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Cn-moves and Vn-equivalence for Links

Haruko Aida MIYAZAWA

Tsuda College

Abstract. K. Habiro defined a Cn-move which is a local move on oriented links. He also proved that two knots
are not distinguished by any Vassiliev invariants of order less than n if and only if they are related by a finite sequence
of Cn-moves. In the case of n ≥ 3, it is known that the result does not hold for links. In this note we will introduce
a special Cn-move and give a “geometrical” necessary and sufficient condition using the terms of Cn-moves for that
two links are not distinguished by any Vassiliev invariants of order less than 3 or 4.

1. Introduction

In this paper we consider oriented links in the 3-sphere S3. A Cn-move ( n ≥ 2 ) is a
local move indicated in Figure 1.1 on oriented links defined by K. Habiro [5].

FIGURE 1.1

A C1-move is defined as a crossing change. We remark that a C2-move is equivalent to
a ∆-move in Figure 1.2 (i) and a C3-move is also called a clasp-pass move ([6]) in Figure 1.2
(ii).

We say that two links (or knots) are Vn-equivalent ([14]) if they are not distinguished
by any Vassiliev invariants of order less than or equal to n. A Cn-move is closely related
to Vassiliev invariants. In fact M. N. Goussarov and Habiro showed the following theorem
independently:
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FIGURE 1.2

THEOREM 1.1 ([4, 7]). Let K and K ′ be oriented knots and n a positive integer. Then
K and K ′ can be transformed into each other by a finite sequence of Cn+1-moves if and only
if they are Vn-equivalent.

In this paper we consider the link case.
Since a C2-move is a ∆-move and a Vassiliev invariant of order 1 for a µ-component

link(µ ≥ 2) is generated by the linking numbers of 2-component sublinks of the link ([11]),
the result of H. Murakami and Y. Nakanishi is rewritten to the following:

THEOREM 1.2 ([12]). Let L and L′ be oriented links. Then L and L′ can be trans-
formed into each other by a finite sequence of C2-moves if and only if they are V1-equivalent.

In the case of n ≥ 2, the following theorem holds:

THEOREM 1.3 ([3, 15, 18]). Let L and L′ be oriented links in S3 and n a positive
integer. If L and L′ can be transformed into each other by a finite sequence of Cn-moves, then
v(L) = v(L′) for any Vassiliev invariant v of order less than n.

It is known that the Vn-equivalence for links does not imply the Cn+1-equivalence which
is the equivalence relation generated by Cn+1-moves and ambient isotopies. For example,
the Whitehead link and the 2-component trivial link are V2-equivalent. However they are not
C3-equivalent(see §5).

We define a special Cn-move which is called an SCn-move as follows: Let α1, . . . , αn+1

be the arcs shown in a Cn-move and c(αi) denote the component of the link which contains αi

for each i with i = 1, 2, . . . , n + 1. If there is an arc αk such that c(αk) �= c(αi) for all i with
i �= k, we call the Cn-move an SCn-move. Using this local move, we obtain the necessary
and sufficient conditions for that two links are V2-equivalent or V3-equivalent:

THEOREM 1.4. Let L and L′ be oriented links. Then L and L′ can be transformed
into each other by a finite sequence of C3-moves and SC2-moves if and only if they are V2-
equivalent.

In the case of n = 3, we obtain the following result for 2-component links:

THEOREM 1.5. Let L and L′ be 2-component oriented links. Then L and L′ can be
transformed into each other by a finite sequence of C4-moves and SC3-moves if and only if
they are V3-equivalent.
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REMARK. After this work, J.-B. Meilhan and A. Yasuhara refine Theorem 1.5 by show-
ing that an SC3-move is generated by a finite sequence of C4-moves ([10]).

2. Vassiliev invariants and Cn-moves

2.1. Vassiliev invariants for links. We can define Vassiliev invariants for links as for
knots. Let v be an invariant for links which takes values in an abelian group. Then we can
extend v to an invariant for singular links by the Vassiliev skein relation:

v(LD) = v(L+) − v(L−) ,

where a singular link is an immersion of a disjoint union of oriented circles in S3 which has
only transversal double points as its singularities, and LD,L+ and L− denote the diagrams of
singular links which are identical except near one point as is shown in Figure 2.1. A singular
link is considered as a flat vertex graph.

FIGURE 2.1

An invariant v is called a Vassiliev invariant of order n if v(L) = 0 for any singular link
L with more than n double points and there exists a singular link L′ with n double points such
that v(L′) �= 0.

A chord diagram of order n is a disjoint union of counterclockwise oriented circles with
n chords. A chord diagram of order n can be associated to a singular link with n double points
by connecting the preimage of each double point with a chord. It is known that a Vassiliev
invariant of order n is determined by a set of axioms and initial data called an actually table
containing values for the chord diagrams of order n and immersions that respect them of order
less than n. Moreover any invariant of order n is determined, modulo the invariants of order
less than n, by its values on chord diagrams of order n ([2]).

Jacobi diagrams, generalizations of chord diagrams, were introduced by D. Bar-Natan
[1]. K. Y. Ng and T. Stanford defined a certain kind of Jacobi diagrams called a one-branch
tree diagram in [14] (see also [16]). A one-branch tree diagram of order n is a trivalent graph
with 2n vertices as shown in Figure 2.2. It consists of µ circles and a graph G, where G is
isomorphic to the standard n-tree in Figure 2.3. All univalent vertices in G are attached to a
circle.

The set of all Vassiliev invariants of order less than n forms a vector space. A basis of the
vector space of Vassiliev invariants of order less than or equal to 2 is determined by Murakami
[11]. From this result, we can see that two µ-component links L = K1 ∪ K2 ∪ · · · ∪ Kµ and
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FIGURE 2.2

FIGURE 2.3

L′ = K ′
1 ∪ K ′

2 ∪ · · · ∪ K ′
µ are V2-equivalent if and only if lk(Ki ∪ Kj ) = lk(K ′

i ∪ K ′
j )

for any i and j with 1 ≤ i < j ≤ µ and a2(Ki) = a2(K
′
i ) for any i with i = 1, . . . , µ,

where lk(Ki,Kj ) and ak(Ki) denote the linking number of Ki ∪ Kj and the k-th coefficient
of the Conway polynomial for Ki , respectively. In the case of order less than or equal to 3, T.
Kanenobu, Y. Miyazawa and A. Tani [8] obtained a basis of the vector space. Using the result,
we can see that two links L and L′ are V3-equivalent if and only if they are V2-equivalent and

V (3)(Ki) = V (3)(K ′
i ) for any i with i = 1, . . . , µ and a3(Ki ∪ Kj) = a3(K

′
i ∪ K ′

j ) for any i

and j with 1 ≤ i < j ≤ µ, where V (3)(Ki) denotes the third derivative at t = 1 of the Jones
polynomial of Ki .

2.2. Band description of Cn-moves. As stated above, a C1-move is defined as a
crossing change. Figure 2.4 shows that a crossing change is realized by fusion with a Hopf
link. Similarly Figure 2.5 shows that a ∆-move (a C2-move) is realized by fusion with Bor-
romean rings. Generally it is shown that a Cn-move is realized by fusion with an (n + 1)-
component link which has a Brunnian property by K. Taniyama and Yasuhara in [20]. This
(n + 1)-component link is called a Cn-link. We remark that a C1-link is a Hopf link and a
C2-link is Borromean rings. A C3-link is a 4-component link as illustrated in Figure 2.6.

FIGURE 2.4
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FIGURE 2.5

Murakami and Nakanishi [12] showed that a fusion-band with a Hopf link can leap over
a subarc by a single ∆-move ( Figure 2.7 ). Similarly it is shown that a fusion-band with a
Cn-link can leap over a subarc by a finite sequence of Cn+1-moves by Taniyama and Yasuhara
in [20].

FIGURE 2.6 FIGURE 2.7

Let F be the result of fusion for a link L with some links L1, L2, . . . , Ln. In this

paper, the link which is represented by F is denoted by F̃ . We call the intersection arc of a
fusion-band and the link L a root of the fusion-band.

2.3. SCn-moves and Vassiliev invariants of order n for links. We state a relation
between SCn-moves and Vassiliev invariants of order n for links. Let L and L′ be two links
which are related by a single Cn-move and v a Vassiliev invariant of order n. Then there
exists a one-branch tree diagram T such that v(L) − v(L′) = ±v(T ) ([16, 17]). Furthermore,
by the result of Y. Ohyama, it follows that v(Ts) = 0 for the one-branch tree diagram Ts

corresponding to an SCn-move ([16]). Hence we can obtain the following proposition:

PROPOSITION 2.1. Let L and L′ be two links which are related by a finite sequence of
SCn-moves. Then v(L) = v(L′) for any Vassiliev invariant v of order n.

2.4. Self Delta-moves for links. If three arcs in a ∆-move are contained in the same
component, the ∆-move is called a self ∆-move. If two links can be transformed into each
other by a finite sequence of self ∆-moves, they are said to be ∆-link homotopic (or self
∆-equivalent). For 2-component links, Nakanishi and Ohyama gave the self ∆-equivalence
classification completely.

THEOREM 2.2 ([13]). Let L and L′ be 2-component links. Then L and L′ are self
∆-equivalent if and only if δ1(L) = δ1(L

′) and δ2(L) = δ2(L
′), where δ1(L) and δ2(L)
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are defined by δ1(L) = a1(L)(= lk(L)) and δ2(L) = a3(L) − a1(L){a2(K1) + a2(K2)} for
L = K1 ∪ K2 respectively.

In [13], it is shown that for any self ∆-equivalence class, we can choose the result of
fusion S for the (2, 2l)-torus link with at most one set of Borromean rings and a finite number

of C3-links such that S̃ is a representative element of the class (Figure 2.8). We call the fusion
the standard fusion for the equivalence class in this paper.

FIGURE 2.8

3. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. Let L and L′ be oriented links which can be
transformed into each other by a finite sequence of C3-moves and SC2-moves. If L and L′
are related by a C3-move, then they are V2-equivalent by Theorem 1.3. If L and L′ are related
by an SC2-move, then they are V1-equivalent by Theorem 1.3 and v(L) − v(L′) = 0 for any
Vassiliev invariant v of order 2 by Proposition 2.1. In any cases, we can see that they are
V2-equivalent.

Next we show the ‘if’ part of Theorem 1.4. Here we prove the case of 2-component
links. The proof for a general case can be done similarly. Assume that 2-component links L =
K1 ∪ K2 and L′ = K ′

1 ∪ K ′
2 are V2-equivalent, namely lk(L) = lk(L′) and a2(Ki) = a2(K

′
i )

(i = 1, 2). By the result of [12], both of L and L′ can be transformed into the (2, 2l)-torus
link Tl by a finite sequence of C2-moves (where l = lk(L) = lk(L′)). Hence L and L′ can be
realized by the results of fusion for Tl with some Borromean rings. The results of fusion are
denoted by L1 and L′

1 respectively. In the case of L and L′ are µ-component links(µ ≥ 3),
they can be realized by the results of fusion for link as illustrated in Figure 3.1 with some
Borromean rings, where li,j denotes the linking number of i-th and j -th components of L for
1 ≤ i < j ≤ µ.

From now we deform L1. At first we define types of Borromean rings in L1. If the roots
of three fusion-bands attached to a set of Borromean rings are contained in one component of
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FIGURE 3.1

L1, we say that the set of Borromean rings is of type I. If the roots of three bands attached
to a set of Borromean rings are contained in two components of L1, we say that the set of
Borromean rings is of type II. A set of Borromean rings of type II can be removed by an SC2-
move. The result of fusion obtained from L1 by removing all of the Borromean rings of type

II is denoted by L2. Obviously L̃2 can be obtained from L̃1 by applying SC2-moves. Figure
3.2 shows an example of L2.

FIGURE 3.2

Let A1 and A2 be subarcs of Tl as shown in Figure 3.3. Take tubular neighborhoods N1

and N2 of A1 and A2 in S3 respectively. We slide the root of each fusion-band attached to
Borromean rings to A1 or A2 along Tl . Obviously the link obtained here is ambient isotopic to

the link L̃2. Next we move each Borromean rings and fusion-bands attached to the Borromean
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rings into N1 or N2 by applying C3-moves. This is possible because a fusion-band attached to
Borromean rings can leap over a subarc of the torus link Tl or another fusion-band by a finite
sequence of C3-moves. The result of fusion is denoted by L3 (Figure 3.4).

FIGURE 3.3 FIGURE 3.4

Similarly we deform L′
1 and obtain L′

3. We remark that L̃3 = K3,1 ∪ K3,2 and L̃′
3 =

K ′
3,1 ∪ K ′

3,2 are obtained from L and L′ respectively by C3-moves and SC2-moves. As stated

above, C3-moves and SC2-moves do not change the values of any Vassiliev invariants of order
less than or equal to 2. Hence we can see that K3,i and K ′

3,i are V2-equivalent for i = 1, 2.

Since K3,i − Ni and K ′
3,i − Ni are trivial arc in the 3-ball S3 − Ni , K3,i and K ′

3,i are related

by C3-moves (i = 1, 2) by Theorem 1.1. Therefore we can conclude that L and L′ can be
related by a finite sequence of C3-moves and SC2-moves.

4. Proof of Theorem 1.5

In this section, we prove Theorem 1.5. The idea of the proof is similar to that of Theorem
1.4.

Since we can see that the C4-equivalence for links implies the V3-equivalence, we assume
that two 2-component links L and L′ can be transformed into each other by an SC3-move.
Then we can see that they are V2-equivalent by Theorem 1.3 and v(L) = v(L′) for any
Vassiliev invariant v of order 3 from Proposition 2.1. Therefore we obtain that they are V3-
equivalent.

Next we show the ‘if’ part of Theorem 1.5. Assume that two 2-component links L =
K1 ∪ K2 and L′ = K ′

1 ∪ K ′
2 are V3-equivalent, i.e. the following hold: lk(L) = lk(L′),

a2(Ki) = a2(K
′
i ) for any i with i = 1, 2, a3(L) = a3(L

′) and V (3)(Ki) = V (3)(K ′
i ) for

any i with i = 1, 2. Then we have δ1(L) = δ1(L
′) and δ2(L) = δ2(L

′). By Theorem 2.2,
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we can conclude that L and L′ are self ∆-equivalent, that is, they belong to the same self ∆-
equivalence class. Let S be the standard fusion for the equivalence class which contains L and
L′, that is, S is the result of fusion for the (2, 2l)-torus link Tl ( where l = lk(L) = lk(L′))
with some links. Then both of L and L′ can be realized by the results of fusion for S with
some Borromean rings, where all of the Borromean rings are type I defined in §3. These
results of fusion are denoted by L1 and L′

1 respectively.
We take subarcs A1 and A2 of Tl and neighborhoods N1 and N2 of A1 and A2 respec-

tively as same as in the proof of Theorem 1.4 (Figure 3.3). Ci denotes the component of
Tl which contains Ai for i(= 1, 2). Let L0 = {β1, . . . , βk} be the set of Borromean rings
and C3-links connected with Tl in S and L1 the set of Borromean rings connected with S in
L1. For i(= 1, 2), L1,i denotes the subset of L1 which consists of elements each of which is
connected with Ci . Let Bi be the set of fusion-bands attached to an element of Li for i(= 0,
1), and B1,i the subset of B1 consists of an element which is attached to an element in L1,i

for i(= 1, 2). For each βi in L0, we take the 3-ball Di which satisfies the following: Let
bi,1, bi,2, bi,3 and bi,4 be the fusion-bands which attached to βi , where if βi is Borromean
rings, then we set bi,4 = ∅. Then S ∩Di consists of βi and b′

i,1, . . . , b
′
i,4, where b′

i,j is a small

part of bi,j which is connected and contains the intersection βi ∩bi,j for j = 1, . . . , 4 (S ∩Di

looks like Figure 4.1).

FIGURE 4.1

First we slide all of the roots of fusion-bands in B1 to A1 or A2 along S̃ as doing in the
proof of Theorem 1.4. After that, we can remove the intersection between any fusion-band
in B1 and any 3-ball Di in the following way: Suppose that a fusion-band b in B1 and Di

intersect. Then S̃ ∩ Di is a trivial tangle. Hence we can sweep out b from Di . As a result, if
b and another band attached to βi intersect, we can remove the intersection as in Figure 4.2.
The result is denoted by L2.

Here we prove the following lemmas to continue the deformation. By the result of
Taniyama and Yasuhara [20], we have the following lemmas.

LEMMA 4.1. A fusion-band attached to Borromean rings can pass through a fusion-
band attached to another set of Borromean rings or a C3-link by a finite sequence of C4-
moves.
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FIGURE 4.2

LEMMA 4.2. A fusion-band in B1,1 (resp. B1,2) can leap over a subarc of the compo-
nent C2 (resp. C1) of Tl by an SC3-move.

PROOF OF LEMMA 4.1. In [5, 20], it is proved that the local moves in Lemma 4.1
are realized by C5-moves or C6-moves respectively. Since a Ck-move is realized by twice
Ck−1-moves for any k, the moves in Lemma 4.1 are realized by a finite sequence of C4-
moves. �

PROOF OF LEMMA 4.2. A fusion-band of Borromean rings can leap over a subarc of
the link by a C3-move. If the band has a root in A1, then the other two bands of the Borromean
rings also have roots in A1. Hence the C3-move is an SC3-move. �

Using Lemmas 4.1 and 4.2, we can move any element of L1 and all fusion-bands in
B1 into the neighborhood N1 or N2 by applying C4-moves and SC3-moves in the following
way: We begin with moving each element of L1,i into Ni by an isotopy. Next we collect
fusion-bands in B1,i into Ni . We consider the following cases (Figure 4.3):

FIGURE 4.3

Case 1. Suppose that a fusion-band b in B1 is linked to another fusion-band b′ in B0.
Then b and b′ are attached to the different Borromean rings or C3-link. Hence b can pass
through b′ by a finite sequence of C4-moves from Lemma 4.1.
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Case 2. Suppose that a fusion-band b in B1,1 is linked to another fusion-band b′ in
B1,2. Then b can pass through b′ by a finite sequence of C4-moves by the same reason as in
Case 1.

Case 3. Suppose that a fusion-band b in B1,1 (resp. B1,2) is linked to a subarc of
the component C2 (resp. C1). From Lemma 4.2 the band b can leap over the subarc by an
SC3-move.

Case 4. Suppose that a fusion-band b in B1,i is linked to a subarc of the component
Ci . Then we slide the part of b which is linked to the subarc along Ci into Ni . They can be
done by a finite sequence of C4-moves and SC3-moves because the band b can pass through
another band in B0 and subarcs of the component Ci+1 (where C3 means C1) by the moves
(cf. Cases 1 and 2). See Figure 4.4.

FIGURE 4.4

FIGURE 4.5
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As a result, we obtain a fusion as in Figure 4.5, for example. This is denoted by L3.

We deform L′
1 as doing for L1 and obtain L′

3. We remark that L̃3 and L̃′
3 can be obtained

from L and L′ respectively by a finite sequence of C4-moves and SC3-moves. Therefore each

component of L̃3 and L̃′
3 are V3-equivalent respectively. Hence they can be transformed into

each other by C4-moves by Theorem 1.1 and this completes the proof.

5. Example

The Whitehead link W = W1 ∪ W2 and the 2-component trivial link U = U1 ∪ U2 are
V2-equivalent because of lk(W) = lk(U) = 0 and a2(Wi) = a2(Ui) = 0 for i(= 1, 2). On
the other hand, we can see that they cannot be transformed into each other by a finite sequence
of C3-moves using the following theorem proved by Taniyama and Yasuhara:

THEOREM 5.1 ([19]). Let L = K1 ∪ K2 and L′ = K ′
1 ∪ K ′

2 be 2-component links.

Then L and L′ can be transformed into each other by a finite sequence of C3-moves if and
only if lk(L) = lk(L′), a2(Ki) = a2(K

′
i ) for i = 1, 2 and a3(L) ≡ a3(L

′) (mod 2).

In fact a3(W) is not congruent to a3(U) modulo 2. However Figure 5.1 shows that W

can be transformed into U by an SC2-move.

FIGURE 5.1
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