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Comment: Who Will Solve the Secretary

Problem?

Stephen M. Samuels

Just like Johannes Kepler, who threw a new curve
at the solar system, Tom Ferguson has given a dif-
ferent slant to the Secretary Problem. To its many
practitioners who ritually begin by saying “all that we
can observe are the relative ranks,” Ferguson (citing
historical precedent), in effect, responds “let’s not take
that assumption for granted.” The heart of his paper,
as I see it, is the following Ferguson Secretary Problem:
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Given n, either find an exchangeable sequence of
continuous random variables, X;, X,, ---, X,, for
which, among all stopping rules, 7, based on the X’s,

sup P{X, = max(X;, X;, ---, X,)}
is achieved by a rule based only on the relative ranks
of the X’s—or prove that no such sequence exists.

Ferguson has come within epsilon of solving this
problem. He has exhibited exchangeable sequences,
for each n and ¢ > 0, such that the best rule based
only on relative ranks has success probability within
¢ of the supremum. But he has left open the question
of whether this supremum can actually be attained.

For n = 2, the answer is easy; there is no such-:

sequence. The following elementary argument, which

®
www.jstor.org



290 T. S. FERGUSON

I heard from Tom Cover several years ago, neatly
settles the matter. Pick any number, x, said Cover,
and choose X if X; > x; otherwise choose X,. If both
X; and X, turn out to be bigger than x, or if both are
smaller than x, then (by exchangeability) this rule
selects the larger of the two with probability Y-, while,
if one random variable is larger than x while the other
is smaller, the larger one is sure to be chosen. Thus,

P{Xf = maX(Xl, .X2)}
= Y%[1 + P{min(X;, X;) < x < max(X;, X5)}],

which is strictly greater than % as long as x is between
the ess inf and the ess sup of the X’s. This beats
rules based only on relative ranks, which, for n = 2,
are necessarily constants, so have probability Y2 of
success.

Cover’s argument cannot be extended beyond n =
2, but here is a quite general negative result due to
Hill (1968, Section 6): For no m + 1 = 2 is there an
exchangeable sequence satisfying

PiXy<Xpi1 <X | Xy, -+, Xp}=(m+1)7  as.

, m, where X, - -+, X(n are the
X)), Xy = —, and

foreachi=0,1, - --
order statistics of (X, X5, -« -,
Kim+1) = .

Hill proved this by first showing it for m = 1, using
an argument similar to Cover’s, and then showing
that, if it were true for a sequence of length m + 1, it
would also be true for the first m elements of the same
sequence. Thus, Hill has shown that there is no ex-
changeable sequence such that observing the sequence
itself is exactly like observmg the relative ranks of the
sequence.

But Hill’s result by no means solves the Ferguson
Secretary Problem. For example, for n = 3, the best
rule based on relative ranks selects X, if X, > X;, and
X, otherwise; its success probability is 4. In order for
this rule to be optimal among all rules based on the
X’s, it is necessary and sufficient that both of the
following hold:

, (a) P{X; = max(X;, X,, X3) | X1} =% as.
(b) P{max(Xl, Xg)
= maX(Xl, Xg, X3) |X1, X2} =1 as.

Hill’s result merely establishes the impossibility of
these two conditional probabilities having, almost
surely, the values Y5 and %5, respectively.

For iid continuous X’s, these random conditional
probabilities take on all values in the unit interval;
but, for other exchangeable sequences, the question is:
what other possibilities are there? (Hill’s result rules
out constants.) Let us eéxamine, for example, the con-
jugate prior mixtures of uniforms which Ferguson
considered.

Let
U; = max(X, ---, X)),
L; = min(X;, ---, Xj).

When the X’s are conditionally iid, uniform on
[0, 8], and 6 has the one-sided Pareto density given by
Ferguson’s (8.2), then, extending his (8.6),

P{U=U,| Xy, ---, Xj}
[ U\, | . [max(mo, Up]*+
= Jl:lax(mo,Uj) < 9 ) (a+7) getitl df

__a+j[ /B
T a+n max(mo, U;)

for all U; > 0 and any m, > 0 and « > 0.

For n = 3, j = 1, condition (a) is satisfied if a« < 1.
But, since U; can be arbitrarily close to zero, so can
the above probability; hence condition (b) cannot be
satisfied.

In this respect, the two-sided Pareto priors are
clearly more promising. Their densities are given by
Ferguson’s (7.2). Then, from Ferguson’s (7.3), we have

T(k+j)k+j+1)

foo fmin(lo,L]) Uj—a n
max(u,U,) Y~ ﬁ—a (ﬁ—a)k+j+2

- [max(uo, U;) — min(l, L;))1** da dB
for all L; = U; and any [, < u, and k > 0.

This integral has maximal value (¢ +j + 1)/(k+n +
1) identically on {U; = u,} [Ferguson’s (7.4)], and
minimal value (after a change of variable)

RAHEFF
0 n+k+1)
=(n—j)Yk+n+1DE+n)---

identically on {U; = L; < l}. This lower bound
can also be derived from the upper bound because, on
{tjl = Lj = l0}1

P{l]j= UnIXh ce 7Xn}
=(n—jNP{L;> X, >

k+j—l(1 —

)" dr

R+j+2)

->X | Xy, -, X0
Now, taking n = 3, j = 2, we have
P{U2 = U3|X1, Xz} = 1/(k + 4),

which, being strictly positive, is a qualitative improve-
ment over the lower bound for the one-sided Pareto
priors. But the parameter k has to be positive, so this
bound is less than Y4, which is not good enough to



WHO SOLVED THE SECRETARY PROBLEM? 291

meet condition (b). Moreover, the upper bound for
n=3,j+ 1is (2 + k)/(4 + k) which is bigger than Y2,
so condition (a) cannot be satisfied either.

Here is one more result for Pareto priors: If we
reflect the one-sided priors (i.e., look at —X;, -.-,
—X,), then the lower bound calculations are virtually
the same as in the two-sided case, and the result is
a slight improvement, to (n — j)!/(a + n)(a + n — 1)
-«+ (a+j+1)forany a > 0. For n = 3,j = 2, this is
an improvement from 1/(k + 4) to 1/(« + 3)—still not
good enough to meet condition (b).

Comment

Herbert Robbins

I am confused by Tom’s attempt to clear up the
confusion among various versions of the secretary
problem. In Section 2 he defines the simplest form of
the problem, in Section 4 he distinguishes secretary
problems from Cayley’s problem, etc. in which one
observes numerical values of some possibly continuous
random variable rather than just relative ranks, and
in Section 5 he defines the ‘general’ secretary problem
to be “a sequential observation and selection problem
in which the payoff depends on the observations only
through their relative ranks and not otherwise on their
actual values.” So far, so good. Then in Section 6 he
introduces into the discussion the two-person googol
game, which is not a secretary problem, and in Section
7 and Section 8 says that nobody has solved “the”
secretary problem, possibly because no one realized
that there was a game-theoretical problem to be
solved. I can’t agree with that.

Consider two cases of the secretary problem: (I) the
payoff is 1 if we choose the best of the the n applicants,
0 otherwise, and we want to maximize the expected
payoff, and (II) the loss is the absolute rank of the
person selected (1 for the best, - - - , n for the worst),
‘and we want to minimize the expected loss. When all
n! orders of the applicants are equally likely the so-
lutions of (I) and (II) have been known and published
for some time. And when the probabilities of the
various permutations are controlled by an antagonist,
so that (I) and (II) become game-theoretical (mini-
max) problems, their solutions are also in the litera-
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Thus the Ferguson Secretary Problem remains un-
solved. Indeed, from these Pareto prior examples, it is
not at all clear what the solution is: do the required

'exchangeable sequences exist or don’t they? This

quest for sufficiently “non-informative priors” should
interest some Bayesians, too.
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ture: See problem 7 on page 60 of Chow, Robbins and
Siegmund (1971), and page 89 of Chow, Moriguti,
Robbins and Samuels (1964).

In the latter reference it is also shown that when
the n! permutations are equally likely, the minimal
expected loss for (II) with n applicants tends as
n — o to the finite limit

o 1/(1+j)
A =11 (1 + 7) = 3.8695.

j=1

This surprising result can be obtained by a heuristic
argument involving a sequence of differential equa-
tions, but the argument is hard to make rigorous. The
same heuristic argument yields a more general result:
if the loss is taken to be x(x + 1) --- (x + B — 1),
where x is the absolute rank of the person selected
and k is a fixed positive integer, then the minimal
expected loss as n — o tends to

o E+1 1/(k+j)) k
ekl (1222
* ng J

(As E — = the quantity in braces tends to e
5.1807.) But when the loss is x2, rather than x or
x(x + 1), the limit as n — ® of the minimal expected
loss has not been exhibited explicitly by any formula
such as this (it is, of course, less than A,), nor has the
minimax game-theoretical probability distribution of
permutations been obtained for this case. Down with
googol and up with problems like these!
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