interval exchange transformation on Iα1,β1 = [xα1,β1, xα1,β1 + α1 + 1 + β1] given by

the equation (1). Then R
(1)
α,β is isomorphic to Rα1,β1 with the isomorphism θ1 : Î (1) → Iα1,β1

given by

θ1(x) = ε1

1 − m1(β − α)
x = ε1

λ̂1
x .

The proof is obtained by the following Lemma 1 and Corollary 2. The transformation
T is called N-I-R algorithm in the paper [4]. Before giving the proofs of the Lemma 1 and
Corollary 2, we prepare a few notations. Let us consider the set X0 given by

X0 := {(α, β) ∈ X | T n(α, β) belongs to the interior of X, n = 0, 1, 2, . . . }
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FIGURE 4. Cylinder sets D

(
m

ε

)
of X.

then for (α, β) ∈ X0 we can define T n(α, β) for any n ∈ N. Take (α, β) ∈ X0 and put

(α0, β0) := (α, β) ,

(αk+1, βk+1) := T (αk, βk) , (5)

mk+1 :=
⌊

1

βk − αk

⌋
,

λk+1 := 1 − mk+1(βk − αk) ,

and rewrite

εk+1 =
{

+1 if αk < (mk+1 + 1)(βk − αk) − 1 ,

−1 if αk > (mk+1 + 1)(βk − αk) − 1 ,

where k = 0, 1, 2 . . . . By Proposition 3, this definition of mk+1 is equal to
⌊

λ̂k

β̂k−α̂k

⌋
which is

defined in the previous section, so we use the same notation.

PROPOSITION 3. The following relation holds:
α̂n = λ1 · · · λn αn ,

β̂n = λ1 · · · λn βn ,

λ̂n = λ1 · · · λn .

PROOF. From the definition (4) and (5) we see that
α̂1

β̂1

λ̂1


 = λ1


α1

β1

1


 ,
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and by the Proposition 1 we know
α

β

1


 = A[

m1
ε1

] · · ·A[
mn

εn

]

α̂n

β̂n

λ̂n


 ,

and from the definition (4) and (5) we know
α

β

1


 = λ1 · · ·λnA

[
m1
ε1

] · · · A[
mn

εn

]

αn

βn

1


 .

Therefore, we have the conclusion of this proposition. �

From Theorem 2 we have

COROLLARY 1. Let R
(n)
α,β be the induced transformation of Rα,β on Î (n), then R

(n)
α,β is

isomorphic to Rαn,βn with the isomorphism θn : Î (n) → Iαn,βn given by

θn(x) = ε1

λ1

ε2

λ2
· · · εn

λn

x = ε1ε2 · · · εn

λ̂n

x .

LEMMA 1. Put

xα,β =
∞∑

N=1

δn
1

ε1

λ1

ε2

λ2

ε3
· · · λN−1

εN

βN−1 , (6)

where

δk =
{

0 if εk = 1 ,

1 if εk = −1 .

Then xα,β satisfies the relation

θ1(xα,β) =
{

xα1,β1 if ε1 = 1 ,

xα1,β1 + (α1 + 1 + β1) if ε1 = −1 .

PROOF. Assume that ε1 = 1, then

θ1(xα,β) = ε1

λ1
xα,β = δ1

β0

λ1
+ ε1

λ1

∞∑
N=2

δN

1

ε1

λ1

ε2
· · · λN−1

εN
βN−1 ,

= 0 + 1 ·
∞∑

N=2

δN
1

ε2

λ2

ε3
· · · λN

εN

βN−1 = xα1,β1 .

Assume that ε1 = −1, then

θ1(xα,β) = β0

λ1
+

∞∑
N=2

δN
1

ε2

λ2

ε3
· · · λN

εN

βN−1
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= α̂1 + λ̂1 + β̂1

λ1
+ xα1,β1 = α1 + 1 + β1 + xα1,β1 .

�

From now on the left endpoint xα,β of Iα,β is defined by the equation (6).

COROLLARY 2. The map θ1(x) = ε1
λ1

x is bijective from Î (1)(= Rα,β(I2)) to Iα1,β1 .

PROOF. By the Lemma 1, the left endpoint xα,β of Î (1) is mapped to the point xα1,β1

or xα1,β1 + α1 + 1 + β1 respectively depending on the parity of ε1, and it is the endpoint of

Iα1,β1 . Moreover from the fact that the ratio |Iα1,β1|/|Î (1)| coincides with 1/λ1 we obtain the
conclusion. �

COROLLARY 3. The origine 0 is the only point included in Î (n) for all n, that is,
∞⋂

n=0

Î (n) = {0} .

PROOF. By Proposition 3, we know β̂n = λ1λ2 · · ·λnβn, and we have

xα,β =
∞∑

N=1

δnε1ε2 · · · εNβ̂N−1 .

We denote an = inf Î (n), bn = sup Î (n), then we can see

(an, bn) =
{

(an−1, an−1 + β̂n) if ε̂n−1 = 1 ,

(bn−1 − β̂n, bn−1) if ε̂n−1 = −1 ,

where

ε̂k =
{

0 if ε1ε2 · · · εk = 1 .

1 if ε1ε2 · · · εk = −1 .

We show that the following fomulae satisfy this reccurent equation.

an =
∞∑

N=n+1

δNε1ε2 · · · εNβ̂N−1 − ε̂nβ̂n , (7)

bn =
∞∑

N=n+1

δNε1ε2 · · · εNβ̂N−1 + (1 − ε̂n)β̂n .

Consider the case when ε1ε2 · · · εn−1 = −1 and εn = −1. In this case we have δn = 1 and
ε1ε2 · · · εn = 1, then from the equation (7) we get

bn−1 =
∞∑

N=n

δNε1ε2 · · · εnβ̂n−1 + (1 − ε̂n)β̂n
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= δnε1 · · · εnβ̂n−1 +
∞∑

N=n+1

δNε1ε2 · · · εNβ̂N−1 + (1 − ε̂n)β̂n

= β̂n−1 +
∞∑

N=n+1

δNε1ε2 · · · εNβ̂N−1 .

On the other hand an = ∑∞
N=n+1 δNε1ε2 · · · εNβ̂N−1 then an = bn−1 − β̂n−1. We can show

in the other case analoguesly.
Now we will see that an is negative for all n. In the equation (7), if ε̂n = 0 then

ε1ε2 · · · εn = 1, hence the first non-zero term in the alternating series is negative. If ε̂n = 1,
then the first non-zero term in the alternating series is positive but the absolute value of this

term is less than β̂n. Anyway we get that an is negative. Similarly, we can see bn is positive.
With Proposition 2, we get the conclusion. �

Moreover we will get the following fact by Lemma 3:

∞⋂
n=0

Î
(n)
3 = {0} . (8)

EXAMPLE 1. Let (α, β) = ( 2
√

6
3 − 1, 1), then we get

(
α0 α1 · · ·
β0 β1 · · ·

)
=

(
2
√

6
3 − 1 2

√
6−3
5

2
√

6−3
5

2
√

6
3 − 1 · · ·

1 2
√

6+7
5 1 1 · · ·

)

and (
m1 m2 · · ·
ε1 ε2 · · ·

)
=

(
2 0 1

−1 1 −1

)
.

Therefore (α, β) = ( 2
√

6
3 − 1, 1) is a purely periodic point with period 3 of NIR-algorithm T .

4. Substitutions and Partitions

Now, let us introduce the following substitution σ[
m

ε

], ε ∈ {1,−1} by

σ[
m

1

] :




1 → 12,

2 →
m times︷ ︸︸ ︷
3 · · · 3 2 ,

3 →
m+1 times︷ ︸︸ ︷

3 · · · 3 2 ,

, σ[
m

−1

] :




1 →
m times︷ ︸︸ ︷
3 · · · 3 2 ,

2 → 12,

3 →
m+1 times︷ ︸︸ ︷

3 · · · 3 2 .
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In general, let us denote σ[
mn+1
εn+1

](j) = W
(n)(
j

1

)W
(n)(
j

2

) · · · W(n)(
j

l
(n)
j

), n = 0, 1, 2, . . . where l
(n)
j is

the length of word σ[
mn+1
εn+1

](j).

Consider the induced transformation R
(1)
αn,βn

of Rαn,βn onto J αn,βn = Rαn,βnI
(n)
2 :=

J
αn,βn

1 ∪ J
αn,βn

3 ∪ J
αn,βn

2 , where J
αn,βn

i i = 1, 2, 3 are defined in previous section.

For simplicity, let us denote I (n) instead of Iαn,βn = [xαn,βn, xαn,βn + αn + 1 + βn], and

denote J (n), J
(n)
i instead of J αn,βn, J

αn,βn

i , i = 1, 2, 3, respectively (See Figure 5). Using

these notations, let us define the finer partition of {I (n)
i | i = 1, 2, 3} as follows:

I
(n)(
j

1

) := J
(n)
j ,

I
(n)(
j

k

) := Rαn,βnI
(n)(

j

k − 1

) ,

where j ∈ {1, 2, 3}, k = 1, 2, . . . , l
(n)
j , n = 0, 1, 2, . . . and we see

l
(n)
j = min{N |RN

αn,βn
J

(n)
j ⊂ Rαn,βn

(
I

(n)
2

)
, N ≥ 1} .

PROPOSITON 4. The set {I (n)(
j

k

)| j = 1, 2, 3, k = 1, 2, . . . , l
(n)
j } is a finer partition of

{I (n)
i | i = 1, 2, 3}, that is,

I (n) =
⋃

j=1,2,3

l
(n)
k⋃

k=1

I
(n)(
j

k

) =
⋃

j=1,2,3

l
(n)
k⋃

k=1

Rk
αn,βn

I
(n)(
j

1

) . (9)

and intervals in the equation (9) are pairwise disjoint. Moreover I
(n)(
j

k

) ⊂ I
(n)

W
(n)(
j

k

), j = 1, 2, 3,

and as we see in Figure 5, I
(n)
i is decomposed into

I
(n)
i =

⋃
W

(n)(
j

k

)=i

I
(n)(
j

k

) . (10)

DEFINITION 1. For x ∈ Iα,β , we call s1s2 · · · the name of x under Rα,β , if Rk−1
α,β (x) ∈

Isk .

THEOREM 3. Let s = (s1, s2 · · · ) be the name of 0, then

s = lim
n→∞ σ[

m1
ε1

] ◦ σ[
m2
ε2

] ◦ · · · ◦ σ[
mn

εn

](3) .
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PROOF. From the fact {0} ∈ ⋂∞
n=0 Î

(n)
3 which will be proved in Section 6, it follows

that if we know the name of 0 under R
(k)
α,β , denoted by s

(k)
1 s

(k)
2 · · · , then the name of 0 under

R
(k−1)
α,β is given by

s
(k−1)
1 s

(k−1)
2 · · · = σ[

mk
εk

](s(k)
1 s

(k)
2 · · · ) .

Therefore, we have

s1s2 . . . sn · · · = σ[
m1
ε1

] ◦ · · · ◦ σ[
mk
εk

](s(k)
1 s

(k)
2 · · · ) .

By the equation (8), 0 ∈ Î
(n)
3 and s

(k)
1 = 3 for all k, we have

s1s2 . . . sk · · · = lim
n→∞ σ[

m1
ε1

] ◦ · · · ◦ σ[
mn

εn

](3) .

�

5. Ostrowski type numerical expansion

To begin with, we prepare a family of maps {gk}k . Let A∗ = ⋃
n≥0{1, 2, 3}n be a set of

finite sequences of {1, 2, 3} and gn : A∗ → Z|I (n)
1 | + Z|I (n)

2 | + Z|I (n)
3 | be a homomorphism

satisfying:

gn(∅) := 0 ,

gn(i) := Rαn,βn(x) − x x ∈ I
(n)
i if i ∈ {1, 2, 3} , (11)

=




gn(1) = 1 + βn ,

gn(2) = −(1 + αn) ,

gn(3) = βn − αn ,

gn(uv) := gn(u) + gn(v) for any u, v ∈ A∗ . (12)

Recall that (α0, β0) = (α, β) and I (0) = Iα,β . Then, we know that gn(i) gives a translation of

the interval I
(n)
i ⊂ I (n) by Rαn,βn .

By the equation (9), intervals I(j

1

) and their images by Rα,β cover I . Hence, for any

x ∈ I(
j

k

), we know that R
−(k−1)
α,β (x) ∈ I(

j

1

). On the other hand, by Proposition 4 and the
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FIGURE 5. the map F1 and the partition {I (0)(
j

k

)} of I (0) in the case of m1 = 2, ε1 = −1.

equation (11), if x ∈ I(j

k

), then R−1
α,β(x) ∈ I( j

k − 1

) ⊂ I
W

(0)(
j

k − 1

) and

R−1
α,β(x) = x − g0(W

(0)(
j

k − 1

)) .

Thus we get by the equation (12) that

R
−(k−1)
α,β (x) = x − g0(W

(0)(
j

k − 1

)) − g0(W
(0)(

j

k − 2

)) − · · · − g0(W
(0)(
j

1

))

= x − g0(P
(0)(
j

k

)) ,

where P
(n)(
j

k

) := W
(n)(
j

1

)W
(n)(
j

2

) · · · W(n)(
j

k − 1

) is the prefix word before W
(n)(
j

k

) in σ[
mn+1
εn+1

](j). Then

by Theorem 2, we can define the map F1 : Iα,β → I (1) as follows (See Figure 5):

F1(x) = θ1(R
−(k−1)
α,β (x))

= ε1

λ1


x − g0(P

(0)(
j

k

))


 if x ∈ I(j

k

) .

Similarly we define maps Fn : I (n−1) → I (n)

Fn(x) = εn

λn


x − gn−1(P

(n−1)(
j

k

) )


 if x ∈ I

(n−1)(
j

k

) . (13)
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Then we get

FnI
(n−1)(
j

k

) = I
(n)
j , (14)

F−1
n I

(n)(
j

k

) ∩ I
(n−1)(
j ′
k′
) 	= ∅ ⇒ j ′ = W

(n)(
j

k

) . (15)

Now, let us define the map ϕ from Iα,β to some symbolic space Ω0
α,β as follows: for

any x ∈ Iα,β , we can find the sequence of the intervals I
(n)(
jn
kn

), n = 0, 1, 2, . . . satisfying

x ∈ I(j0
k0

), and xn := Fn(xn−1) ∈ I
(n)(
jn
kn

). From the indices of these intervals, we can define

the map ϕ to the symbolic space by setting

ϕ(x) =
(· · · j1 j0

· · · k1 k0

)
.

Then we have the following Ostrowski type numerical representation.

PROPOSITON 5. For x ∈ Iα,β and ϕ(x) =
(· · · j1 j0

· · · k1 k0

)
we have

(1) if x, x ′ ∈ Iα,β and x 	= x ′ then ϕ(x) 	= ϕ(x ′)
(2) x can be represented by

x =
∞∑

N=1

λ0

ε0

λ1

ε1
· · · λN−1

εN−1
gN−1(P

(N−1)(
jN−1
kN−1

)) .

PROOF. Statement (1) is obtained in Lemma 2 in the next section. From the fact that
x1 = F1(x), xn = Fn(xn−1) and (13),

x = λ1

ε1
x1 + g0(P

(0)(
j0
k0

)) if x ∈ I(j0
k0

)

= λ1

ε1


λ2

ε2
x2 + g1(P

(1)(
j1
k1

))


 + g0(P

(0)(
j0
k0

)) if x1 ∈ I
(1)(
j1
k1

)

=
n∑

N=1

λ0

ε0

λ1

ε1
· · · λN−1

εN−1
gN−1(P

(N−1)(
jN−1
kN−1

)) + λ0

ε0

λ1

ε1
· · · λn

εn

xn .

Since xn ∈ Iαn,βn , we get |xn| < αn + 1 + βn < 1 + 2βn, then∣∣∣∣λ0

ε0

λ1

ε1
· · · λn

εn

xn

∣∣∣∣ = λ1λ2 · · ·λn|xn| < λ̂n + 2β̂n .
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By Proposition 2, we obtain the conclusion. �

6. Symbolic space and Odometer transformation

Let us introduce a directed graph G = {V, E, iv, tv} shown in Figure 6 as follows:

V = ⋃∞
n=0 {(1)n, (2)n, (3)n}, E = ⋃∞

n=0

{(
jn

kn

) ∣∣∣∣ I
(n)(
jn
kn

) ⊂ Iαn,βn

}
, iv, tv : E → V where

iv

(
jn

kn

)
= (jn)n+1, tv

(
jn

kn

)
= (W

(n)(
jn
kn

))n . (16)

See Figure 6.

DEFINITION 2. An infinite sequence ω =
(· · · j1 j0

· · · k1 k0

)
is called a G-admissible

sequence if

W
(N)(
jN
kN

) = jN−1 , (17)

for all N = 1, 2, 3, . . . . For a finite sequence u =
(

jn−1 · · · j0

kn−1 · · · k0

)
, u is called a G-

admissible word if (17) holds for N = 1, 2, . . . , n − 1.
Define the symbolic space Ωα,β by

Ωα,β =
{
ω =

(· · · j1 j0

· · · k1 k0

) ∣∣∣∣ ω is G-admissible

}
.

FIGURE 6. Graph G = {V,E, iv, tv} and substitutions of Example 1.
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Then we see that for any x ∈ Iα,β , ϕ(x) =
(· · · j1 j0

· · · k1 k0

)
is an element of Ωα,β , that is,

ϕ(Iα,β) ⊂ Ωα,β . In fact, let us assume that xn−1 ∈ I
(n−1)(
jn−1
kn−1

) and Fn(xn−1) ∈ I
(n)(
jn
kn

), then by

the equations (14) and (10)

I
(n)
jn−1

=
⋃

W
(n)(
j

k

)=jn−1

I
(n)(
j

k

) .

This shows that the relation W
(n)(
jn
kn

) = jn−1 holds.

Let us define the set Ω0
α,β by

Ω0
α,β = ϕ(Iα,β) = {

ϕ(x)
∣∣ x ∈ Iα,β

}
.

Oppositely, let us define the map Φ : Ωα,β → Iα,β by setting

Φ

(· · · j1 j0

· · · k1 k0

)
=

∞∑
N=1

λ0

ε0

λ1

ε1
· · · λN−1

εN−1
gN−1(P

(N−1)(
jN−1
kN−1

)) . (18)

For G-admissible word u =
(

jn−1 · · · j0

kn−1 · · · k0

)
, let us define the cylinder set

∆

(
jn−1 · · · j0

kn−1 · · · k0

)
of Iα,β as follows:

∆(u) = ∆

(
j ′
n−1 · · · j ′

0
k′
n−1 · · · k′

0

)

:=
{
x
∣∣ ϕ(x) =

(· · · jn+1 jn j ′
n−1 · · · j ′

0
· · · kn+1 kn k′

n−1 · · · k′
0

)}
.

For ∆(u), we call u the word of ∆(u). From the equations (14), (15) and (16), the cylinder
set is an inverval and is denoted by

∆

(
j ′
n−1 · · · j ′

0
k′
n−1 · · · k′

0

)
=

n⋂
N=1

F−1
1 ◦ F−1

2 ◦ · · · ◦ F−1
N−1I

(N−1)(
j ′
N−1

k′
N−1

) . (19)

LEMMA 2. The cylinder sets defined by the equation (19) satisfy the following condi-
tions:

(1) Put for n = 0, 1, 2, . . .

ξn =
{
∆

(
jn−1 · · · j0

kn−1 · · · k0

) ∣∣∣∣
(

jn−1 · · · j0

kn−1 · · · k0

)
is G-admissible

}
,
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then ξn is a partition of Iα,β , that is,

Iα,β =
⋃

∆

(
jn−1 · · · j0

kn−1 · · · k0

)
(disjoint) .

If m > n, ξm is a finer partition than ξn (See Figure 7).

(2) ∆

(
jn−1 · · · j0

kn−1 · · · k0

)
is an open interval if jn−1 = 3, and is closed if jn−1 = 1 or

2 and its length is given by

∣∣∣∣∆
(

jn−1 · · · j0

kn−1 · · · k0

)∣∣∣∣ =




α̂n if jn−1 = 1 ,

β̂n if jn−1 = 2 ,

λ̂n if jn−1 = 3 .

(3) Let En be the set of endpoints of intervals in ξn and E = ⋃∞
n=0 En. Then for a point

x ∈ E, there exist ω ∈ Ω0
α,β and ω′ ∈ Ωα,β \ Ω0

α,β such that Φ(ω) = Φ(ω′) = x.

PROOF. By the equation (19), we have

∆

(
jn · · · j0

kn · · · k0

)
= ∆

(
jn−1 · · · j0

kn−1 · · · k0

)
∩ F−1

1 ◦ F−1
2 ◦ · · · ◦ F−1

n I
(n)(
jn
kn

) . (20)

Therefore ∆

(
jn · · · j0

kn · · · k0

)
is a subset of ∆

(
jn−1 · · · j0

kn−1 · · · k0

)
. From Proposition 4

{−I(j

k

) − (n)} is a partition of I (n) then

∆

(
jn−1 · · · j0

kn−1 · · · k0

)
=

⋃

jn

kn





∆

(
jn−1 · · · j0

kn−1 · · · k0

)
∩ F−1

1 ◦ F−1
2 ◦ · · · ◦ F−1

n I
(n)(
jn
kn

)



=
⋃

∆

(
jn · · · j0

kn · · · k0

)
,

Thus the statement (1) holds.

The set F−1
1 ◦ F−1

2 ◦ · · · ◦ F−1
n−1I

(n−1)(
jn−1
kn−1

) is constructed by the union of several intervals

which have the same length. If jn−1 = 3, then I
(n−1)(
jn−1
kn−1

) is open, therefore each interval in

F−1
1 ◦ F−1

2 ◦ · · · ◦ F−1
n−1I

(n−1)(
jn−1
kn−1

) is open. Similarly if jn−1 = 1 or 2 then they are closed. One
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of these intervals is whole included in ∆

(
jn−1 · · · j0

kn−1 · · · k0

)
and the other is disjoint. The it is

decided by jn−1 that whether ∆

(
jn · · · j0

kn · · · k0

)
is open or closed. By the definition of I

(n)(
j

k

),

we have ∣∣I (n−1)(
jn−1
kn−1

)∣∣ = ∣∣J (n−1)
jn−1

∣∣ = λn

∣∣I (n)
jn

| ,

and |F−1
n I | = λn|I | then∣∣F−1

1 ◦ F−1
2 ◦ · · · ◦ F−1

n−1I
(n−1)(
jn−1
kn−1

)∣∣ = λ1
∣∣F−1

2 ◦ F−1
3 · · · ◦ F−1

n−1I
(n−1)(
jn−1
kn−1

)∣∣
= λ1λ2 · · · λn−1

∣∣I (n−1)(
jn−1
kn−1

)∣∣ = λ1λ2 · · ·λn−1λn

∣∣I (n)
jn

∣∣ .
By Proposition 2, statement (2) holds.

Suppose that ∆

(
jn−1 · · · j0

kn−1 · · · k0

)
and ∆

(
j ′
n−1 · · · j ′

0
k′
n−1 · · · k′

0

)
are two adjoining intervals

in ξn. Then one of jn−1 and j ′
n−1 is 3, and the other is 1 or 2. We denote these set ∆, ∆′

for simplicity. Without lost of generality, we can assume that jn−1 = 3 and sup ∆ = inf ∆′.
Put x∆ = sup ∆. Then ∆ is an open interval, and ∆′ is closed. For m > n, we denote the
rightmost subinterval of ξm which is included in ∆ by ∆R(m) and the leftmost subinterval of
ξm which is included in ∆ by ∆′

L(m). Since ∆R(m) is open and ∆′
L(m) is closed, we can

write that

∆R(m) = ∆

(
3 · · · 3 jn−1 · · · j0

km−1 · · · kn kn−1 · · · k0

)
,

∆′
L(m) = ∆

(
j ′
m−1 · · · j ′

n j ′
n−1 · · · j ′

0
k′
m−1 · · · k′

n k′
n−1 · · · k′

0

)
jn, . . . , jm−1 ∈ {1, 2} .

By statement (2), the lengths of ∆R(m) and ∆′
L(m) goes to 0, then we have

x∆ =
⋂
m>n

∆R(m) =
⋂
m>n

∆′
L(m)

where A denote a closure of set A. Thus the words associated with ∆R(m) and ∆′
L(m) are

mapped x∆ as m goes to infinity. �

By this lemma and Proposition 2, the length of each cylinder set shrinks to 0 as the
length of its word goes to infinity. Therefore for x, x ′ ∈ Iα,β , if x 	= x ′ then x and x ′ belong
to different cylinder sets corresponding to sufficiently long words. Then we complete the
proof of Proposition 5.
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FIGURE 7. Cylinder sets in Example 1.(
jn−1 · · · j0
kn−1 · · · k0

)
:= ∆

(
jn−1 · · · j0
kn−1 · · · k0

)

LEMMA 3. For any (α, β) ∈ X0, ω0 =
(· · · 3 3

· · · 1 1

)
is G-admissible, ω0 ∈ Ω0 and

Φ(ω0) = 0.

PROOF. By P
(n)(

3
1

) = ∅ for all n ∈ N, it is obvious that Φ(ω0) = 0. Denote

∆

(
3 · · · 3
1 · · · 1︸ ︷︷ ︸

ntimes

)
by ∆n. It is sufficient to show that 0 belongs the interior of ∆n. Take

n satisfying mn 	= 0, then we have ∆n � ∆n−1, and ∆n is the rightmost (leftmost) subin-
terval in ∆n−1 respectively depending on the parity of ε̂n. By Proposition 2, we know that
mk 	= 0 for infinitely many k, then we can take n1 < n2 < · · · such that

∆nk−1 = Rnk ∪ ∆nk ∪ Lnk (disjoint) ,

where x < y < z for ∀x ∈ Rnk ,∀y ∈ ∆nk ,∀z ∈ Lnk , and |Rnk | > 0, |Lnk | > 0. Then 0 is not

a boundary point of any ∆k. Therefore we get the equation (8), that is,
⋂∞

n=0 Î
(n)
3 = {0}. �

Now, we introduce a partial order ≺ in Ωα,β as follows. Let ω =
(· · · j1 j0

· · · k1 k0

)
, ω′ =(· · · j ′

1 j ′
0

· · · k′
1 k′

0

)
. Then we say that ω ≺ ω′ if there exists n0 ∈ N such that
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


(
jn

kn

)
=

(
j ′
n

k′
n

)
n > n0 ,(

jn0

kn0

)
	=

(
j ′
n0

k′
n0

)
and kn0 < k′

n0
.

Note that jn0 = j ′
n0

, because

(
jn0+1

kn0+1

)
=

(
j ′
n0+1

k′
n0+1

)
.

Let ωα,β =
(· · · j1 j0

· · · k1 k0

)
be a maximal element in Ωα,β under ≺, that is,

jn = 2, kn = l
(n)
jn

, n = 0, 1, 2, . . . ,

and put

M =
∞⋃

n=0

Od−n(ωα,β) .

Then we can define the odometer transformation Od : Ω0
α,β \ M → Ω0

α,β \ M .

Od(ω) = min{ω′ ∈ Ωα,β | ω′ � ω} .

More concretely, Od(ω) is given by the following formula:

Od :
(· · · jn · · · j0

· · · kn · · · k0

)

→




(
· · · jn · · · j0

· · · kn · · · k0 + 1

)
if k1 < l

(0)
j0

(
· · · jn+1 jn j ′

n−1 · · · j ′
0

· · · kn+1 kn + 1 1 · · · 1

)
if




k1 = l
(p)
jp

,

(0 ≤ p ≤ n − 1),

kn < l
(n)
jn

,

where j ′
n−1 = W

(n)(
jn

kn + 1

), j ′
p = W

(p)(
1
p

) (0 ≤ p ≤ n − 1).

THEOREM 4. The following commutative diagram holds:

Ω0
α,β \ M

Φ

��

Od ��

�

Ω0
α,β \ M

Φ

��
Iα,β

Rα,β

�� Iα,β
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where Φ : Ω0
α,β \ M → Iα,β is given by the equation (18) and it is bijection.

PROOF. First we prove the case when the carry over does not occur. For ω =(· · · jn · · · j0

· · · kn · · · k0

)
, we have

Od(ω) =
(· · · jn · · · j0

· · · kn · · · k0 + 1

)
.

By Proposition 4, if Φ(ω) ∈ I(j0
k0

) ⊂ I
W

(0)(
j0
k0

) , then we know that

Φ(Od(ω)) − Φ(ω) =
∞∑

N=1

λ0

ε0

λ1

ε1
· · · λN−1

εN−1
gN−1(P

(N−1)(
jN−1
kN−1

)) + g0(P
(0)(

j0
k0 + 1

))

−
∞∑

N=1

λ0

ε0

λ1

ε1
· · · λN−1

εN−1
gN−1(P

(N−1)(
jN−1
kN−1

))

= g0(W
(0)(
k0
j0

)) .

Since x + g0(i) = Rα,β(x) for x ∈ I( i

∗
), we get

Φ(Od(ω)) = Rα,β(Φ(ω)) .

Next, let us consider the case when the carry over occurs at the first place, that is, ω =(
· · · j1 j0

· · · k1 l
(0)
j0

)
, k1 	= l

(1)
k1

,

Od(ω) =
(· · · jn · · · j1 j ′

0
· · · kn · · · k1 + 1 1

)
.

Then we have

Φ(Od(ω)) − Φ(ω)

=
∞∑

N=2

λ1

ε1

λ2

ε2
· · · λN−1

εN−1
gN−1(P

(N−1)(
jN−1
kN−1

)) + λ1

ε1
g0(P

(0)(
j0

k0 + 1

))

−




∞∑
N=1

λ0

ε0

λ1

ε1
· · · λN−1

εN−1
gN−1(P

(N−1)(
jN−1
kN−1

)) + g0(P
(0)(

j0

l
(0)
j0

))



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= λ1

ε1
g1(W

(1)(
j1
k1

)) − g0(P
(0)(

j0

l
(0)
j0

)) .

Because g0(W
(0)(
k0
j0

)) is the translation of I(k0
j0

) under Rα,β , by Theorem 2 and the definition of

σ[
m

ε

], we get

g1(i) = θ1(g0(σ
[
m1
ε1

](i)))
and

λ1

ε1
g1(i) = g0(σ

[
m1
ε1

](i)) = g0(P
(0)(

i

l
(0)
i

)) + g0(W
(0)(

i

l
(0)
i

)) .

Therefore

λ1

ε1
g1(W

(1)(
j1
k1

)) − g0(P
(0)(

j0

l
(0)
i

)) = g0(W
(0)(

j0

l
(0)
j0

)) .

This leads to the conclusion of the theorem in the case the carry over occurs at the first place.
We get the proof for in general cases analogously. �
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