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A Survey of the Statistical Theory of Shape

David G. Kendall

Abstract. This is a review of the current state of the “theory of shape”
introduced by the author in 1977. It starts with a definition of “shape” for
a set of k points in m dimensions. The first task is to identify the shape
spaces in which such objects naturally live, and then to examine the
probability structures induced on such a shape space by corresponding
structures in R™. Against this theoretical background one formulates and
solves statistical problems concerned with shape characteristics of empirical
sets of points. Some applications (briefly sketched here) are to archeology,
astronomy, geography and physical chemistry. We also outline more recent
work on “size-and-shape,” on shapes of sets of points in riemannian spaces,
and on shape-theoretic aspects of random Delaunay tessellations.
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1. THE ORIGINS OF STATISTICAL SHAPE
THEORY

First a few words about terminology. When I was
working in Princeton in 1952-1953 someone (I think
it was Hassler Whitney) posted a notice in Fine Hall
listing a large number of four- and five-letter words
not yet used as technical terms in pure mathematics.
I do not remember whether “shape” was one of these,
but about 1968, according to Borsuk (1975), it was
duly appropriated for such a purpose by topologists,
so now when we wish to write about the mathematics
and statistics of real shapes we are required to add an
explanatory adjective in order to make it clear that we
do mean shape as ordinarily understood and not
an arcane concept in topology. Oddly enough, as
will shortly become apparent, some other branches
of topology turn out to play an important role in-
our shape theory, but this has nothing to do with
Whitney’s list.

There are several different approaches to the statis-
tical analysis of (real) shapes (see for example Kendall
(1984) and the recent reviews of Bookstein (1986) and
Small (1988)). There is an equal diversity of ap-
proaches to the geometric description of shape, but
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here I will only describe one that I have developed in
a series of papers starting in 1977 (Kendall, 1977) and
associated with what now seems a very premature
attempt to study shape-valued stochastic processes.
W. S. Kendall’'s most recent work on shape-
diffusions (W. S. Kendall, 1988) substantiates and
considerably generalizes that exploratory essay and
links it with research in stochastic physical chemistry
(Clifford, Green and Pilling, 1987).

My interest in shape theory was prompted by a
statistical topic on the fringes of archeology. When
one looks at Stonehenge one accepts the underlying
circular structure without asking for statistical au-
thentication, and the same is true of the underlying
linear structures in the monuments of Carnac. Statis-
tical tests here would be quite out of place. But there
are other archeological situations in which a linear
structure is accepted by some and dismissed by others.

- Thus the set of 52 standing stones near Land’s End,

Cornwall, studied by Broadbent (1980) yields (%) =
22,100 triplets of stones, and there are those who say
vaguely that “too many” of these are “too nearly”
collinear, and who attribute this to deliberate plan-
ning, whereas others dismiss such claims as ridiculous.
Who is right?

We can quantify “too nearly collinear” by inter-
preting this to mean “the obtuse angle of the triangle

- defined by the triplet differs.from two right angles by

less than (say) ¢ = 0.5 degrees.” Figure 1 shows a map
of the plan positions of the 52 stones. There are 81
such “nearly collinear” triplets. Figure 2 shows these
by means of line segments drawn to join the extreme
members of each such triplet.
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F1G.1. The plan positions for the 52 standing stones. (Data provided
by S. R. Broadbent.)

Is 81 “too many”? A model-based or data-based
interpretation of “too many” is evidently called for.

One’s first attempt at answering that question
might be to pretend.that the stones are independently
uniformly distributed inside a rectangular frame
whose length to breadth ratio is equal to the ratio of
the component standard deviations of the configura-
tion, and on that basis one finds that the expected
number of triplets meeting the half-degree standard
of near-collinearity is about 73, so that relative to

approximately Poisson variations (here reasonable) -

the comment “too many” is unjustified. There is a
small excess, but it could quite well be due to chance.
I should add that it is preferable to avoid such artificial
models and instead to devise a data-based simulation
test of the whole set of 52 sites employing random
lateral perturbations, as was done by W. S. Kendall
and myself (Kendall and Kendall, 1980) in a study
complementary to that of Broadbent and leading to
the same conclusions. Qur approach there also avoids
the objectionable feature of fixing ¢ in advance; instead
we set a rather broad tolerance region for ¢. A detailed
account of that and of the method of lateral pertur-
bations would however take us too far from our present
theme.

F16. 2. The 81 (half-degree) collinearities.

The scheme of our survey will be as follows. In
Section 2 we introduce the shape space associated
with k labeled points in R™ and discuss its local metric
characteristics, and we illustrate the general discus-
sion by fully identifying some of the simpler shape
spaces. In Section 3 we organize the shape spaces in a
two-dimensional array and use this to find weak but
now global (homology) characteristics of all the shape
spaces, with a precision sharp enough to distinguish
any one space from all the others. In Section 4 we
introduce probability distributions and densities for
shape and illustrate this by a brief account of Huiling
Le’s recent determination of all shape densities for
random triangles with vertices uniformly iid in arbi-
trary compact convex polygons. In Section 5 we turn
to a brief account of size-and-shape spaces, and to the
more general shape spaces associated with k& labeled
points in a riemannian manifold M relative to a nicely
transitive group of symmetries . The latter very
general situation is illustrated by a discussion
of random spherical triangles (important in quasar
astronomy). In Section 6 we discuss the size-and-
shape problems associated with a random Delaunay
tessellation. Finally in Section 7 we outline a few
applications.
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Much of the work covered by the present survey is
still unpublished. It is intended to give a comprehen-
sive account in the book by Carne, Kendall and Le
now in preparation. -

2. FINDING A NATURAL HOME FOR SHAPES

It was Broadbent’s work on the 52 Land’s End
stones that made me ask the question: what is the
natural mathematical home for the shape of a labeled
set of k not totally coincident points in m dimensions?
(We say labeled points because labels always exist
explicitly or implicitly, for example in the form of
reference numbers in the archeologist’s notebook.)
The idea is to filter out effects resulting from trans-
lations, changes of scale and rotations and to declare
that shape is “what is left.”

It is natural first to move the origin to the centroid
G of the k points, and then to eliminate size we can
compute L = VY%, GP? (where GP; denotes the dis-
tance from G to P;) and change the scale by making
L = 1. This, to a statistician, is the most natural way
to standardize for size, but it is not the only possible
one, and as we shall see there are contexts in which a
different standardization is worth consideration.

This leaves us with an m X k matrix of rank at most
k — 1, and to clarify the rank situation we multiply
the matrix on the right by a fixed element T of the
orthogonal group O(k) that maps the column vector
(0,0,...,0,1)to acolumn vector all of whose elements
are equal to 1/vEk. The new matrix will then have a
final column of zeros. We omit that column, so that
we are left with what is now an m X (k — 1) matrix
the squares of whose elements sum to unity, and
obviously we can identify this with a point on a sphere
of unit radius and m(k — 1) — 1 dimensions. That
sphere we shall call the sphere of preshapes. Each of
its points is identified with an m X (k — 1) matrix on
which the special orthogonal (rotation) group SO(m)
acts from the left, and we define the shape space =%,
to be the quotient of the preshape sphere by SO (m).

Thus each SO(m) equivalence class in the preshape

sphere is now viewed as a single point (by definition
the shape of the original configuration) in this new
space. Further details are given in Kendall (1984, 1985,
1986).

Notice that while the construction of the shape
space depends on an arbitrary choice of T, the effect
of varying that choice does no more than replace the
first shape space by another isometric with it. Thus
any such T in O(k) can be used, but must not there-
after be altered. A once for all choice is suggested in
Kendall (1984).

It will be observed that it is in the process of
standardization for size that we lose the opportunity
to include the totally degenerate k-ad all of whose

points are coincident. This does, of course, have a
distinct shape, and we can if we wish adjoin it to the
shape-space as a non-Hausdorff point. Normally the
totally degenerate situation is ignored, but an excep-
tion is made when discussing the diffusion of size and
shape; the non-Hausdorff point representing total de-
generacy is then of importance as an entrance bound-
ary. The true significance of this will become apparent
when we extend our definition to cover size-and-shape
spaces (for which see below).

Geometrically a maximal set of preshapes equiva-
lent modulo SO (m) forms what is called a fiber in the
sphere of preshapes, and two k-ads will be said to have
the same shape if and only if they determine preshapes
lying on the same fiber. It is customary to think of the
preshape sphere as lying above the shape space, with
the quotient-projection acting downward, so that the
whole of each fiber can be thought of as lying above
the shape(-point) to which it corresponds. Notice that
these fibers do not intersect one another, so that we
have a decomposition of the preshape sphere into
nonoverlapping fibers. Thus we get the shape space
by using the quotient operation that maps fibers down
onto points (= shapes), and we then throw as much
as we can of the natural structure of the preshape
sphere down the projection into the shape space.
Figure 3 gives a (drastically!) oversimplified sketch of
the relationship between (i) the set of k points (here
a triangle) in the ambient space (here R?), (ii) the
preshapes and fibers in the preshape space (here a
sphere S3(1)), and (iii) the shapes in the shape space
(here a sphere S?(%2)).

That we can metrize a quotient space via the pro-
jection is well known, but we can do better. This is
because (away from certain singularities when m = 3,
to be discussed below) the projection that maps fibers
to points is here what is called a riemannian submer-
sion endowing the shape space with a natural smooth
riemannian structure inherited from the ordinary
riemannian structure of the preshape sphere in such
a way that

each pair of tangent vectors at any preshape on a
given fiber, with the property of being orthogonal
to the fiber, will map to a pair of tangent vectors
at the image of the fiber in the shape space, these
last tangent vectors having the same inner product
as the original “horizontal” pair.

It is usual and helpful to think of the tangent space
at a point on the preshape sphere as decomposed into
two orthogonal complements: one contains the “ver-
tical” tangents that are tangent to the fiber, whereas
the other contains the “horizontal” tangents that are
orthogonal to the fiber, so that the above statement is
an assertion about pairs of horizontal tangent vectors
at a point in the preshape space.
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F1G.3. The ambient space, the preshape space and the shape space:
an impressionistic sketch of the situation when k= 3 and m = 2.

This inner product property holds everywhere out-
side the singular set and imposes a natural riemannian
metric on 2% that has now been determined explicitly;
it will be reported on in detail elsewhere. It is relevant
that this method when fully implemented also tells
us exactly which shapes are located in the singularity
set.

Accordingly we immediately obtain local metrical
information about the shape space, and obviously to
gain a full geometric understanding we shall need to
supplement this by other information of a more global
character.

One way of meeting that need is to study the geo-
desics on the shape space. In such a situation as this
it is known (O’Neill, 1966, 1967) that the geodesics in
the shape space are exactly the projections of the
horizontal geodesics (here horizontal great circles in
the preshape sphere); moreover, these project with

local preservation of arc length, so that the geodesic
geometry of the shape space can be read off.

O’Neill has shown that for riemannian submersions
one can greatly shorten the computation of sectional
curvatures. Another important fact is that the relation
between the riemannian structures associated with
preshapes and shapes is such that it can also be used
to relate diffusions in the two spaces. Here to avoid
wearying the statistical reader with technicalities we
omit the details.

We now summarize a few specific results for small
values of k and m for which the corresponding shape
spaces can be fully identified (that is, where they are
known up to isometry). Many of these examples are
of considerable practical importance.

For m = 1 the shape space is the sphere S*72 (1),
where 1 denotes the radius, and for m = 2 it is what
is known as the complex projective space CP*"%(4),
where 4 denotes the (constant) holomorphic sectional
curvature. For m = 2 and k = 3 we thus find that
¥3 = S%*(%) (here again the Y% denotes the radius).
(This follows because CP'(4) = S?(%2).) Accordingly
S2%(1%) is the shape space for labeled triangles. It will
be observed that the (constant) curvature of =3 is
equal to 4, although that of the preshape sphere was
equal to 1. These facts illustrate a general principle
established by O’Neill: this kind of mapping never
decreases the curvature.

The singularities that arise when m = 3 correspond
to the k-ads that lie in an (m — 2)-dimensional sub-
space. Thus the singular set is a projective image of
Eﬁ,_g in Efn.

The natural generalization of the set of “collinear”
labeled triangles in the plane is the set of (m + 1)-ads
in R™ that happen to lie in an (m — 1)-dimensional
subspace, and the corresponding set of shapes is a
projective image Eq,, of £2*1 in =7*'. In particular
when m = 2 this tells us that the collinearity set Eq.
is the projective image S'(}2) of S'(1) in S*(%4), so
that it is a special great circle in S?*(%2). We call
this the equator, and it is useful to employ that ter-
minology even when m is not equal to 2. It should by
now be obvious to the reader that the study of near-
collinearities for labeled triplets of points in two
dimensions reduces to a study of the shape data
in the vicinity of the equator on the shape space
I3 = S2%k). If we use a circularly symmetric
gaussian model to describe the random distribution
of the original points in R? then it turns out that
the corresponding distribution of the shape point is
uniform on the surface of the spherical shape space.
Thus the collinearity studies with which we started
have been converted into an elementary exercise in
spherical trigonometry.

The projective nestings of shape spaces in other
shape spaces briefly illustrated above are very useful
in other ways, and are possible because we have chosen
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to standardize the size measure L to a value (unity)
that does not depend on & or m.

We have emphasized that a knowledge of the
riemannian geometry of the shape space does not
answer all the questions that one needs to ask, because
some of those are essentially linked to the global
rather than merely local geometrical situation. A com-
plete elaboration of this point would be very technical,
but we shall give a sketch of the possibilities in the
next section. In preparation for this the reader might
like to be reminded of the sort of tools that can be
employed.

When one is confronted with a space (such as a
shape space) and asks about its geometric structure,
there is a hierarchy of levels at which one can operate.
At the crudest level one might merely ask for the value
of the Euler-Poincaré characteristic x, probably fa-
miliar to all readers in the context of polyhedra in
three dimensions. A useful fact to bear in mind is that
for spheres this characteristic is equal to 2 when the
dimension is even, and is zero when the dimension is
odd, these facts holding for any space that is topolog-
ically equivalent to a sphere. (For polyhedra in 3
dimensions the dimension is 2, and as this is even the
characteristic is also equal to 2.)

Now if one requires slightly more detailed infor-
mation one can ask for the sequence of homology
groups. for the space, and here one can operate at three
levels, using coefficients drawn from the additive
group Z, of residues modulo 2, or the additive group
@ of rational reals or the additive group Z of signed
integers. The last of these three options yields the
most detailed information.

After this one could proceed to cohomology, which
is a theory dual to homology but with a more detailed
structure related to naturally defined product opera-
tions, or beyond that to homotopy.

Even when all these possibilities are explored one
may find that there is still some lack of detail; one
will not necessarily have identified the space up to
topological equivalence.

The metrical level at which we were working earlier
in this section lies way beyond all the other approaches
,we have just mentioned, but if it happens to be acces-
sible only in a local form then the additional global
information supplied by the “weaker” methods can
sometimes provide us with a much more satisfactory
result. To illustrate this fact we recall that a complete
n-dimensional riemannian manifold with n = 2 and
with positive curvatures K such that 4 + e < K <1
must be a topological sphere S” if it is known to be
simply connected. )

3. THE ARRAY OF SHAPE SPACES =},

If we afrange the shape spaces in an array labeled
by (k, m), where the number of points k = 2 increases

down the columns and the dimension m = 1 increases
along the rows, then all the spaces along the diagonal
m = k — 1 are topological spheres (this important
result was discovered by A. J. Casson). Clearly how-
ever they cannot be metric spheres when m = 3
because there are then singularities in the differenti-
able structure. Notice that these ‘“diagonal” shape
spaces are the ones needed for the discussion of the
shapes of labeled simplexes. Their statistical impor-
tance is therefore considerable.

Beyond this diagonal, that is when m > k — 1, the
shape spaces in the kth row are all metrically the same
and topologically they can be identified with a “hem-
isphere” of the topological sphere Z%_,. (There are
two such “hemispheres” in this topological “sphere”
that are metrically congruent under a reflection op-
eration and intersect in what we have called Eq;-;.)
The reflection referred to is that induced by a reflec-
tion of the original configuration in one of the coor-
dinate planes of R™.

These “hemispheres” and ‘“equators” play an im-
portant role when one studies the shape diffusion
induced via a time change by a given k point diffusion
in the ambient space R™. The paper by W. S. Kendall
already mentioned starts with a brownian or an
Ornstein-Uhlenbeck diffusion for a set of k = 3 points
in R”, where m =k —1,k, k+ 1, ..., and then
examines the corresponding time-changed diffusions
in 2% as was done in a very tentative way in (Kendall,
1977). The first of these shape spaces is a topological
sphere, and all the others are metric copies of one and
the same “hemisphere” whose boundary is the “equa-
tor” defined above. But the successive diffusions in
this “hemisphere” are not the same, and that fact
leads to interesting and indeed surprising conclusions
about the nature of the stochastic motion when the
ambient dimension m tends to infinity.

There remains a triangular region of the array de-
fined by the inequalities m = 3 and m < k — 1 about
which we have so far said nothing, but I can now make
a fairly complete statement concerning the homology-
properties of the spaces in question. (i) None of these
spaces is a sphere even in the crudest sense; i.e., none
has the homology of a sphere. (ii) None is a topological
manifold. (iii) All have torsion in homology. (iv) Any
two such spaces are homologically distinct.

The details are long and complicated, but depend
chiefly on the interesting fact that if we write

Tk <3l

when both & = [ and m < n, then there is an elegant
topological three-term recurrence that constructs ¥,
up to homeomorphy out of the topological spaces
Tk and 2%, and so up to homeomorphy we can
(in principle) construct all the shape spaces induc-
tively, following the partial order and starting with
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the spaces at the margins of the array (for the nature

of these is already known).

For the Euler-Poincaré characteristics x % we obtain
a related two-dimensional numerical three-term re-
currence that can be solved explicitly. We then find
that the triangular region mentioned above contains
some even-dimensioned spaces with x = 2 (as for
even-dimensioned spheres) and some odd-dimen-
sioned spaces with x = 0 (as for odd-dimensioned
spheres). Nevertheless these are not topological
spheres; for the proof of that we require the corre-
sponding recurrence in homology.

In homology we get a short exact sequence that
extends to a long exact sequence with homomorphisms
whose action can be fully identified. In this way I have
found the Z, homology explicitly for all the shape
spaces T and a corresponding determination of the
& homology is in progress. Fitting these together via
what is called the general coefficient theorem should
yield the integer homology, but for our present pur-
poses the Z, results suffice; in particular they imme-
diately prove (i) and (iv) above.

One might expect that the shape spaces possessing
singularities would prove to be of no practical interest,
but that is not so. In fact the spaces =% are precisely
those that are important in the work of Clifford, Green
and Pilling (1987) on stochastic problems in physical
chemistry.

4. RANDOM SHAPES: CONVEX-POLYGONALLY
GENERATED SHAPE DENSITIES

It might seem that the concentration on the geom-
etry of shape spaces is excessive, but recent events
have justified it in a striking way. When this program
began in the 1970s, C. G. Small and I knew that a
diffuse probability law .# in R™ must determine in a
natural way an induced law .#* on the shape space
%, this being the law of distribution of the shape of
a labeled k-ad of points each one of which is inde-
pendently distributed with law .#, but we only knew
one or two examples of such situations that we were
able to study in explicit detail. It therefore seemed
desirable to find a wide range of such explicit shape
distributions, at least in the basically important case
k = 3, m = 2. In particular we thought it would
substantially remedy the situation if we could find the
shape distribution for three points independently uni-
form in (i) a square and perhaps (ii) an equilateral
triangle.

Unfortunately, what we thought a modest objective
proved for 10 years unattainable, even in the “simple”
cases just mentioned. To assist the mechanics of such
calculations we used a stereographic projection of the
sphere 23, projecting it from the shape point where
“A = B # C” onto the tangent plane at the shape

point where “C is the midpoint of AB.” This is a
plane projection, and in the plane we took cartesian
coordinates (x, y) such that the shape point where
“A = C # B” had the coordinates (—1/+/3, 0), and the
shape point where “A # C = B” had the coordinates
(+1/+38, 0). The occurrence here of NE) may seem
peculiar, and some writers (e.g., Small, 1981, 1988)
avoid it, but it is the kind of notational wrinkle that
remains however much one pushes it under the carpet,
and I prefer to accept it at this point for the sake of
getting cleaner formulas elsewhere. With these coor-
dinates we find that y = 0 is the locus of all collinear-
ities apart from the one corresponding to the shape
projected to the point at infinity. Thus, y = 0 together
with the point at infinity is the stereographic version
of Eqs and near-collinearity studies focus on its im-
mediate neighborhood.

With these conventions it is natural to seek an
explicit form for the shape density m(x, y), that is the
Radon-Nikodym derivative of the shape measure rel-
ative to the o-finite measure dxdy. After many years
of unsuccessful attempts by myself to find m(x, y) in
the two “simple” cases, the situation has changed
dramatically with the work of the young Chinese
mathematician Huiling Le, who succeeded in obtain-
ing explicit formulas for the function m(x, y) when-
ever the probability model is

three points A, B, and C are independently and
uniformly distributed inside a compact convex
polygon K.

Her solution (1987a, b; see also Kendall and Le, 1986,
1987a) is perfectly general, and covers all compact
convex polygons K whatsoever.

What led to this remarkable achievement was the
observation that for given K the function m(x, y) is
real-analytic inside each tile of a K-dependent “sin-
gular tessellation” 7 of the (x, y)-plane and jumps
abruptly in analytic form when any edge of the tessel-
lation is crossed. As there is a continuum of possible
shapes for K, and so a continuum of possible tessel-
lations, this seemed at first to make a complete solu-
tion even more unattainable, but the tradition of doing
the geometry first, and then tackling the probability
calculations when that was fully understood, turned
out to be the key to the situation. The geometric
dependence of .7~ on the shape of K was fully investi-
gated (Kendall and Le, 1987a, b), and once that was
done the outline of what might be a possible way to a
solution came into view, although many difficulties
had to be overcome before this intuition was shown
to be correct.

Next, the jump suffered on crossing any tile-edge of
the tessellation was shown via an analytic continua-
tion argument to be completely characterized by a real
analytic jump function attached to that tile-edge and
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free of singularities in a two-dimensional open set
containing the edge after removal of its end points.
Thus, if one were given the function m(x, y) in some
“basic tile” and if also one knew all the jump func-
tions, then it could in principle be extended by analytic
continuation to an arbitrary ‘“target” tile by a
“stepping-stone” *procedure following a sequence of
pairwise contiguous tiles. Moreover, it was clear that
if the argument could be pushed through then all such
stepping-stone routes would provide equally good ways
of arriving at a solution, although in practice one
would expect some routes to be more convenient than
others.

An equally vital and surprising step was Huiling
Le’s discovery that the problem can in fact be reduced
to finite form. She followed this by finding explicitly
(a) the function m(x, y) in a particular so-called
“basic” tile for all polygons K, and (b) the jump
functions for all tile-edges of all tiles in the tessella-
tions associated with all polygons K. Her solution has
now been implemented in a computer-algebra lan-
guage, although in practice the choice of the stepping
stone route itself is best performed by eye after in-
specting the tessellation. The successive contributions
to the (finite) stepping-stone expansion of m(x, y)
can contain algebraic terms having singularities in the
target tile, but the theory guarantees that in a com-
puter-algebra implementation all such apparent sin-
gularities in the target tile will automatically cancel
out when their sum is formed, to give a version of
m(x, y) that is real analytic inside that tile.
~ Figure 4 shows a typical tessellation; here K is an
irregular pentagon. The shape density m(x, y) is C?
smooth save at the three shapes corresponding to
coincidences among the triangle vertices, and the pres-
ence of the jump functions at the tile-edges is betrayed
by jumps in the 3rd or 4th normal derivatives. It was
indeed the detection of these (using central differ-
ences) in earlier numerical studies (Kendall and Le,
1986) that first gave us the necessity insights into the
geometrical and analytical structure underlying the
tessellations.

The reader may be curious to know whether it is

_possible to discern any systematie structure at all in
Figure 4, and the following remarks are intended to
reveal at least some of this; the whole story is a long
one. On each edge of J each point is the shape of a
triangle ABC such that two of A, B, and C lie at
vertices of the polygon K, while the third lies on an
edge of the polygon K, and conversely all such situa-
tions, with the triangle ABC arbitrarily labeled, will
generate a shape on some lihear or quadratic edge of
. Figure 5 illustrates one possible situation, but of
course there are many combinatorially distinct cases
that have to be considered, and their classification
yields further useful structural information concern-
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F1G. 4. A singular tessellation for an irregular pentagon. (Repro-
duced by permission from Kendall and Le, 1987a.)

F16.5. A configuration in the ambient space that projects to a shape
lying on an edge of the singular tessellation.

ing both 7 itself and the jump functions associated
with it.

An interesting subsidiary question is: can we find
the shape of K when the associated shape-density
m(x, y) is known? We can prove that the answer to
this is affirmative if we exclude a nowhere-dense sub-
set of the shape space =7 = CP""%(4), where n is the
number of vertices of K. The proof of this depends on
the geometrical fact that the tessellation 9 is made
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up of three components: finite segments, semi-infinite
half-lines and arcs of circles. If the semi-infinite half-
lines and arcs of circles are removed, then what re-
mains is the superposition of n(n — 1) scaled, rotated
and shifted copies of K itself (built out of the finite
segment components). The residual ambiguity is as-
sociated with the peeling apart of these n(n — 1) copies
of K and can always be resolved if it is given in advance
that the ratios of interpoint distances between all pairs
of vertices of K are distinct.

This result contrasts surprisingly with a general
result of Small (1981) telling us that the solution to
the corresponding inversion problem can be non-
unique when the common law . of the three triangle
vertices is arbitrary (see also Small, 1988).

In this discussion of shape densities it has been
supposed that the k original points P;, P, ..., P,
determining the shape are given a definite labeling,
which could be either intrinsic or assigned at one’s
convenience. When as often happens the labeling is
arbitrary, or of subsidiary importance, one is free to
quotient out the permutation group on k letters to
obtain a reduced shape space, but that is usually less
well behaved, and such additional quotienting is nor-
mally avoided except in special circumstances. One
such is the situation in which information about an
unknown shape density m(x, y) is to be obtained by
simulating k-point configurations in m dimensions
and then recording their shapes as a preliminary to
plotting scatter diagrams, contour plots, etc. in the
shape space or some transform of it. (Many examples
of such plots will be found in Kendall, 1984.) In such
circumstances an extra factor k! in the effective size
of the simulation can be gained by exploiting the
relabeling group. Having established the result on the
reduced shape space it will then often be convenient
to construct its equivalents in the other k! — 1 per-
mutation transforms in order to bring out more clearly
the global structure that is being studied.

5. SIZE AND SHAPE SPACES AND THE
SHAPES OF SPHERICAL TRIANGLES

* Some of the above is now in a sense rather old work,
because during the last 2 years interest in the Cam-
bridge group has gradually shifted away from the
shape spaces 2%, toward the associated size and shape
spaces here provisionally denoted by S=%, and also
toward the shape spaces = (M, &, k) derived from an
ambient space that is a riemannian manifold M (in-
stead of R™) and an appropriate group & (instead of
SO (m)) with respect to which the quotient operations
take place. There is evidently a connection with the
moduli spaces of the algebraic geometers, but this does
not seem to lead to any further insights.

We note in passing that the size and shape space
S=% corresponding to =% contains a point * corre-
sponding to the totally degenerate k-ad that was omit-
ted from X% itself; this is the point corresponding to
size L = 0. In fact SZ%, turns out to be a cone with a
warped-product metric; the vertex of the cone is the
point =, and each section of the cone is a scaled version
of the shape space =%. For m greater than unity * is
itself a singularity, and the remaining singularities are
all the points on the rays meeting each section in a
singularity of the shape space. The metrical theory for
S=% now follows immediately from these structural
remarks, which have important implications for the
applications to physical chemistry mentioned earlier.

An instructive example with a noneuclidean am-
bient space is = (S%(1), SO(3), 3). This is the space of
spherical triangles with labeled vertices, but it is not
the space of spherical triangles that was studied by
Grace Chisholm Young in her celebrated Goéttingen
doctoral thesis under Felix Klein in 1895. (She consid-
ered a triangle with sides that need not be minimal
geodesics; also its sides were allowed to intersect at
points other than the vertices.) Topologically our
space is S3; this is easily demonstrated by a technique
using the properties of identification topologies. But
viewed within the differentiable category it possesses
four point-singularities; one of these is the shape of
total coincidence, whereas the other three correspond
to the situations in which two of the vertices are
coincident and the third is antipodal to them. Another
interesting feature of this space is that it is in effect a
size and shape space, because size for spherical trian-
gles is just an aspect of shape. Moreover “location” is
now irrelevant, because a change of location can be
effected by using the group SO(3). A determined at-
tack on this problem has been made during the last
year by Carne, Huiling Le, and myself. We have now
obtained (by three different methods, two involving
computer-algebra) the riemannian structure, the sec-
tional curvatures, the brownian differential generator,

_the geodesic geometry and the different but related

metric that arises from a parallel procrustean study.
We therefore now know almost as much about this
shape space as we do about Z3. Still more recent
investigations by Carne and by Huiling Le have ex-
tended many of these results to the shape space for k&
points in S™.

It is thus appropriate to turn to the statistical
problem of finding interesting shape measures on
2 (S%(1), SO(8), 8), and in the last few months Huiling
Le has found the probability law for shapes of spher-
ical triangles whose (labeled) vertices are independ-
ently uniform inside a spherical cap of angular radius
o (0 < a = Yw). (The upper bound on « is needed
because otherwise it could happen that A and B lie in
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the cap although some part of the geodesic arc AB
does not.) The whole bundle of these calculations
taken together puts us in a position to resolve a
problem of interest in quasar astronomy; this is, how
should one analyze the claims that “too many” triplets
of quasars lie on or suspiciously close to arcs of great
circles on the celestial sphere. Or, to put it more
roughly, how should one analyze the evidence for there
being “too many” triplets of “nearly collinear” quas-
- ars. It is known that the effect of the curvature of the
celestial sphere is not negligible here. We are now in
a position to make an accurate assessment of it,
by examining the above results for small o and com-
paring them with comparable results (again due to
Huiling Le) for SZ3. Note that size must come into
this comparison, on the one hand because it is not
separable from shape in the spherical triangle context,
and on the other hand because in the collection of the
astronomical data a selection for size will have been
exercised.

6. RANDOM DELAUNAY TRIANGLES

Another problem in which size plays a significant
role is that in which one studies the shapes of the
simplexes that are the tiles of the Delaunay tessella-
tion of a realization of an m-dimensional Poisson
point process. We shall call these simplexes PDLY
tiles, for short. The present account summarizes
(Kendall, 1983, 1989) and adds some more recent
results.

We first recall that the Delaunay tessellation of a
(suitable) infinite set of distinct isolated points in R™
was introduced by the Soviet number theorist Boris
Nikolaevitch Delome (1890-1980). The construction
goes as follows. We look at each (m + 1)-ad of points
in turn. If its circumsphere contains a point of the set
in its interior we do nothing, but if its circumsphere
is “empty” in that sense then we draw in the simplex
determined by these m + 1 points. When all (m + 1)-

ads have been examined in this way we obtain

a nonoverlapping covering of R™, and that is the
Delaunay tessellation, the component simplexes being
the tiles thereof. We omit the riecessary restrictions
on the original set of points but remark that with
probability one they will all be satisfied if we apply
the construction to a realization of an m-dimensional
Poisson process. '
At first sight this looks like a problem involving
=m+1 but that turns out to be a partly misleading clue.
Some years ago Miles (1970, 1974) proved that for
PDLY tiles the circumradius R (which has a scaled x*
distribution) is statistically independent of the com-
plete set of shape variables, so that if we use R as the
measure of size, then size and shape will be independ-

ent. This suggests that the connection with Zj*!
should be abandoned altogether, but that too would
be a mistake. A more fruitful procedure is to compare

(i) the shape distribution for PDLY tiles, and
(ii) the shape distribution for a simplex with
independent Gaussian vertices.

This gives us two shape measures p, and u,, say.
I have proved that the Radon-Nikodym density
duy/dus is of the form

2
cm/Pm ’

where c,, is a known function of m only, and where
p = R/L (note that this is a shape variable with
1/¥m + 1 as its minimum value). It follows that on
constructing by simulation an independent sequence
of simplexes with independent Gaussian vertices, and
at each step computing p and using the obvious ac-
ceptance-rejection rule based on

(pmin/p) m27

then the resulting sequence of accepted simplexes will
be a sequence of independent PDLY tiles.

In other words, we have found a way of creating
“lone” PDLY tiles without doing any tessellating, with
consequent immense gains in speed! This work is still
in progress, but a few comments will illustrate what
has so far been done.

First, the procedure just outlined works spectacu-
larly well for dimensions m from 1 up to about 6 or 7.
After that the random sample size obtained falls off
drastically because the chance of acceptance (which is
known exactly) tends rapidly to zero as m tends to
infinity, and so eventually nearly all the Gaussian
simulations are rejected. Recently Miles has pointed
out to me that such “lone tile simulations” could also
be carried out in another way; there u. is to be replaced
by us, the shape measure for a simplex whose vertices
are independently uniform on a unit sphere. A decom-
position formula given by Miles (1974) then yields the
Radon-Nikodym derivative, and thereafter one pro-
ceeds as before. It will be interesting to see how these
two methods compare. I have also looked at the effect
of replacing the acceptance/rejection rule by an
importance-sampling procedure, the (normed) weights
being proportional to the Radon-Nikodym derivatives.
Here every simulation is retained, but the weights
vary wildly because of their dependence on p, and so
a suitable smoothing procedure has to be used. My
experiments so far show that useful information on
the distribution of shape can be obtained by this
technique even when m = 10. This is remarkable when
we consider that, from yet another formula established
by Miles (1974), at dimension 10 the expected number
of PDLY tiles having a given point as vertex is about
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100 million. Thus at m = 10 we are working with a
stochastic tessellation of PDLY tiles of fantastic com-
plexity, even when viewed from such a narrowly local
standpoint. It will be interesting to see how much
more insight we can gain when trying new ways of
studying this formidable stochastic object.

The main conclusions arrived at so far are that a
typical PDLY tile is (1) more likely to be nearly
regular (i.e., equilateral) and (2) less likely to be nearly
degenerate than is the case for a typical Gaussian
simplex. Figures 6 and 7 illustrate a few of the results
that have been obtained in this way for m = 2, 3, and
6. I hope, by pushing the simulation technique out to
higher dimensions, and by supplementary asymptotic
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calculations, to get some idea of what happens

One would very much like to be able to make com-
parable statements about groups of “adjacent” tiles in
the tessellation, but although some limited progress is

possible, this problem seems to be exceedingly diffi-

cult. It will be observed that the whole tessellation
could be thought of as a somewhat novel form of
stochastic field. This remark does not appear to be
very helpful, however.

A similar comment can be made about the analysis
of the Land’s End data. The locations of the 52 stones
should strictly be regarded as identifying a single point
in the enormous space Z35?, and the associated
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stochastic field is then governed by the appropriate
shape measure (given for a Gaussian model in Kendall,
1984) on that shape space.

7. SOME APPLICATIONS

I conclude with*a few notes on applications.

It is well known that no classical test for two-
dimensional stochastic point processes can match the
performance of the human eye and brain in detecting
the presence of improbably large holes in the realized
pattern of points. This fact has generated a great deal
of research in the last few years, especially in connec-
tion with the large “voids” and long “strings” that the
eye sees (or declares that it sees) in maps of the Shane
and Wirtanen catalogue of positions of galaxies (see
for example Moody, Turner and Gott, 1983). Astron-
omers are interested in (i) whether these phenomena
are sufficiently extreme to require explanation, and if
so (ii) whether any of the various “model” universes
now in vogue can be said to display them to just the
same degree. Recently Icke and van de Weijgaert
(1987) have suggested that useful progress might be
made by studying the two- and three-dimensional
Delaunay tessellations generated by the galaxy posi-
tions, and in particular by examining the observed
distributions of various size and shape characteristics
for the Delaunay triangles and tetrahedra. The inves-
tigation summarized in Section 6 was planned as a
contribution to this enquiry.

There is another interesting application of the
Poisson-Delaunay theory to geography. Geographers
studying the spatial distribution of human settlements
claim to see an underlying quasihexagonal structure
and speak of “central-place theory.” Some years ago
Mardia, Edwards and Puri (1977) pointed out that
this effect, if it exists, should increase the proportion
of nearly equilateral Delaunay tiles. Now we have seen
in Figures 6A and 7A that the Delaunay tessellation
of a two-dimensional Poisson distribution will in any
case contain a high proportion of nearly equilateral
tiles, so that a small excess of this as the result of
other causes might not be easy to detect.

In fact (Figures 8 and 9) there is indeed a striking
number of nearly equilateral tiles in the Delaunay
tessellation of 234 towns, villages and hamlets in
Wisconsin, the other noticeable feature of that data
set being a high proportion of thin splinter-shaped
tiles round the edges of the region being tessellated.
Of course these latter tiles are not true Delaunay tiles
at all; they arise solely because their circumcircles lie
mostly outside the region, and so they are “empty” in
virtue of the cut-off at the edges.

Now central place theory also has something to say
about distances. Thus one mechanism that has been
invoked to explain central place effects in East Anglia
is the tendency for neighboring market towns to be
separated by the maximum distance over which
one can drive sheep in a day. (I owe this remark to
Dr. G. P. Hirsch.)
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Accordingly we ought to treat this as a problem that
belongs to size and shape theory rather than to shape
theory, and this presents no difficulties because for
PDLY tiles in two dimensions the size (measured
by the circumradius R) has a simple distribution; in
fact R* has the law of a scaled xi, the scaling con-
stant being known. The shape distribution in this
situation is known from the work of Miles, and as
remarked earlier size and shape are here statistically
independent.

This suggests a new approach to such data, as
follows. (i) Sort the tiles according to their shape, and
select (a) those that by some convenient angular cri-
terion are “nearly equilateral,” then (b) those that are
highly splinter-shaped and (c) the remainder. Then
(i1) look at the distribution of circumradial size within
the sets (a) and (c) and examine the departures from
independence and from the theoretical x? law.

This procedure has the attractive feature that it will
not be seriously corrupted by the excess of splinter-
shaped tiles that are associated with the edge effects.
Normally in spatial statistics, edge effects are very
difficult to deal with. Here we may be lucky!

Finally in Figure 10 we show the Delaunay tessel-
lation for the 52 locations of the Land’s End stones;

DGK DLY #AP4 LSND  S2

F16. 10. The Delaunay tessellation for the 52 Land’s End sites.

the reader will perhaps find the comparison with
Figure 2 instructive.
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Comment

Fred L. Bookstein

The elegant metric geometry of David Kendall’s
shape spaces 2%, is inherited from the Euclidean met-
ric of the spaces R™ containing the original point data.
In the applications he has sketched here, the points
in R™ are independent and identically distributed (iid)
and the metric in shape space, in turn, is symmetric
in the points, a sort of spherical distance. Point data
generated in other disciplines, however, are not always
iid; different metrics may be appropriate to those
applications. In this comment I justify a certain analy-
sis of small regions of Kendall’s shape space by using
a metric quite different from the usual Euclidean-
derived version, depict its relation to Kendall’s metric
and indicate the sort of inquiries it permits.

Morphometrics is the quantitative description of
biological form. Its data can often be usefully modeled
as sets of labeled points, or landmarks, that corre-
spond for biological reasons from organism to orga-
nism of a sample (Bookstein, 1986). We say that these
,points are biologically homologous among a series of
forms: they have identities—names—as well as loca-
tions in some Cartesian coordinate system. Any set of
landmark locations has a “size” and a “shape” that
may be construed according to Kendall’s definitions.
But the biological relations among different instances
of such configurations partake of a feature space not
effectively represented by the metric inherited from
RZor R2. ‘
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Further references will be found in the survey papers by Bookstein
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In the biological context, my style of statistical
analysis of shapes proceeds, as Kendall pointed out in
1986, within a tangent space of his =% or 2% in the
vicinity of a sample “mean form.” (Small (1988) has
an interesting comment on this construction.) The
questions that in Kendall’s applications are asked of
an entire shape space—questions about concentration
upon the “collinearity set,” and the like—are replaced
in morphometric applications by the more familiar
concerns of multivariate statistical analysis: differ-
ences of mean shape, covariances involving shape or
factors that may underlie shape variation.

In the linearization of Kendall’s shape space that
applies to this tangent structure, the natural shape
metric is an algebraic transformation of the “Pro-
crustes metric,” the ordinary summed squared Euclid-
ean distance of two-point configurations after an
appropriate optimizing rotation and scaling. But the
Procrustes approach is not flexible enough fairly to
represent biological structure within the context of
multivariate statistical analysis. If two landmarks are
typically close together, like the pupil of the eye and
the outer corner, then we expect them to move to-
gether in their relation to more distant structures. The
half-width and the orientation of the eye are more
tightly controlled by diverse biological processes of
regulation than is, say, the distance from the eye to
the chin. These considerations lead one naturally to
search out a shape metric that weights changes in
small distances more heavily than changes in larger
ones. In 1985, David Ragozin of the University of
Washington suggested to me that the formalism of



