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1. Introduction.

We consider the Teichmuller space of the closed torus and the Teichm\"uller space of the
once punctured torus. It is well-known that the former can be identified with the upper half-
plane and that several coordinate systems can be introduced to the latter. This is the first part
of a series of papers in which we investigate explicit relations between these two Teichmuller
spaces. In this paper based on a correspondence of subsets of these spaces we will give an
explicit construction of a holomorphic mapping between a once punctured torus and a closed
torus.

We use throughout the convention that an element $A$ in $PSL(2, R)$ represents the M\"obius

transformation induced by $A,$ $i.e.$ ,

if $A=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in PSL(2, R)$ then $A(z)=\frac{az+b}{cz+d}$

We consider a Fuchsian group $G$ consisting of M\"obius transformations of $PSL(2, R)$ and
having the following properties: (i) $G$ is discontinuous in the upper half-plane $H$ , (ii) every
real number is a limit point for $G$ , (iii) $G$ is finitely generated.

DEFINITION 1.1. A Fuchsian group $\Gamma=\langle A,$ $B$ ) for $A,$ $B\in PSL(2, R)$ is called a
Fricke group if $A,$ $B$ are hyperbolic and $tr[B^{-1}, A^{-1}]=-2$ .

In the definition above $\Gamma=\langle A,$ $B$ ) is the free group generated by $A,$ $B$ and tr denotes the
trace of a matrix. We consider a once punctured torus which is uniformized by a Fricke group
$\Gamma$ and take a normalized form for the presentation of $\Gamma$ (see \S 5). By using the quantities
$X=trA,$ $Y=trB$ and $Z=tr$ AB, the above description of the Fricke group is characterized
by $X^{2}+Y^{2}+Z^{2}=XYZ$ and $X,$ $Y,$ $Z>2$ . Moreover, we obtain the following theorem (see
[W]).

THEOREM 1.1 (Fricke [F], Keen [K]). The Teichmuller space $\mathcal{T}_{1,1}$ of the once punc-
tured torus is the sublocus of $X^{2}+Y^{2}+Z^{2}=XYZ$ with $X,$ $Y,$ $Z>2$ .
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In this paper we denote a point in the Teichm\"uller space $\mathcal{T}_{1,1}$ of the once punctured torus
by a triplet (X, $Y,$ $Z$). We call this triplet the (X, $Y,$ $Z$) coordinates.

We describe a closed torus by $R_{\tau}=C/\Gamma_{\tau},$ $\Gamma_{\tau}=\{m+n\tau|m, n\in Z\}$ , then the Te-
ichm\"uller space $\mathcal{T}_{1,0}$ of the closed torus is the upper half-plane $H$ , i.e., a point in the Te-
ichm\"uller space $\mathcal{T}_{1,0}$ of the closed torus is denoted by $\tau\in H$ (See, for example, [IT]). We call
$\tau$ representing a closed torus the $\tau$ coordinates.

It is well-known that theoretically we can identify Teichm\"uller spaces $\mathcal{T}_{1,0}$ and $\mathcal{T}_{1,1}$ . $Fo1$

example in [W] the existence of a map from the (X, $Y,$ $Z$ ) coordinates to the $\tau$ coordinates is
described. But it does not give explicitly a holomorphic mapping between a once punctured
torus determined by (X, $Y,$ $Z$) and a closed torus determined by $\tau$ . Our problem is to construcl

such a holomorphic mapping.
B. Maskit gave in [Masl] and [Mas2] the existence of a conformal embedding from ’

once punctured torus to a closed torus and correspondences among good subsets of $\mathcal{T}_{1,0}$ anc
$\mathcal{T}_{1,1}$ by using another parametrization of Fuchsian groups. Now we state these correspon.
dences in our context. In order to introduce good subsets of $\mathcal{T}_{1,0}$ we consider the action of the
Teichm\"uller modular group. It is well-known that the Teichm\"uller modular group for $\mathcal{T}_{1,0}$ is
$SL(2, Z)$ and a fundamental domain for the action of $PSL(2, Z)$ on $\mathcal{T}_{1,0}$ can be represented b)
$F=$ { $\tau\in H||\tau|\geq 1$ and $|{\rm Re}(\tau)|\leq 1/2$ }. Moreover, we introduce the following subsets of
$F:L_{1}=$ { $\tau\in H||\tau|\geq 1$ and ${\rm Re}(\tau)=0$}, $L_{2}=\{\tau\in H||\tau|=1and-1/2\leq{\rm Re}(\tau)\leq 0\}$

$L_{3}=$ { $\tau\in H||\tau|\geq 1$ and ${\rm Re}(\tau)=-1/2$ }. These sets are characterized by the fact that ir
$F,$ $\tau\in L_{1}\cup L_{2}\cup L_{3}$ if and only if for some $\mu\in C$ the lattice $\mu\Gamma_{\tau}$ is a real lattice, that is
$\overline{\mu\Gamma_{\tau}}=\{\overline{\mu\gamma}|\mu\gamma\in\mu\Gamma_{\tau}\}=\mu\Gamma_{\tau}$ (See \S 2).

It is also well-known that the Teichm\"uller modular group $\mathcal{M}$ for $\mathcal{T}_{1,1}$ is isomorphic tc
$SL(2, Z)$ . Let $\mathcal{P}\mathcal{M}$ be the quotient group of $\mathcal{M}$ by the kernel of the action of $\mathcal{M}$ on $\mathcal{T}_{1,1}$

Then a fundamental domain for the action of $\mathcal{P}\mathcal{M}$ on $\mathcal{T}_{1,1}$ is given by $ M=\{(X, Y, Z)\epsilon$

$\mathcal{T}_{1,1}|2<X\leq Y\leq Z\leq XY/2\}$ (See \S 3). The correspondences of subsets can be describec
as follows:

THEOREM 1.2. We define three subsets of $M$ : $M_{1}=\{(X, Y, Z)\in M|Z=XY/2\}$

$M_{2}=\{(X, Y, Z)\in M|X=Y\},$ $M_{3}=\{(X, Y, Z)\in M|Y=Z\}$ . Then there exist the
correspondences of the sets: $L_{1}\Leftrightarrow M_{1},$ $L_{2}\Leftrightarrow M_{2},$ $L_{3}\Leftrightarrow M_{3}$ .

COROLLARY 1.1. The point $i$ corresponds to $(2\sqrt{2},2\sqrt{2},4)$ and the point $\rho=e^{2\pi i/-}$
’

corresponds to (3, 3, 3).

Based on this correspondence we will give in this paper a construction of a holomorphi $($

mapping between elements of $L_{1}$ and $M_{1}$ . Holomorphic mappings between elements of $L_{l}$

and $M_{k},$ $k=2,3$ will be constructed in [Abl]. The reasons are as follows. On the one hane
an element in $L_{1}$ determines a rectangular lattice and we can take a hexagonal fundamenta
domain identified with an element in $M_{1}$ (see \S 5). Both the rectangular lattice and the hexag
onal fundamental domain are simple and easy to investigate. On the other hand an element in
$L_{k}$ determines a rhombic lattice and a fundamental domain identified with an element in $M_{l}$

is an octagon. Then we need to investigate the octagonal fundamental domain in detail and $tt$
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use another technique in order to construct our aimed holomorphic mappings. In consequence
we obtain two different relations giving holomorphic mappings between elements of $L_{1}$ and
$M_{1},$ $L_{k}$ and $M_{k}$ , respectively.

H. Cohn introduced in [C1] a relation giving a holomorphic mapping from the once
punctured torus (3, 3, 3) to the closed torus $\rho$ . A basic idea for finding this relation is an
abelianization of the Fricke group. We introduce notations in order to recall the relation and
give another example. Let $z$ represent a point in the upper half-plane $H$ and $u$ a point in the
complex plane C. We call $H$ the z-plane and $C$ the u-plane. Then a once punctured torus
(X, $Y,$ $Z$ ) and a closed torus $\tau$ can be identified with fundamental domains in the z-plane and
the u-plane, respectively. A holomorphic mapping from (3, 3, 3) to $\rho$ is given by

$1-J(z)=\wp^{\prime}(u)^{2}=4\wp(u)^{3}+1$ , (1.1)

and a holomorphic mapping from $(2\sqrt{2},2\sqrt{2},4)$ to $i$ is given by

$J_{i}(z)=\wp(u)^{2}$ and $\wp^{\prime}(u)^{2}=4\wp(u)^{3}-4\wp(u)$ , (1.2)

where $\wp(u)$ are the Weierstrass $\wp$-functions defined by the above equations, $J(z)$ is the mod-
ular function and $J_{i}(z)$ is a function having similar properties to $J(z)$ (see Proposition 4.1).

We will show in \S 4 why these relations (1.1) and (1.2) give holomorphic mappings between
once punctured tori and closed tori.

Our main result in this paper is described as follows:

THEOREM 1.3. For any (X, $Y,$ $Z$ ) $\in M_{1}$ there uniquely exists an element $\tau\in L_{1}$ sat-
isfying thefollowing conditions: $\iota f\tau\in L_{1}$ then $p(x)=4x^{3}-g_{2}(\tau)x-g_{3}(\tau)$ has three distinct
real roots and a holomorphic mapping between (X, $Y,$ $Z$ ) and $\tau$ is given by the relation

$\wp(u)=(x2-X1)J(X,Y,Z)(z)+x2$ (1.3)

where $x_{1}<x_{2}<x_{3}$ are the three real roots of $p(x),$ $\wp(u)$ is the Weierstrass $\wp$ -function
defined by $\wp^{\prime}(u)^{2}=4\wp(u)^{3}-g_{2}(\tau)\wp(u)-g_{3}(\tau)$ and $J_{(X,Y,Z)}(z)$ is a function having
similar properties to the modularfunction $J(z)$ .

In \S 5 we will give the precise definition of $J_{(X,Y,Z)}(z)$ (Proposition 5.1) and a proof of
this theorem.

The holomorphic mapping from (3, 3, 3) to $\rho$ was used in [C1] in order to investigate
Markoff’s minimal form which is closely related to geodesics on a once punctured torus.
In [C2] it is also suggested that the relations (1.1) and (1.2) can be applied to some kind
of word problem considered in associated Fricke groups. Therefore there is a possibility of
applying our results to these problems. In particular it is interesting to use the relation (1.3)

for coding of geodesics on once punctured tori, because the space $C$ is much easier to see than
the space H. Moreover, the investigation of explicit relations between Teichm\"uller spaces of
once punctured and closed tori is important from the point of view of rigidity problem by
Ratner [R], Margulis [Mar], Zimmer [Z], etc., because a Fricke group is a typical example of
a discrete subgroup of $SL(2, R)$ whose R-rank is equal to 1 and a once punctured torus is the
simplest surface where geodesic flow and horocycle flow are defined. We can consider
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The coordinate system $[a, b, c]$ is defined in \S 3. The points (3, 3, 3) and $(2\sqrt{2},2\sqrt{2},4)$ are identified with
[1/3, 1/3, 1/3] and [1/4, 1/4, 1/2], respectively.

FIGURE 1. 1

the following problems: How can we determine the images of geodesic and horocycle flows
under a holomorphic mapping from a once punctured torus to a closed torus? Is the rigidit)
of horocycle flows preserved under this mapping or not? These are the questions which make
it meaningful to construct explicit holomorphic mappings between once punctured and closee
tori.

Finally, we give an important remark. Let $\Gamma=(A, B)$ be a Fricke group. A construction
of a holomorphic mapping from a once punctured torus uniformized by $\Gamma$ to an element in
$\mathcal{T}_{1,0}$ is closely related to a construction of a cusp form ofweight 1 for $\Gamma$ . The existence of such
a cusp form is guaranteed; however, we cannot use standard ways of constructing cusp forms
since, for example, a Poincar\’e series whose denominator is of order 2 does not converge. For
this reason we generalized the relation (1.1) and obtained Theorem 1.3. As we mentionee
above, the relations (1.1), (1.2) and (1.3) give cusp forms of weight 1 for the Fricke $group^{t}\backslash $

corresponding to (3, 3, 3), $(2\sqrt{2},2\sqrt{2},4)$ and (X, $Y,$ $Z$ ) $\in M_{1}$ , respectively. Moreover, wt

can obtain explicit representations of these cusp forms. For more detailed discussion on thi;

point we refer the reader to [Ab2].
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2. Preliminaries.

In this section we recall fundamental facts conceming Weierstrass $\wp$-function and the
modular function. For detailed arguments and proofs we refer the reader to Chapters 3 and $t$
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of [JS]. These facts will be used in \S 4 and \S 5. For our construction of a holomorphic mapping
between a closed torus and a once punctured torus, Weierstrass $\wp$ -function plays an important
role, because this function is defined by using the lattice which determines a closed torus.

For $\omega_{1},$ $\omega_{2}\in C$ , we define a lattice $\Omega$ by
$\Omega=\Omega$ $(\omega l , \omega 2)=\{nl\omega l+n2\omega 2|n1, n2\in Z\}$ ,

and we call $\{\omega_{1}, \omega_{2}\}$ a basis for $\Omega$ and a point in $\Omega$ a lattice point in C.

DEFINITION 2.1. We call the function defined by the following series Weierstrass $\wp-$

function
$\wp(u)=\frac{1}{u^{2}}+\sum_{\omega\in\Omega,\omega\neq 0}(\frac{1}{(u-\omega)^{2}}-\frac{1}{\omega^{2}})$ for all $u\in C$ .

From the definition, it follows immediately that $\wp(u)$ depends on the lattice $\Omega$ and is an
even function which is analytic on $C\backslash \Omega$ and has a pole of order 2 at each lattice point. Note
that $\wp(u)$ is doubly periodic with respect to the lattice $\Omega$ . We define

$g_{2}=g_{2}(\Omega)=60\sum_{\omega\in\Omega,\omega\neq 0}\frac{1}{\omega^{4}}$ and $g_{3}=g_{3}(\Omega)=140\sum_{\omega\in\Omega,\omega\neq 0}\frac{1}{\omega^{6}}$ .

If $\Omega=\Omega(1, \tau)$ they can be written in the following forms:

$g_{2}=g_{2}(\tau)=60\sum_{(m,n)\neq(0,0)}\frac{1}{(m+n\tau)^{4}}$ and $g_{3}=g_{3}(\tau)=140\sum_{(m,n)\neq(0,0)}\frac{1}{(m+n\tau)^{6}}$ .

We can characterize values of $g_{2}(\tau)$ and $g_{3}(\tau)$ when $\tau$ satisfies certain conditions.

PROPOSITION 2.1. (i) If ${\rm Re}(\tau)=t/2$ for $t\in Z$ , then $g_{2}(\tau)$ and $g_{3}(\tau)$ are real.
(ii) $g_{2}(\rho)=g_{3}(i)=0$ and $g_{2}(i),$ $g_{3}(\rho)$ are real and positive, where $\rho=e^{2\pi i/3}$ .

In this paper the notation $\rho$ always denotes the complex number $e^{2\pi i/3}$ . Moreover, we
can give characterizations of the function $\wp(u)$ and the lattice $\Omega$ when $g_{2}(\Omega)$ and $g_{3}(\Omega)$ are
real. We represent by 2 the conjugate of $z\in C$ .

PROPOSITION 2.2. The following conditions are equivalent:
(i) $g_{2}(\Omega),$ $g_{3}(\Omega)\in R$ .
(ii) $\wp$ defined by using the lattice $\Omega$ satisfies $\wp(\overline{u})=\overline{\wp(u)}$for all $u\in C$ .
(iii) $\Omega$ is a real lattice, $i.e.,$

$\overline{\Omega}=$ {di $|\omega\in\Omega$ } $=\Omega$ .

In order to characterize real lattices we introduce the following sets:

$L_{1}=$ { $\tau\in H||\tau|\geq 1$ and ${\rm Re}(\tau)=0$ },

$L_{2}=\{\tau\in H||\tau|=1$ and $-\frac{1}{2}\leq{\rm Re}(\tau)\leq 0\}$ ,

$L_{3}=\{\tau\in H||\tau|\geq 1$ and ${\rm Re}(\tau)=-\frac{1}{2}\}$ .

Let $\tau$ be an element in $L_{1}\cup L_{3}$ . If we take $\mu>0$ or $\mu=ri$ with $r>0$ , then $\Omega=\Omega(\mu, \mu\tau)$

is a real lattice. Let $\tau=e^{i\theta}$ with $\pi/2\leq\theta\leq 2\pi/3$ be an element in $L_{2}$ . Then $\Omega=\Omega(\mu, \mu\tau)$
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is a real lattice, where $\mu=re^{i(\pi-\theta)/2}$ or $\mu=re^{-\theta i/2}$ with $r>0$ . Conversely, any real lattice
$\Omega$ can be represented as above, because real lattices are classified into two cases: one is a
rectangular case, $i.e.,$ $\tau\in L_{1}$ and the other is a rhombic case, i.e., $\tau\in L_{2}\cup L_{3}$ (See Fig. 2.1).

DEFINITION 2.2. The modularfunction $J(\tau)$ is defined by

$J(\tau)=\frac{g_{2}(\tau)^{3}}{g_{2}(\tau)^{3}-27g_{3}(\tau)^{2}}$ for all $\tau\in$ H.

The properties of the modular function which we will use are the following:

PROPOSITION 2.3. (i) $J$ is invariant under the action ofthe modular group $PSL(2,Z)$ ,
$i.e.,$ $J(T(\tau))=J(\tau)$ for all $\tau\in H$ and $T\in PSL(2, Z)$ , where $T(\tau)$ is a Mobius transfoma-
tion.

(ii) (iii)

Lattice points are represented by $\cdot$ . $(i)$ The case $\tau\in L_{1}$ and $\mu>0$ . (ii) The case $\tau\in L_{2}$ and $\mu=$

$re^{(\pi-\theta)i/2}$ with $r>0$ . (iii) The case $\tau\in L_{3}$ and $\mu>0$ .

FIGURE 2. 1

$J(L_{2})$

FIGURE 2.2



FRICKE GROUPS AND REAL LATTICES 275

(ii) The mapping $J$ : $H\rightarrow C$ is holomorphic on H.
(iii) $J$ maps $L$ onto $R$ where $L=L_{1}\cup L_{2}\cup L_{3}$ . In particular, $J(i)=1$ and $J(\rho)=0$ .

(See Fig. 2.2.)
(iv) Jmaps Fonto $C$ where $F=\{\tau\in H||\tau|\geq 1and|{\rm Re}(\tau)|\leq 1/2\}$ is afundamental

domainfor the modular group.

By using $g_{2}$ and $g_{3}$ , we can introduce an important differential equation connecting $\wp(u)$

and $\wp^{\prime}(u)$ :

PROPOSITION 2.4. $\wp^{\prime}(u)^{2}=4\wp(u)^{3}-g_{2}\wp(u)-g_{3}$ .
Note that $\wp,$ $g_{2}$ and $g_{3}$ depend on a lattice $\Omega$ .
PROPOSITION 2.5. Let $\Omega=\Omega(\omega_{1}, \omega_{2})$ and $\omega 3=\omega 1+\omega_{2}$ . Then we have $\wp^{\prime}(\omega 1/2)=$

$\wp^{\prime}(\omega_{2}/2)=\wp^{\prime}(\omega_{3}/2)=0$ .
Points $\omega_{k}/2+(n_{1}\omega l+n_{2}\omega_{2})$ for all $n_{1},$ $n2\in Z$ and $k=1,2,3$ are called ramification

points of $\Omega$ .

PROPOSITION 2.6. We define $e_{k}=\wp(\omega_{k}/2)$ for $k=1,2,3$ . Then $e_{1},$ $e_{2},$ $e_{3}$ are
mutually distinct.

That is to say, if we take a lattice $\Omega$ , the values $g_{2}(\Omega)$ and $g_{3}(\Omega)$ define a cubic polyno-
mial $p(x)=4x^{3}-g_{2}x-g_{3}$ , which has distinct roots. Conversely, we obtain the following
assertion.

PROPOSITION 2.7. Let $p(x)=4x^{3}-c_{2}x-c_{3}$ for $c_{2},$ $c_{3}\in C$ be any cubic polynomial
with distinct roots. Then there is a lattice $\Omega$ with $c_{2}=g_{2}(\Omega)$ and $c_{3}=g_{3}(\Omega)$ . More
precisely,

(i) if$c2=0,$ $c_{3}\neq 0$ then $\Omega=\Omega(\mu, \mu\rho)$ , where $\mu\in C$ is determined by $(1/\mu^{6})g3(\rho)$

$=c_{3}$ .
(ii) if $c_{2}\neq 0,$ $c_{3}=0$ then $\Omega=\Omega(\mu, \mu i)$ , where $\mu\in C$ is determined by $(1/\mu^{4})g2(;)$

$=c_{2}$ .
(iii) if $c_{2}\neq 0,$ $c_{3}\neq 0$ then $\Omega=\Omega(\mu, \mu\tau)$ , where $\mu$ is any element of $C\backslash \{0\}$ and

$\tau\in C$ is determined by $J(\tau)=c_{2}^{3}/(c_{2}^{3}-27c_{3}^{2})$ .
We introduce two notations: one is $\mu R=\{\mu u|u\in R\}$ for $\mu\in C$ and the other is

$\wp(\mu_{1}R)\subset\mu_{2}R\cup t\infty\}$ for $\mu_{1},$ $\mu_{2}\in C$ which means $\wp(\mu_{1}u)\in\mu_{2}R\cup\{\infty\}$ for all $u\in R$ .
PROPOSITION 2.8. (i) If $\Omega$ is a real lattice, then $\wp(R)\subset RUt\infty$ } and $\wp(iR)\subset$

$RU\{\infty\}$ .
(ii) If $\Omega=\Omega(\mu, \mu\rho)$ for some $\mu\in C$ is areal lattice, then

$\wp(\rho R)\subset\rho RU\{\infty\}$ , $\wp(\rho^{1/2}R)\subset\rho^{1/2}R\cup\{\infty\}$ ,

$\wp(\rho iR)\subset\rho RU\{\infty\}$ , $\wp(\rho^{1/2}iR)\subset\rho^{1/2}R\cup\{\infty\}$ .
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(iii) $If\Omega=\Omega(\mu, \mu i)forsome\mu\in Cisareallattice$ , then
$\wp(e^{\pi i/4}R)\subset iR\cup\{\infty\}$ , $\wp(e^{-\pi i/4}R)\subset iR\cup t\infty$ }.

PROOF. (i) By using Proposition 2.2 (ii), $\wp$ satisfies $\wp(u)=\wp(\overline{u})=\overline{\wp(u)}$ for all
$u\in R$ which means $\wp(R)\subset RU\{\infty\}$ . For all $u\in iR$ we have $\wp(u)=\wp(-u)=\wp(\overline{u})=$

$\overline{\wp(u)}$ . Therefore $\wp(iR)\subset RUt\infty$ }.
(ii) For $\rho=e^{2\pi i/3}$ we easily have

$\rho\Omega(\mu, \mu\rho)=\rho^{1/2}\Omega(\mu, \mu\rho)=\Omega(\mu, \mu\rho)$ .
By using these relations, we obtain

$\wp(\rho u)=\frac{1}{\rho^{2}}\wp(u)$ and $\wp(\rho^{1/2}u)=\frac{1}{\rho}\wp(u)$ for all $u\in C$ .

Taking $u\in R$ or $u\in iR$ and using (i) of this proposition, we get the assertions.
(iii) From the fact

$i\Omega(\mu, \mu i)=-i\Omega(\mu, \mu i)=\Omega(\mu, \mu i)$ ,

we have
$\wp(iu)=\wp(-iu)=-\wp(u)$ for all $u\in C$ . (2.1)

If we take $u=te^{\pi i/4},$ $t\in R$ , then $\overline{u}=te^{-\pi i/4}=-iu$ . As $\Omega(\mu, \mu i)$ is a real lattice, we can
use Proposition 2.2 (ii) and have

$\overline{\wp(u)}=\wp(\overline{u})=\wp(-iu)=-\wp(u)$ .
Therefore $\wp(u)$ is purely imaginary, i.e., $\wp(e^{\pi i/4}R)\subset iR\cup t\infty$ }. From this result and (2.1)

we obtain $\wp(e^{-\pi i/4}R)\subset iR\cup\{\infty\}$ . $\square $

By using the same arguments as in the proof of Proposition 2.8 we obtain the following
assertions.

PROPOSITION 2.9. For the lattice $\Omega=\Omega(v, v\rho)$ with $v=re^{\pi i/6}$ for some $r>0$ , we
have

$\wp((v+\rho v)/2+R)\subset R\cup\{\infty\}$ ,

$\wp(\rho((v+\rho v)/2+R))\subset\rho R\cup\{\infty\}$ ,

$\wp(\rho^{1/2}((v+\rho v)/2+R))\subset\rho^{1/2}R\cup\{\infty\}$ ,

$\wp(-(v+\rho v)/2+R)\subset R\cup\{\infty\}$ ,

$\wp(\rho(-(v+\rho v)/2+R))\subset\rho R\cup\{\infty\}$ ,

$\wp(\rho^{1/2}(-(v+\rho v)/2+R))\subset\rho^{1/2}R\cup\{\infty\}$

PROPOSITION 2.10. For the lattice $\Omega=\Omega(v, vi)$ with $v>0$ , we have

$\wp(R+vi/2)\subset R\cup\{\infty\}$ , $\wp(R-vi/2)\subset R\cup\{\infty\}$ ,

$\wp(iR+v/2)\subset RU\{\infty\}$ , $\wp(iR-v/2)\subset RU\{\infty\}$ .

3. Correspondences as sets.

In this section we will introduce the Teichm\"uller modular group for $\mathcal{T}_{1,1}$ and will char-
acterize subsets of a fundamental domain for the action of the modular group on $\mathcal{T}_{1,1}$ . Recall
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that the Teichm\"uller modular group for $\mathcal{T}_{1,0}$ is $SL(2, Z)$ and a fundamental domain for the
action of $PSL(2, Z)$ on $\mathcal{T}_{1,0}$ is the region $F$ introduced in Proposition 2.3 (iv).

Let $G$ be the free group with generators $A$ and $B$ . The automorphism group $Aut(G)$ of
$G$ has generators $\sigma,$ $P$ and $U$ which are defined by

$\sigma(A)=A^{-1}$ $\sigma(B)=B$ ,

$P(A)=B$ , $P(B)=A$ ,

$U(A)=AB$ , $U(B)=B$ .

A representation of $Aut(G)$ in $GL(2, Z)$ is obtained by

$\sigma\rightarrow\left(\begin{array}{ll}-1 & 0\\0 & 1\end{array}\right)$ , $P\rightarrow\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)$ and $U\rightarrow\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$ .

Let $Aut^{+}(G)$ be the preimage of $SL(2, Z)$ and let Inn$(G)$ be the inner automorphism group
of $G$ . Then we have the following theorem.

THEOREM 3.1 (Nielsen). Let $G$ be the free group with two generators. Then

$Out^{+}(G)=Aut^{+}(G)/Inn(G)\approx SL(2, Z)$ .
The proof can be found in [MKS].

Therefore the Teichm\"uller modular group $\mathcal{M}$ for $\mathcal{T}_{1,1}$ is $Out^{+}(G)$ . The kemel of the ac-
tion of the modular group $\mathcal{M}$ on $\mathcal{T}_{1,1}$ is $\{\pm I\}$ , where $I=\left(\begin{array}{ll}1 & 0\\0 & l\end{array}\right)$ , so $\mathcal{P}\mathcal{M}=Out^{+}(G)/\{\pm I\}\approx$

$PSL(2, Z)$ acts effectively on $\mathcal{T}_{1,1}$ .
THEOREM 3.2. A fundamental domainfor the action of $\mathcal{P}\mathcal{M}$ on $\mathcal{T}_{1,1}$ is

$M=\{(X, Y, Z)\in \mathcal{T}_{1,1}|2<X\leq Y\leq Z\leq\frac{1}{2}XY\}$ .

Before we give a proof of Theorem 3.2, we prepare some facts. The generators $\sigma,$
$P$ and

$U$ induce actions on the (X, $Y,$ $Z$ ) coordinates, where $X=trA,$ $Y=trB$ and $Z=tr$ AB:

$\sigma(X)=X$ , $\sigma(Y)=Y$ , $\sigma(Z)=XY-Z$ ,

$P(X)=Y$ , $P(Y)=X$ , $P(Z)=Z$ ,

$U(X)=Z$ , $U(Y)=Y$ , $U(Z)=YZ-X$ .
In order to introduce these actions we used the following properties: tr $C^{-1}=trC$ , tr $CD=$
tr $DC$ and tr $C$ tr $D=trCD+trC^{-1}D$ for all $C,$ $D\in PSL(2, R)$ .

LEMMA 3.1. The actions of $\sigma,$
$P$ and $U$ on a point (X, $Y,$ $Z$ ) $\in \mathcal{T}_{1,1}$

$\sigma(X, Y, Z)=(X, Y, XY-Z)$ ,

$P(X, Y, Z)=(Y, X, Z)$ ,

$U(X, Y, Z)=(Z, Y, YZ-X)$

are well-defined.
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PROOF. We consider the action of $\sigma$ . The equation $X^{2}+Y^{2}+(XY-Z)^{2}=$

$XY(XY-Z)$ is equal to $X^{2}+Y^{2}+Z^{2}=XYZ$ . We easily get $XY-Z=$
(X $Y\mp\sqrt{X^{2}Y^{2}-4(X^{2}+Y^{2})}$)$/2>2$ . By using the same calculation, the action of $ Ui\sigma\llcorner$

well-defined. It is clear that the action of $P$ is well-defined. $\subset$

Next we introduce another coordinate system $[a, b, c]$ for $\mathcal{T}_{1,1}$ by

$a=\frac{X}{YZ}$ $b=\frac{Y}{XZ}$ and $c=\frac{Z}{XY}$

Then the space $\mathcal{T}_{1,1}$ and the set $M$ are represented by

$\mathcal{T}_{1,1}=$ { $[a,$ $b,$ $c]|a+b+c=1$ with $a,$ $b,$ $c>0$} ,

$M=\{[a, b, c]\in \mathcal{T}_{1,1}|0<a\leq b\leq c\leq\frac{1}{2}\}$ .

Note that we use $(\cdot)$ for the (X, $Y,$ $Z$ ) coordinates and $[\cdot]$ for the $[a, b, c]$ coordinates and $tha|$

the space $\mathcal{T}_{1,1}$ represented by $[a, b, c]$ (Fig. 1.1) is much easier to visualize than by (X, $Y,$ $Z$ )

We also have actions of $\sigma,$ $P$ and $U$ in the $[a, b, c]$ coordinates:

$\sigma[a, b, c]=[\frac{ac}{1-c}$ $\frac{bc}{1-c}$ $1-c]$ ,

$P[a, b, c]=[b, a, c]$ ,

$U[a, b, c]=[\frac{ac}{1-a},$ $\frac{ab}{1-a}$ $1-a]$ .

From definitions we can easily get the following facts.

LEMMA 3.2. There exist actions which permute coordinates (X, $Y,$ $Z$) and $[a, b, c]$ .
$\sigma U(X, Y, Z)=(Z, Y, X)$ , $P\sigma U(X, Y, Z)=(Y, Z, X)$ ,

$\sigma UP(X, Y, Z)=(Z, X, Y)$ , $\sigma UP\sigma U(X, Y, Z)=(X, Z, Y)$ ,

$\sigma U[a, b, c]=[c, b, a]$ , $P\sigma U[a, b, c]=[b, c, a]$ ,

$\sigma UP[a, b, c]=[c, a, b]$ , $\sigma UP\sigma U[a, b, c]=[a, c, b]$ .
PROOF OF THEOREM 3.2. We use the following results from [W]. Let $\mathcal{M}_{2}$ be the

subgroup of $Aut(G)ge$nerated by $\rho_{1}=\sigma U^{2},$
$\rho_{2}=\sigma$ and $\rho_{3}=P\sigma U^{2}P$ . A fundamental

domain for the action of $\mathcal{M}_{2}$ on $\mathcal{T}_{1,1}$ is

$\tilde{M}=\{[a, b, c]\in \mathcal{T}_{1,1}|a,$ $b,$ $c\leq\frac{1}{2}\}$ .

Set $\mathcal{M}_{2}^{+}=\mathcal{M}_{2}\cap Aut^{+}(G)$ . The group $\mathcal{M}_{2}^{+}$ acts effectively on $\mathcal{T}_{1,1}$ and the index $[PSL(2, Z)I$

$\mathcal{M}_{2}^{+}]=6$ .
Recall that $\mathcal{P}\mathcal{M}\approx PSL(2, Z)$ . We can obtain th$e$ following coset representation: if we

set
$\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\}=\{id, P, \sigma U, P\sigma U, \sigma UP, \sigma UP\sigma U\}$

then $\tilde{M}=\bigcup_{i=0}^{5}\alpha_{i}M,$ $\alpha_{i}M^{0}\cap\alpha_{j}M^{0}=\emptyset$ for $i,$ $j\in\{0,1,2,3,4,5\},$ $i\neq j$ , where $M^{0}$ is
$th\epsilon\subset$

interior of $M$ .
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Since the Teichm\"uller space $\mathcal{T}_{1,0}$ is the upper half-plane $H$ and the Teichm\"uller modular
group for $\mathcal{T}_{1,0}$ is $SL(2, Z)$ , the region $F$ in Proposition 2.3 is a fundamental domain for the
action of $PSL(2, Z)$ on $\mathcal{T}_{1,0}$ in the sense of the Teichm\"uller theory. Therefore it is natural that
we study a correspondence between the fundamental domain $M$ in $\mathcal{T}_{1,1}$ and the fundamental
domain $F$ in $\mathcal{T}_{1,0}$ .

We introduce some specific subsets of the fundamental domain $M$ . We consider the
automorphisms $\Phi_{1}(A, B)=(A, B^{-1})$ and $\Phi_{1}^{\prime}(A, B)=(A^{-1}, B)$ . The induced actions on
$\mathcal{T}_{1,1}$ are described by

$\Phi_{1}(X, Y, Z)=\Phi_{1}^{\prime}(X, Y, Z)=(X, Y, XY-Z)$ .
Let $M_{1}$ be the subset of $M$ whose point is fixed by $\Phi_{1}$ and $\Phi_{1}^{\prime}$ . From $XY-Z=Z$ we have

$M_{1}=\{(X, Y, Z)\in M|Z=\frac{1}{2}XY\}=\{[a, b, c]\in M|c=\frac{1}{2}\}$ .

In the same way we consider the automorphisms:

$\Phi_{2}(A, B^{-1})=(B^{-1}, A)$ , $\Phi_{2}^{\prime}(A, B)=(B, A)$ ,

$\Phi_{3}(A, B)=(A, A^{-1}B^{-1})$ , $\Phi_{3}^{\prime}(A, B)=$ ( $A^{-1},$ AB).

Then natural induced actions on $\mathcal{T}_{1,1}$ are as follows:
$\Phi_{2}(X, Y, Z)=\Phi_{2}^{\prime}(X, Y, Z)=(Y, X, Z)$ ,

$\Phi_{3}(X, Y, Z)=\Phi_{3}^{\prime}(X, Y, Z)=(X, Z, Y)$ .
We define subsets $M_{k}$ as sets whose point is Pxed by $\Phi_{k}$ and $\Phi_{k}^{\prime},$ $k=2,3$ :

$M_{2}=\{(X, Y, Z)\in M|X=Y\}=\{[a, b, c]\in M|a=b\}$ ,

$M_{3}=\{(X, Y, Z)\in M|Y=Z\}=\{[a, b, c]\in M|b=c\}$ .
THEOREM 3.3. We can establish the correspondences among the sets as folfows:

$L_{1}\Leftrightarrow M_{1}$ , $L_{2}\Leftrightarrow M_{2}$ , $L_{3}\Leftrightarrow M_{3}$ .

PROOF. We take a $re$al lattice $\Omega=\Omega(\mu, \mu\tau)$ defined in \S 2. Let $\Gamma=(A,$ $ B\rangle$ be a
Fricke group and let $(\tilde{X},\tilde{Y},\tilde{Z})$ be the coordinate of $\Gamma$ in $\mathcal{T}_{1,1}$ . We define correspondences
between the basis $(\mu, \mu\tau)$ of $\Omega$ and the generators $A,$ $B$ of $\Gamma$ as follows:

$\mu\Leftrightarrow A$ and $\mu\tau\Leftrightarrow B$ . (3.1)

The general real lattice has symmetry with respect to the $re$al axis and the imaginary axis
and does not have symmetry with respect to any other line through the origin except the real
and the imaginary axes. The only exceptions are $\Omega=\Omega(\mu, \mu\tau)$ for $\tau=i$ or $\rho=e^{2\pi i/3}$ .
Conversely, a lattice which is symmetric with respect to the real and the imaginary axes is a
real lattice.

If $\tau\in L_{1}$ , we consider a rectangular lattice $\Omega=\Omega(\mu, \mu\tau)$ for $\mu>0$ and define
transformations of the basis of the lattice $\Omega$ as

$\varphi_{1}(\mu, \mu\tau)=(\mu, -\mu\tau)$ and $\varphi_{1}^{\prime}(\mu, \mu\tau)=(-\mu, \mu\tau)$ .
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The symmetry of $\Omega$ with respect to the real axis is characterized by $\varphi_{1}(\Omega)=\Omega$ and the
symmetry of $\Omega$ with respect to the imaginary axis is characterized by $\varphi_{1}^{\prime}(\Omega)=\Omega$ . By the
correspondences (3.1) the transformations $\varphi_{1}$ and $\varphi_{1}^{\prime}$ correspond to the automorphisms $\Phi_{1}$ and
$\Phi_{1}^{\prime}$ , respectively. Then the equation $\varphi_{1}(\Omega)=\varphi_{1}^{\prime}(\Omega)=\Omega$ is equivalent to $\Phi_{1}(\tilde{X},\tilde{Y},\tilde{Z})=$

$\Phi_{1}^{\prime}(\tilde{X},\tilde{Y},\tilde{Z})=(\tilde{X},\tilde{Y},\tilde{Z})$ . Therefore we get $(\tilde{X},\tilde{Y},\tilde{Z})\in M_{1}$ corresponding to $\tau\in L_{1}$ .
If $\tau\in L_{2}$ , we take a rhombic lattice $\Omega=\Omega(\mu, \mu\tau)$ , where $\tau=e^{i\theta},$ $\mu=re^{(\pi-\theta)i/2}$ ,

$r>0$ and define transformations of the basis of the lattice $\Omega$ as
$\varphi_{2}(\mu, -\mu\tau)=(-\mu\tau, \mu)$ and $\varphi_{2}^{\prime}(\mu, \mu\tau)=(\mu\tau, \mu)$ .

If $\tau\in L_{3}$ , we consider transformations of the basis of a rhombic lattice $\Omega=\Omega(\mu, \mu\tau)$ for
$\mu>0$ :

$\varphi_{3}(\mu, \mu\tau)=(\mu, \overline{\mu\tau})$ and $\varphi_{3}^{\prime}(\mu, \mu\tau)=(-\mu, -\overline{\mu\tau})$ .
By using the same argument as for the case $\tau\in L_{1}$ we obtain the assertions. $\square $

COROLLARY 3.1. The points $i,$ $\rho\in \mathcal{T}_{1,0}$ correspond to $(2\sqrt{2},2\sqrt{2},4),$ $(3,3,3)\in$

$\mathcal{T}_{1,1}$ , respectively.

PROOF. Since the symmetries of $\Omega=\Omega(\mu, \mu i)$ for $\mu>0$ are characterized by
$\varphi_{1}(\Omega)=\varphi_{1}^{\prime}(\Omega)=\varphi_{2}(\Omega)=\varphi_{2}^{\prime}(\Omega)=\Omega$ , the point $(\tilde{X},\tilde{Y},\tilde{Z})$ corresponding to $i$ must
satisfy $\Phi_{1}(\tilde{X},\tilde{Y},\tilde{Z})=\Phi_{1}^{\prime}(\tilde{X},\tilde{Y},\tilde{Z})=\Phi_{2}(\tilde{X},\tilde{Y},\tilde{Z})=\Phi_{2}^{\prime}(\tilde{X},\tilde{Y},\tilde{Z})=(\tilde{X},\tilde{Y},\tilde{Z})$ . Then it is
$(2\sqrt{2},2\sqrt{2},4)$ . In the same way we obtain another correspondence. $\square $

4. Two examples.

Recall that we represent a point in the upper half-plane $H$ by $z$ and a point in the complex
plane $C$ by $u$ and that we call $H$ the z-plane and $C$ the u-plane. Let $\Gamma$ be a Fricke group
associated with a once punctured torus (X, $Y,$ $Z$ ) $\in \mathcal{T}_{1,1}$ . Then $\Gamma$ determines a fundamental
domain in the z-plane, which can be identified with the once punctured torus (X, $Y,$ $Z$). Let
$\Gamma_{\tau}$ be a lattice in the u-plane for $\tau\in \mathcal{T}_{1,0}$ . Then a fundamental domain for $\Gamma_{\tau}$ in the u-plane
can be identified with the closed torus $\tau$ .

In this section we consider two points (3, 3, 3), $(2\sqrt{2},2\sqrt{2},4)$ in $\mathcal{T}_{1,1}$ . We know that
they must correspond to $\rho,$ $i\in \mathcal{T}_{1,0}$ (Corollary 3.1). Before we show a construction of a holo-
morphic mapping between a once punctured torus and a closed torus, we display fundamental
domains in the z-plane for Fricke groups associated with these points.

(I) the case (3, 3, 3).

Let $\Gamma_{\rho}=(A_{\rho}, B_{\rho})$ with $A_{\rho}=\left(\begin{array}{ll}1 & 1\\] & 2\end{array}\right)$ and $B_{\rho}=\left(\begin{array}{ll}l & -1\\-l & 2\end{array}\right)$ be a representation of

(3, 3, 3). Define $C_{\rho}=B_{\rho}^{-1}A_{\rho}^{-1}$ . Then $C_{\rho}=\left(\begin{array}{ll}3 & -1\\l & 0\end{array}\right)$ and $C_{\rho}B_{\rho}A_{\rho}=\left(\begin{array}{ll}-l & -6\\0 & -l\end{array}\right)$ . We can
obtain two fundamental domains: one is a quadrilateral whose opposite sides are identified by
actions of $A_{\rho}$ and $B_{\rho}$ (shown in normal outline in Fig. 4.1),

$D_{q}(\Gamma_{\rho})=\{z\in H||z+\frac{1}{2}|>\frac{1}{2}$ $|z-\frac{1}{2}|>\frac{1}{2}$ $-1\leq{\rm Re}(z)\leq 1\}$ ,
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FIGURE 4. 1

the other is an octagon whose sides are identified by actions of $A_{\rho},$ $B_{\rho},$ $C_{\rho}$ and $C_{\rho}B_{\rho}A_{\rho}$

$D_{o}(\Gamma_{\rho})=\{z\in H||z+2|\geq 1,$ $|z+1|\geq 1,$ $|z|\geq 1$ ,

$|z-1|>1,$ $|z-2|>1,$ $|z-3|>1,$ $-\frac{5}{2}\leq{\rm Re}(z)<\frac{7}{2}$ ,

(the shaded part in Fig. 4.1). We call the former the quadrilateml fundamental domain and
the latter the octagonal fundamental domain.

(II) the case $(2\sqrt{2},2\sqrt{2},4)$ .
As a representation of $(2\sqrt{2},2\sqrt{2},4)$ we take $\Gamma_{i}=\langle A_{i}, B_{j}\rangle$ with $A_{j}=\left(\begin{array}{ll}0 & -1\\1 & 2\sqrt{2}\end{array}\right)$ and

$B_{l}=$ ( $\sqrt{2}-1$) and define $C_{i}=B_{i}^{-1}A_{i}^{-1}$ . Then $C_{i}B_{j}A_{j}=(_{0}^{-1}$ $-4\sqrt{2}-1)$ . One fundamental

domain is a quadrilateral whose opposite sides are identified by actions of $A$ ; and $B_{i}$ (shown

in normal outline in Fig. 4.2),

$D_{q}(\Gamma_{i})=1^{z\in H}||z+\frac{3\sqrt{2}}{4}|>\frac{\sqrt{2}}{4}$ $|z+\frac{\sqrt{2}}{4}|>\frac{\sqrt{2}}{4}$ $-\sqrt{2}\leq{\rm Re}(z)\leq 0\}$ ,

another is a hexagon whose sides are identified by actions of $A_{i},$ $B_{i}$ and $C_{i}B_{i}A_{i}$ (the shaded
part in Fig. 4.2),

$D_{h}(\Gamma_{i})=\{z\in H||z+2\sqrt{2}|\geq 1,$ $|z+\sqrt{2}|\geq 1$ ,

$|z|>1,$ $|z-\sqrt{2}|>1,$ $-\frac{5\sqrt{2}}{2}\leq{\rm Re}(z)<\frac{3\sqrt{2}}{2}\}$ .
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FIGURE 4.2

THEOREM 4.1 (Cohn). The once punctured torus $(3, 3, 3)\in \mathcal{T}_{1,1}$ is mapped to the
closed torus $\rho=e^{2\pi i/3}\in \mathcal{T}_{1,0}$ holomorphically by using the relation

$1-J(z)=\wp^{\prime}(u)^{2}=4\wp(u)^{3}+1$ . (4.1)

PROOF. We take $\Gamma_{\rho}=(A_{\rho},$ $ B_{\rho}\rangle$ with $A_{\rho}=\left(\begin{array}{ll}1 & ]\\1 & 2\end{array}\right)$ and $B_{\rho}=\left(\begin{array}{ll}1 & -1\\-1 & 2\end{array}\right)$ as a rep-
resentation of (3, 3, 3), then two fundamental domains for $\Gamma_{\rho}$ in the z-plane are as shown in
Fig. 4.1. By Proposition 2.7 (i), the relation

$\wp^{\prime}(u)^{2}=4\wp(u)^{3}+1$ (4.2)

determines the lattice $\Omega=\Omega(\mu, \mu\rho)$ in the u-plane where $\mu$ satisfies $(1/\mu^{6})g_{3}(\rho)=-1\ovalbox{\tt\small REJECT}$

As $g_{3}(\rho)>0$ , we can write $\mu=|\mu|e^{(1/6+j/3)\pi i},$ $j=0,1,2,3,4,5$ . Therefore we obtain
$\Omega=\Omega(\mu, \mu\rho)=\Omega(|\mu|e^{\pi i/6}, |\mu|e^{\pi i/6}\rho)$ which is a real lattice. By the relation

$1-J(z)=4\wp(u)^{3}+1$ , (4.3)

the point $ z=i\infty$ is mapped to a lattice point of the u-plane because of $ J(i\infty)=\infty$ and
$\wp(u_{0})=\infty$ for $u_{0}\in\Omega=\Omega(\mu, \mu\rho)$ . We can assume without loss of generality thal
the image of $ z=\iota\infty$ by (4.3) is the point $u=0$ . Suppose that $J$ has a value $c_{0}\in C$

with $c_{0}\neq 1$ . Since for each $c\in C,$ $c\neq e_{1},$ $e_{2},$ $e_{3},$ $\infty$ the equation $\wp(u)=c$ has two
simple solutions, for $J=c_{0}$ we obtain six values of $u$ determined by the relation (4.3). The
octagonal fundamental domain for $\Gamma$ is a 6-sheeted covering of the fundamental domain $F$ for
the modular group $PSL(2, Z)$ , so we can take six points which attain $J=c_{0}$ in the octagonal
fundamental domain. Therefore we can obtain correspondences between these six points in
the z-plane and the six points in the u-plane. Now we consider the case where $J(z)$ is real.
From Proposition 2.3 (iii) we divide arguments into the following three cases.

(I) $J(z)\geq 1,$ $i.e.,$ $z\in L_{1}$ .
Set $J(z)=c$ then by using (4.3) we have
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$\wp(u)=\left\{\begin{array}{l}-(c/4)^{l/3}\\(c/4)^{l/3}e^{\pi i/3}\\(c/4)^{1/3}e^{-\pi i/3}\end{array}\right.$ (4.4)

By Proposition 2.8 (i) we have $\wp(iR)\subset RUt\infty$ } and if we write $u=it$ and $t\in R$ is small,
$\wp(u)$ is negative and $|\wp(u)|$ is large, so we can get a point $u$ with $\wp(u)=-(c/4)^{1/3}$ on
the line $iR$ . By using the same argument we can get a point $u$ with $\wp(u)=(c/4)^{1/3}e^{\pi i/3}$

on $\rho^{1/2}iR$ and a point $u$ with $\wp(u)=(c/4)^{1/3}e^{-\pi i/3}$ on $\rho i$ R. If $J(i)=1$ in (4.3) then
$4\wp^{3}(u)+1=0$ . From (4.2) the point $u$ corresponding to $z=i$ must be ramification
points $\frac{1}{2}|\mu|e^{(1/6+j/3)\pi i},$ $j=0,1,2,3,4,5$ in the u-plane. Therefore we can take segments
$\{t|\mu|e^{(1/6+j/3)\pi i}|0\leq t\leq\frac{1}{2}\},$ $j=0,1,2,3,4,5$ as images of $L_{1}$ by th$e$ mapping defined by
the relation (4.1).

(II) $J(z)\leq 0,$ $i.e.,$ $z\in L_{3}$ .
Set $J(z)=c$ then by using (4.3) we have

$\wp(u)=\left\{\begin{array}{l}(-c/4)^{1/3}\\(-c/4)^{1/3}e^{2\pi i/3}\\(-c/4)^{1/3}e^{-2\pi i/3}\end{array}\right.$

By Proposition 2.8 (i) we have $\wp(R)\subset RUt\infty$ } and if $u=t\in R$ and $t$ is small, $\wp(u)$

is positively large, so we can take a point $u$ with $\wp(u)=(-c/4)^{1/3}$ on the line R. In the
same way we can take a point $u$ with $\wp(u)=(-c/4)^{1/3}e^{2\pi i/3}$ on $\rho R$ and a point $u$ with
$\wp(u)=(-c/4)^{1/3}e^{-2\pi i/3}$ on $\rho^{1/2}R$ .

(III) $0\leq J(z)\leq 1,$ $i.e.,$ $z\in L_{2}$ .
By setting $J(z)=c,$ $\wp(u)$ satisPes (4.4). Since $J(z)$ is holomorphic on $H$ and $\wp(u)$

is holomorphic on $C/\Omega$ , the mapping dePned by the relation (4.1) is conformal on $C/\Omega$ .
Therefore we obtain Fig. 4.3 (i) by Proposition 2.9 and the arguments in (I) and (II).

From Proposition 2.3 and the symmetry of the fundamental domain $F$ , the image of
the octagonal fundamental domain $D_{o}(\Gamma_{\rho})$ by the mapping defined by the relation (4.1) can
be represented by the hexagon in Fig. 4.3 (ii). Then we can show without loss of generality
the actions of $A_{\rho}$ and $B_{\rho}$ are given as in Fig. 4.3 (ii) from the identification of the sides of
$D_{o}(\Gamma_{\rho})$ . Moreover, the quadrilateral fundamental domain $D_{q}(\Gamma_{\rho})$ is mapped to the period
parallelogram in Fig. 4.3 (ii) which is determined by the lattice $\Omega=\Omega(\mu, \mu\rho)$ in the u-
plane. These facts imply that there exist the correspondences $\mu\Leftrightarrow A_{\rho}$ and $\mu\rho\Leftrightarrow B_{\rho}$ which
we used in order to show the correspondence $\rho\Leftrightarrow(3,3,3)$ (see \S 3). $\square $

REMARK. Theorem 4.1 comes from the work by H. Cohn [C1]. The relation (4.1) is
not unique, that is, we can have the same result by using the following relation:

$J(z)-1=\wp^{\prime}(u)^{2}=4\wp(u)^{3}-1$ .
By using the same arguments as in the proof of Theorem 4.1 we obtain another example.

In this case the images of the fundamental domains $D_{q}(\Gamma_{i})$ and $D_{h}(\Gamma_{l})$ are represented as in
Fig. 4.4 (ii).
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$|\mu|e^{\frac{n}{6}i}\rho$ . . $|\mu|e^{\frac{n}{6}i}$ $|\mu|e^{\frac{\pi}{6}i}\rho$ .

(i) The segments $L(i\infty\rightarrow i\rightarrow\rho\rightarrow i\infty),$ $L+j,$ $j=-2,$ $-1,1,2,3$ are mapped by the relation (4.1)

to the segments $(0\rightarrow((1/2)|\mu|e^{\pi i/6})e^{j\pi i/3}\rightarrow((\sqrt{3}/4)|\mu|)e^{j\pi i/3}\rightarrow 0),$ $j=0,1,2,3,4,5$ .
(ii) The hexagon determined by $(\sqrt{3}/4)|\mu|e^{j\pi i/3},$ $j=0,1,2,3,4,5$ is the image of the octagonal funda-
mental domain by the relation (4.1).

FIGURE 4.3

$|\mu|i$

$|\mu|$

(i) (ii)

(i) The segments $L_{j}(i\infty\rightarrow i\rightarrow\rho_{j}\rightarrow i\infty),$ $L_{l}+\sqrt{2},$ $L_{j}-\sqrt{2}$ and $L_{i}-2\sqrt{2}$ are mapped by the relations
in (4.5) to the segments $(0\rightarrow|\mu|/2\rightarrow|\mu|(1-i)/2\rightarrow 0),$ $(0\rightarrow-|\mu|i/2\rightarrow-|\mu|(1+i)/2\rightarrow 0)$ ,
$(0\rightarrow-|\mu|/2\rightarrow-|\mu|(1-i)/2\rightarrow 0)$ and $(0\rightarrow|\mu|i/2\rightarrow|\mu|(1+i)/2\rightarrow 0)$ .
(ii) The square determined $by\pm|\mu|(1+i)/2,$ $\pm|\mu|(1-i)/2$ is the image of the hexagonal fundamental
domain by the relations in (4.5).

FIGURE 4.4

THEOREM 4.2 (Cohn). The once punctured torus $(2\sqrt{2},2\sqrt{2},4)\in \mathcal{T}_{1,1}$ is mapped $t($

the closed torus $i\in \mathcal{T}_{1,0}$ holomorphically by using the relations

$\wp^{\prime}(u)^{2}=4\wp(u)^{3}-4\wp(u)$ and $J_{i}(z)=\wp(u)^{2}$ (4.5

The function $J_{i}$ in (4.5) is defined as follows:

PROPOSITION 4.1. We can construct a function $J_{i}$ which satisfies
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(i) $J_{i}$ maps $L_{i}$ onto $R$ where $L_{j}=L_{i1}\cup L_{i2}\cup L_{i3}$ and $L_{i1}=L_{1}$ ,

$L_{i2}=\{\tau\in H||\tau|=1$ and $-\frac{\sqrt{2}}{2}\leq{\rm Re}(\tau)\leq 0\}$

$L_{i3}=\{\tau\in H||\tau|\geq 1$ and ${\rm Re}(\tau)=-\frac{\sqrt{2}}{2}\}$

In particular, $J_{i}(i\infty)=\infty,$ $J_{i}(i)=1$ and $J_{i}(\rho_{j})=0$ where $\rho_{i}=e^{3\pi i/4}$ .
(ii) $J_{i}$ maps $F_{i}$ onto $C$ where $F_{i}=\{\tau\in H||\tau|\geq 1and|Re(\tau)|\leq\sqrt{2}/2\}$ .
(iii) The mapping $J_{i}$ : $H\rightarrow C$ is holomorphic on H.

For the proof of this proposition, we refer the reader to Chapter III in [H].

REMARK. Using the following relations instead of (4.5), we have the same result:

$\wp^{\prime}(u)^{2}=4\wp(u)^{3}+4\wp(u)$ and $J_{i}(z)=-\wp(u)^{2}$

5. Construction of mappings.

We proved in \S 3 that there exists the correspondence of the sets $L_{1}\Leftrightarrow M_{1}$ . In this
section we will show a construction of a holomorphic mapping between a once punctured
torus in $M_{1}$ and a closed torus in $L_{1}$ , which is obtained by modifying the construction in
\S 4. In that construction fundamental domains for Fricke groups associated with (3, 3, 3)

and $(2\sqrt{2},2\sqrt{2},4)$ played very important roles, so we will display fundamental domains for
Fricke groups in $M_{1}$ .

We begin by recalling $M_{1}$ defined in \S 3:

$M_{1}=\{(X, Y, Z)\in M|Z=\frac{1}{2}XY\}$

$=\{(X, Y, Z)\in M|(X, Y, Z)=(\frac{2\sqrt{1+\alpha^{2}}}{\alpha},2\sqrt{1+\alpha^{2}},$ $\frac{2(1+\alpha^{2})}{\alpha})$ for $\alpha\geq 1\}$ ,

where we introduce a parameter $\alpha\geq 1$ by setting $Y=\alpha X$ to simplify calculations.
The following arguments are due to [S].

DEFINITION 5.1. A Fricke group $\Gamma$ is called a special Fricke group if the associated
coordinate (X, $Y,$ $Z$) of $\Gamma$ is in $M$ .

Let (X, $Y,$ $Z$ ) be an associated coordinate of a special Fricke group $\Gamma=(A, B)$ . Then
$A$ and $B$ are given by

$A=\left(\begin{array}{ll}0 & -\frac{k}{X}\\\frac{X}{k} & X\end{array}\right)$ and $B=(Y-\frac{Z}{X}-\frac{Y}{k}$ $-k\frac{Y}{X^{2}}\frac{Z}{X})$
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for some $k>0$ . In particular a fundamental domain for $\Gamma=(A,$ $ B\rangle$ is obtained by removing
from the region

$t^{z}=x+iy|-k(\frac{3}{2}-\frac{X}{YZ})\leq x\leq k(\frac{1}{2}+\frac{X}{YZ})$ and $y>0\}$

the isometric circles for the M\"obius transformations $A,$ $A^{-1},$ $B,$ $B^{-1},$ $C=B^{-1}A^{-1}$ and $C^{-1}$ .
From this, for (X, $Y,$ $Z$ ) $\in M_{1}$ we obtain a special Fricke group $\Gamma_{\alpha}=\langle A_{\alpha}, B_{\alpha}\rangle$ with

$A_{\alpha}=(_{1}^{0}$ $\frac{2\sqrt{1+\alpha 2}-1}{\alpha}$) and $ B_{\alpha}=(^{\sqrt{1+\alpha^{2}}}-\alpha$ $\sqrt{1+\alpha^{2}}-\alpha)$ for $k=\frac{2\sqrt{1+\alpha^{2}}}{\alpha}$ .

Then

$C_{\alpha}=B_{\alpha}^{-1}A_{\alpha}^{-1}=(\frac{\alpha^{2}+2}{1+\alpha\alpha}\sqrt{2}$
$\sqrt{1+\alpha^{2}}\alpha$) and $C_{\alpha}B_{\alpha}A_{\alpha}=(-10$ $-\frac{4\sqrt{1+\alpha^{2}}}{-1\alpha})$

By using the basic facts cited above, we represent a fundamental domain for $\Gamma_{\alpha}$ :

$D_{h}(\Gamma_{\alpha})=1^{z\in H}||z+\frac{2\sqrt{1+\alpha^{2}}}{\alpha}|\geq 1,$ $|z+\frac{\sqrt{1+\alpha^{2}}}{\alpha}|\geq\frac{1}{\alpha}$

$|z|>1,$ $|z-\frac{\sqrt{1+\alpha^{2}}}{\alpha}|>\frac{1}{\alpha}$ $-\frac{2+3\alpha^{2}}{\alpha\sqrt{1+\alpha^{2}}}\leq{\rm Re}(z)<\frac{2+\alpha^{2}}{\alpha\sqrt{1+\alpha^{2}}}\}$

which is a hexagon whose sides are identified by actions of $A_{\alpha},$ $B_{\alpha},$ $C_{\alpha}B_{\alpha}A_{\alpha}$ and is called
the hexagonal fundamental domain. We can introduce another fundamental domain which
is a quadrilateral whose opposite sides are identified by actions of $A_{\alpha},$ $B_{\alpha}$ and is called the
quadrilateralfundamental domain:

$D_{q}(\Gamma_{\alpha})=t^{z\in H}||z+\frac{1+2\alpha^{2}}{2\alpha\sqrt{1+\alpha^{2}}}|>\frac{1}{2\alpha\sqrt{1+\alpha^{2}}}$

$|z+\frac{\alpha}{2\sqrt{1+\alpha^{2}}}|>\frac{\alpha}{2\sqrt{1+\alpha^{2}}}$ $-\frac{\sqrt{1+\alpha^{2}}}{\alpha}\leq{\rm Re}(z)\leq 0\}$

The quadrilateral fundamental domain (shown in normal outline in Fig. 5.1) can be identified
with the once punctured torus (X, $Y,$ $Z$).

In order to construct the holomorphic mapping we use the following modified funda-
mental domain $D(\Gamma_{\alpha})$ (the shaded part in Fig. 5.1):



FRICKE GROUPS AND REAL LATTICES 287

FIGURE 5. 1

$D(\Gamma_{\alpha})=\{z\in H||z+\frac{3\sqrt{1+\alpha^{2}}}{\alpha}|\geq\frac{1}{\alpha}$ $|z+\frac{2\sqrt{1+\alpha^{2}}}{\alpha}|\geq 1,$ $|z+\frac{\sqrt{1+\alpha^{2}}}{\alpha}|\geq\frac{1}{\alpha}$

$|z|\geq 1,$ $|z-\frac{\sqrt{1+\alpha^{2}}}{\alpha}|\geq\frac{1}{\alpha}$ $-\frac{3\sqrt{1+\alpha^{2}}}{\alpha}\leq Re(z)\leq\frac{\sqrt{1+\alpha^{2}}}{\alpha}\}$

We introduce the following notations:

$F_{\alpha}^{*}=\{z\in H||z+\frac{\sqrt{1+\alpha^{2}}}{\alpha}|\geq\frac{1}{\alpha}$ $|z|\geq 1,$ $-\frac{\sqrt{1+\alpha^{2}}}{\alpha}\leq{\rm Re}(z)\leq 0\}$

$\eta=(-\frac{\sqrt{1+\alpha^{2}}}{\alpha},$ $\frac{1}{\alpha})$ and $\zeta=(-\frac{\alpha}{\sqrt{1+\alpha^{2}}},$ $\frac{1}{\sqrt{1+\alpha^{2}}})$ ,

The region $F_{\alpha}^{*}$ (shown in broken line in Fig. 5.1) is a quadrangle with angles $0,$ $\pi/2,$ $\pi/2$ ,
$\pi/2$ .

PROPOSITION 5.1. We can construct a function $J_{\alpha}$ which satisfies the following:
(i) $J_{\alpha}$ maps $L_{\alpha}$ onto $R$ where $L_{\alpha}=L_{\alpha 1}\cup L_{\alpha 2}\cup L_{\alpha 3}\cup L_{\alpha 4}$ and

$L_{\alpha 1}=L_{1}$ , $L_{\alpha 2}=\{z\in H||z|=1$ and $-\frac{\alpha}{\sqrt{1+\alpha^{2}}}\leq{\rm Re}(z)\leq 0\}$ ,

$L_{\alpha 3}=\{z\in H||z+\frac{\sqrt{1+\alpha^{2}}}{\alpha}|=\frac{1}{\alpha}$ and $-\frac{\sqrt{1+\alpha^{2}}}{\alpha}\leq{\rm Re}(z)\leq-\frac{\alpha}{\sqrt{1+\alpha^{2}}}\}$

$L_{\alpha 4}=\{z\in H||z+\frac{\sqrt{1+\alpha^{2}}}{\alpha}|\geq\frac{1}{\alpha}$ and ${\rm Re}(z)=-\frac{\sqrt{1+\alpha^{2}}}{\alpha}\}$

In particular, $J_{\alpha}(i\infty)=\infty,$ $J_{\alpha}(i)=P$ for some $P>0,$ $J_{\alpha}(\zeta)=0$ and $J_{\alpha}(\eta)=-1$ .
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(ii) $J_{\alpha}$ maps $F_{\alpha}$ onto $C$ where

$F_{\alpha}=1^{z\in H}||z+\frac{\sqrt{1+\alpha^{2}}}{\alpha}|\geq\frac{1}{\alpha}$ $|z|\geq 1,$ $|z-\frac{\sqrt{1+\alpha^{2}}}{\alpha}|\geq\frac{1}{\alpha}$

$-\frac{\sqrt{1+\alpha^{2}}}{\alpha}\leq{\rm Re}(z)\leq\frac{\sqrt{1+\alpha^{2}}}{\alpha}\}$

(iii) The mapping $J_{\alpha}$ : $H\rightarrow C$ is holomorphic on H.

PROOF. We consider the transformations:

$\Sigma_{1}(z)=-\overline{z}$ , $\Sigma_{2}(z)=\frac{1}{\overline{z}}$ , $\Sigma_{3}(z)=-\frac{\sqrt{1+\alpha^{2}}\overline{z}+\alpha}{\alpha\overline{z}+\sqrt{1+\alpha^{2}}}$ , $\Sigma_{4}(z)=-\overline{z}-\frac{2\sqrt{1+\alpha^{2}}}{\alpha}$ .

These are reflections in the four circles, respectively:

$\Sigma_{1}$ : ${\rm Re}(z)=0$ , $\Sigma_{2}$ ; $|z|=1$ , $\Sigma_{3}$ ; $|z+\frac{\sqrt{1+\alpha^{2}}}{\alpha}|=\frac{1}{\alpha}$ , $\Sigma_{4}$ ; ${\rm Re}(z)=-\frac{\sqrt{1+\alpha^{2}}}{\alpha}$

They transform the upper half-plane into itself.
Let $\Gamma^{*}$ be a group generated by $\Sigma_{1},$ $\Sigma_{2},$ $\Sigma_{3}$ and $\Sigma_{4}$ . The Fricke group $\Gamma_{\alpha}=(A_{\alpha},$ $B_{\alpha}|$

is a subgroup of $\Gamma^{*}$ because $A_{\alpha}=\Sigma_{2}\Sigma_{4}$ and $B_{\alpha}=\Sigma_{3}\Sigma_{1}$ . We obtain a complete $anc$

simple covering of the upper half-plane by the region $F_{\alpha}^{*}$ and its equivalents with respec
to $\Gamma^{*}$ . We note that neighborhoods of $l,$

$\eta,$ $\zeta$ and their equivalents are split into parts $0l$

four quadrilaterals equivalent to $F_{\alpha}^{*}$ under the reflections and that a neighborhood of $ i\infty$ is
split into parts of infinite number of quadrilaterals which are images of $F_{\alpha}^{*}$ under translationt
generated by $\Sigma l$ and $\Sigma_{4}$ .

By the Riemann mapping theorem there uniquely exists a mapping $J_{\alpha}$ : $F_{\alpha}^{*}\rightarrow H$ which
is bijective, holomorphic and satisfies $J_{\alpha}(i)=P$ for some $P>0,$ $J_{\alpha}(\zeta)=0,$ $J_{\alpha}(\eta)=-1$

and $ J_{\alpha}(i\infty)=\infty$ . The function $J_{\alpha}$ can be analytically continued by the principle of reflectioI
as follows:

$J_{\alpha}(\Sigma_{kZ)}=\overline{J_{\alpha}}(z)$ for $z\in F_{\alpha}^{*}$ and $k=1,2,3,4$ ,

and we continue this process by iteration. Then continued $J_{\alpha}$ must be single-valued becaus‘
the upper half-plane is simply connected and we can use the monodromy theorem. $\subset$

LEMMA 5.1. We can assume that $P$ is larger than 1.

PROOF. We introduce the following notations:
$F_{\alpha}^{*\prime}=\Sigma_{4}F_{\alpha}^{*}$ , $\eta^{\prime}=\Sigma_{4}i$ , $\zeta^{\prime}=\Sigma_{4}\zeta$ , $L_{\alpha}^{\prime}=L_{\alpha 1}^{\prime}\cup L_{\alpha 2}^{\prime}\cup L_{\alpha 3}^{\prime}\cup L_{\alpha 4}^{\prime}$ ,

where
$L_{\alpha 1}^{\prime}=L_{\alpha 4}$ , $L_{\alpha 2}^{\prime}=\Sigma_{4}L_{\alpha 3}$ , $L_{\alpha 3}^{\prime}=\Sigma_{4}L_{\alpha 2}$ , $L_{\alpha 4}^{\prime}=\Sigma_{4}L_{\alpha 1}$ .

By using the same arguments as in the proof of Proposition 5.1, we can construct $j$

function $J_{\alpha}^{\prime}$ : $F_{\alpha}^{*\prime}\rightarrow H$ which is bijective and holomorphic and maps $L_{\alpha}^{\prime}$ onto $R$ with $J_{\alpha}^{\prime}(\eta)=$

$P^{\prime}$ for some $P^{\prime}>0,$ $J_{\alpha}^{\prime}(\zeta^{\prime})=0,$ $J_{\alpha}^{\prime}(\eta^{\prime})=-1$ and $ J_{\alpha}^{\prime}(i\infty)=\infty$ . The mapping $J_{\alpha}^{\prime}$ also $cal$

be analytically continued. Then $J_{\alpha}^{\prime}$ maps $F_{\alpha}^{*}$ onto the lower half-plane holomorphically $tt$
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we have $J_{\alpha}^{\prime}(i)=-1,$ $J_{\alpha}^{\prime}(\zeta)=0,$ $J_{\alpha}^{\prime}(\eta)=P^{\prime}$ . Therefore $J_{\alpha}^{\prime}\circ J_{\alpha}^{-1}$ is a holomorphic mapping
between the extended planes which maps $\infty,$ $P,$ $0,$ $-1$ to $\infty,$ $-1,0,$ $P^{\prime}$ , respectively. By
a well-known theorem the cross-ratio of $(\infty, P, 0, -1)$ must be equal to the cross-ratio of
$(\infty, -1,0, P^{\prime})$ , so we have $1/(P+1)=P^{\prime}/(1+P^{\prime})$ which means $PP^{\prime}=1$ . Therefore we
can assume that $P\geq 1$ without loss of generality. $\square $

Next, we consider an elliptic integral

$u(w)=\int_{0}^{w}\frac{1}{\sqrt{(w+1)w(w-P)}}dw$ .

If we set

$a(P)=\int_{0}^{P}\frac{1}{\sqrt{(w+1)w(P-w)}}dw$ and $b(P)=\int_{P}^{\infty}\frac{1}{\sqrt{(w+1)w(w-P)}}dw$ ,

then we obtain $u(-1)=b(P),$ $u(O)=0,$ $u(P)=-a(P)i$ and that $u(w)$ is a holomorphic
mapping from $H$ to th$e$ interior of the rectangle determined by the four points $0,$ $b(P),$ $-a(P)i$

and $b(P)-a(P)i$ . We recall that the two-sheeted covering of the extended complex plane
with branch points-l, $0,$ $P,$ $\infty$ is a closed torus whose periods $\omega_{1}$ and $\omega_{2}$ are described by

$\omega\iota=2\int_{-1}^{0}\frac{1}{\sqrt{(w+1)w(w-P)}}dw$ and $\omega_{2}=2\int_{0}^{P}\frac{1}{\sqrt{(w+1)w(w-P)}}dw$ .

Then we have $\omega_{1}=-2b(P),$ $\omega_{2}=2a(P)/j$ and the ratio $\tau=\omega_{2}/\omega_{1}=a(P)i/b(P)$ . Define
$\tau(P)=a(P)i/b(P)$ . We will show that $\tau(P)$ is uniquely $\det e$rmined by $P$ .

LEMMA 5.2. $a(P)$ is monotone increasing with respect to $P$ .

PROOF. The following equation is easily obtained by Cauchy’s theorem

$\int_{-\infty}^{\infty}\frac{1}{\sqrt{(w+1)w(w-P)}}dw=0$ ,

so we have

$\int_{-\infty}^{-1}\frac{1}{\sqrt{(w+1)w(w-P)}}dw=a(P)i$ .

Take two real points $P_{1}$ and $P_{2}$ with $0<P_{1}<P_{2}$ . Since $0>(w+1)w(w-P_{1})>$
$(w+1)w(w-P_{2})$ for each $wwith-\infty<w<-1$ , the following inequality holds

$\frac{i}{\sqrt{(w+1)w(w-P_{1})}}>\frac{i}{\sqrt{(w+1)w(w-P_{2})}}$

Integrating both sides of the inequality with respect to $ wfrom-\infty$ to-l, we have $ia(P_{1})i>$

$ia(P_{2})i$ which means $a(P_{1})<a(P_{2})$ . $\square $

PROPOSITION 5.2. ${\rm Im}(\tau(P))$ increases monotonically with respect to $P$ .
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PROOF. In the definition of $b(P)$ we change the variable by $v=1/w$ , then

$b(P)=\int_{P}^{\infty}\frac{1}{\sqrt{(w+1)w(w-P)}}dw=\int_{0}^{T^{1}}\frac{1}{\sqrt{P}}\frac{1}{\sqrt{(v+1)v(\frac{1}{P}-v)}}dv=\frac{1}{\sqrt{P}}a(\frac{1}{P})$

Finally, we have

$\tau(P)=\sqrt{P}\frac{a(P)}{a(1/P)}i$ .

Since $a(P)$ is monotone increasing with respect to $P,$ ${\rm Im}(\tau(P))$ is also monotone increasing
with respect to P. $\square $

Now we have obtained that $\tau(P)$ is uniquely determined by $P$ and that if $P\geq 1$ then
$\tau(P)\in L_{1}$ from $\tau(1)=i$ . The values $g_{2}(\tau(P)),$ $g_{3}(\tau(P))$ are real from Proposition 2.1 and
the lattice $\Omega(1, \tau(P))$ is a real lattice from Proposition 2.2. By using the same arguments as in
the proof of Proposition 2.8 we have the following facts with respect to the lattice $\Omega(1, \tau(P))$ .

PROPOSITION 5.3. For the lattice $\Omega=\Omega(1, \tau(P))$ , we have

$\wp(R+\tau(P)/2)\subset RU\{\infty\}$ , $\wp(R-\tau(P)/2)\subset RU\{\infty\}$ ,

$\wp(iR+1/2)\subset RUt\infty\}$ , $\wp(iR-1/2)\subset RU\{\infty\}$ .

As $J(\tau(P))>1$ the cubic polynomial $p(x)=4x^{3}-g_{2}(\tau(P))x-g_{3}(\tau(P))$ has three
distinct real roots which will be denoted by $x_{1},$ $x_{2},$ $x_{3}$ with $x_{1}<x_{2}<x_{3}$ .

LEMMA 5.3. Correspondences among points $-1,0,$ $P$ and $x_{1},$ $x_{2},$ $x_{3}$ are described
by using a linear transfomation on $R,$ $i.e.,$ $x\mapsto(x2-x_{l})x+x_{2}$ .

PROOF. We consider an elliptic integral

$v(w)=\int_{0}^{w}\frac{1}{\sqrt{4(w-x_{1})(w-x_{2})(w-x_{3})}}dw$ .

If we set

$c=\int_{x_{1}}^{x_{2}}\frac{1}{\sqrt{4(w-X_{1})(X_{2}-w)(x_{3}-w)}}dw$

and

$d=\int_{X_{2}}^{X}3\frac{1}{\sqrt{4(w-x_{1})(w-x_{2})(x_{3}-w)}}dw$ ,

then $v(w)$ is a holomorphic mapping from $H$ to the interior of the rectangle determined by $c,$ $d$

and the two-sheeted covering of the extended complex plane with branch points $x_{1},$ $x_{2},$ $x_{3},$ $\infty$

is a closed torus whose ratio $\tau^{\prime}$ is equal to $di/c$ , which can be seen by the same arguments
as the one we used in order to introduce $\tau(P)$ . Then the ratio $\tau^{\prime}$ must be equal to the ratio
$\tau(P)$ because the tori corresponding to $\tau^{\prime}$ and $\tau(P)$ are determined by the same real lat-
tice $\Omega(1, \tau(P))$ , which implies that we can take a holomorphic mapping between rectangles
determined by $a(P),$ $b(P)$ and $c,$ $d$ . By using Schwarz reflection principle we obtain the holo-
morphic mapping between the extended planes $with-1\rightarrow x_{1},0\rightarrow x_{2},$ $P\rightarrow x_{3},$ $\infty\rightarrow\infty$ .
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Then the cross-ratio of $(-1,0, P, \infty)$ must be equal to the cross-ratio of $(x_{1}, x_{2}, x_{3}, \infty)$ , so
we have

$\frac{x_{2}-x_{1}}{X_{3}-x_{1}}=\frac{1}{P+1}$

which gives $x_{3}-x_{2}$ : $x_{2}-x_{1}=P$ : 1. Therefore we obtain the relation $x\mapsto(x_{2}-x_{1})x+x_{2}$ .
$\square $

THEOREM 5.1. The once punctured torus determined by $\alpha$ is mapped to the closed
torus determined by $\tau(P)$ holomorphically by using the relation

$\wp(u)=(x_{2}-x_{1})J_{\alpha}(z)+x_{2}$ . (5.1)

PROOF. By the relation (5.1) the point $ z=i\infty$ is mapped to a lattice point of the u-
plane because of $ J_{\alpha}(i\infty)=\infty$ and $\wp(u_{0})=\infty$ for $u0\in\Omega=\Omega(1, \tau(P))$ . We can assume
without loss of generality that the image of $ z=i\infty$ by (5.1) is the point $u=0$ . Suppose
that $J_{\alpha}$ has a value $c_{0}\in C$ with $c_{0}\neq-1,0,$ $P$ . Since for each $c\in C,$ $c\neq x_{1},$ $x_{2},$ $x_{3},$ $\infty$

the equation $\wp(z)=c$ has two simple solutions, for $J_{\alpha}=c_{0}$ we obtain two points of $u$

determined by the relation (5.1). The fundamental domain $D(\Gamma_{\alpha})$ is a 2-sheeted covering of
the domain $F_{\alpha}$ , so we can take two points which attain $J_{\alpha}=c_{0}$ in the fundamental domain
$D(\Gamma_{\alpha})$ . Therefore the relation (5.1) gives correspondences between these two points in the
z-plane and the two points in the u-plane. Now we consider the case where $J_{\alpha}(z)$ is real. We
divide arguments into the following three cases.

(I) $J_{\alpha}(z)\geq P,$ $i.e.,$ $z\in L_{\alpha 1}$ .
Setting $J_{\alpha}(z)=c$ , we have $\wp(u)=(x_{2}-x_{1})c+x_{2}$ . We can take apoint $u$ with $\wp(u)=$

$(x_{2}-x_{1})c+x_{2}$ on the line $R$ because $\wp(R)\subset RUt\infty$ } and $\wp(u)$ is large positive if $u\in R$ is

$\tau(P)$

1 1

(i) (ii)

(i) The segments $L_{\alpha}(i\infty\rightarrow i\rightarrow\zeta\rightarrow\eta\rightarrow i\infty)$ and $L_{\alpha}-\frac{2\sqrt{1+\alpha^{2}}}{\alpha}$ are mapped by the relation (5.1) to the

segments $(0\rightarrow-2^{1}\rightarrow-21+\Sigma^{1_{\tau(P)}}\rightarrow\Sigma^{1_{\tau(P)}}\rightarrow 0)$ and $(0\rightarrow 2^{1}\rightarrow 2^{1}-2^{1_{\tau(P)}}\rightarrow-2^{1}\tau(P)\rightarrow 0)$ .
(ii) The rectangle determined $by\pm^{1}2(1+\tau(P)),$ $\pm 2^{1}(1-\tau(P))$ is the image of $D(\Gamma_{\alpha})$ by the relation (5.1).

FIGURE 5.2
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small. If $J_{\alpha}(i)=P$ in (5.1) then $\wp(u)=(x_{2}-x_{1})P+x_{2}=x_{3}$ , which means that the point
$u$ corresponding to $z=i$ must be ramification $points\pm 1/2$ in the u-plane. Therefore we can
take segments { $\pm t|0\leq t\leq\frac{1}{2}1$ as images of $L_{\alpha 1}$ by the mapping defined by the relation (5.1).

(II) $J_{\alpha}(z)\leq-1$ , i.e., $z\in L_{\alpha 4}$ .
Set $J_{\alpha}(z)=c$ then $\wp(u)=(x_{2}-x_{1})c+x_{2}$ . From Proposition 2.8 (i) we have $\wp(iR)\subset$

$RU\{\infty\}$ and if $u=it,$ $t\in R$ is small then $\wp(u)$ is negative and $|\wp(u)|$ is large, so we can
take a point $u$ with $\wp(u)=(x_{2}-x_{1})c+x_{2}$ on the line $iR$ . Since $\wp(u)=x_{1}$ if $J_{\alpha}(\eta)=-1$ in
(5.1), the point $u$ corresponding to $ z=\eta$ must be ramification $points\pm\frac{1}{2}\tau(P)$ in the u-plane.
Therefore we get segments $\{\pm it|0\leq t\leq\frac{1}{2}|\tau(P)|\}$ as images of $L_{\alpha 4}$ by the mapping defined
by the relation (5.1).

(III) $-1\leq J_{\alpha}(z)\leq P$ , i.e., $z\in L_{\alpha 2}\cup L_{\alpha 3}$ .
The point $u$ corresponding to $ z=\zeta$ must be ramification $points\pm\frac{1}{2}(1-\tau(P))$ in the

u-plane sinc$e\wp(u)=x_{2}$ if $J_{\alpha}(\zeta)=0$ in (5.1). As the mapping defined by the relation (5.1)

is conformal on $C/\Omega$ , we obtain Fig. 5.2 (i) by Proposition 5.3 and arguments in (I) and (II).

From Proposition 5.1 and the symmetry of the domain $F_{\alpha}$ , the image of the fundamental
domain $D(\Gamma_{\alpha})$ by the mapping defined by the relation (5.1) can be represented by the rec-
tangle includimg $0$ in Fig. 5.2 (ii). Then we can take without loss of generality the actions
of $A_{\alpha}$ and $B_{a}$ as in Fig. 5.2 (ii) from the identification of the sides of $D(\Gamma_{\alpha})$ . Moreover, the
quadrilateral fundamental domain $D_{q}(\Gamma_{\alpha})$ is mapped to the rectangle in Fig. 5.2 (ii) which is
determined by the lattice $\Omega=\Omega(1, \tau(P))$ in the u-plane. These facts imply that there exist
the correspondences $\mu\Leftrightarrow A_{\alpha}$ and $\mu\tau(P)\Leftrightarrow B_{\alpha}$ for $\mu>0$ which we assumed in order to
obtain the correspondence $L_{1}\Leftrightarrow M_{1}$ (see \S 3). $\square $
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