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Abstract. Forensic laboratories use lengths of fragments from several
locations of human DNA to decide whether a sample of body fluid left at
the scene of a crime came from a suspect or whether a sample recovered
from a suspect’s clothing is the victim’s. Using an inferential approach
called “match/binning,” they first decide whether there is a match
between the lengths of DNA fragments from the suspect and crime
samples. If there is a match, they then calculate a “match proportion.”
This is the proportion of a data base of DNA fragment lengths that
would similarly match, that is, occur in an interval or “bin’’ containing
the fragment length of the crime sample.

Match /binning is a reasonable inferential method in a scientific
setting, and in other settings that allow for flexibility, but it has several
characteristics that make it undesirable for use in courts. One is that it
is based on a yes/no decision: there is an arbitrary cut-off point and
some fragments deemed not to match can be arbitrarily close to others
that do match. Another is that the same match proportion applies for
suspects whose fragment lengths just barely match the lengths of
the corresponding fragments in a crime sample as for suspects whose
fragment lengths match perfectly.

This article describes an alternative approach, one that is not based
on a yes/no match criterion. The distribution of a laboratory’s measure-
ment errors is used to infer the form of the likelihood function. Then the
likelihood ratio of guilt to innocence is calculated and Bayes’ theorem is
applied. The focus of this approach is the contribution of the DNA
evidence to the probability that a suspect is guilty. An important step is
estimating the population distribution of fragment lengths, attemp-
ting to account for both laboratory measurement error and sampling
variability.

The two approaches are compared in an actual murder case (New
York v. Castro). Applying a laboratory’s match criterion literally re-
sulted in an exclusion, but its scientists claimed a match and calculated
a match proportion that was very small. Applying Bayes’ theorem
shows that the correct conclusion is far less clear.

DNA profiling is also useful in inferring parentage, for example in
cases of disputed paternity. Bayes’ theorem allows for calculating the
probability that an alleged father is the true father.
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restriction fragment length polymorphisms, multiple DNA probes, prob-
ability of guilt, probability of paternity, forensic identification, like-
lihood ratio, Bayes’ theorem, Bayes factor, reference populations,
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estimation, normal kernels.

1. INTRODUCTION

175

[
5o
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%;%

Police investigators have a forensic tool with
enormous potential for solving some types of crimes:
DNA profiling (Jeffreys, Wilson and Thein, 1985a,
b). (I will avoid the commonly used term “DNA
fingerprinting” because the fingerprinting analogy
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is not perfectly apt: identical twins have identical
DNA but different fingerprints.) Such crimes in-
clude rapes in which the rapist’s semen can be
recovered from the victim or from the crime scene.
They also include cases in which the criminal leaves
his blood or other tissue at the scene of the crime
or gets a victiin’s blood on his clothes or other
possessions.

Forensic laboratories compare the molecular
weights of fragments of DNA from the suspect
sample and crime sample and decide whether the
two fragments could have come from the same
individual. Deciding whether there is a match is
complicated by measurement error and laboratory
process variability. Inferring whether two samples
came from the same individual using DNA profil-
ing is qualitatively the same as when using other
genetic characteristics, such as ABO blood type.
But when laboratories use hypervariable loci (loca-
tions on the genome where DNA fragment lengths
tend to differ greatly among individuals), the num-
ber of possible molecular weights is enormous, so
DNA profiling is potentially much more powerful
than using genetic systems that have a small or
moderate number of phenotypes.

The purpose of this article is to consider the
inferential process of deciding whether a suspect is
guilty. I will first describe and criticize the way in
which DNA profiling laboratories currently make
inferences and then show how to improve it. My
focus is the assessment of the conditional probabil-
ity of guilt given of DNA evidence. Some of the
calculations I suggest are novel, but the overall
approach is not new; of special significance are
papers by Lindley (1977); Evett, Cage and Aitken
(1987); Gjertson, Mickey, Hopfield, Takenouchi and
Terasaki (1988); and Werrett, Gill, Evett, Lygo and
Sullivan (1989). In Section 8, I will address the use
of DNA profiling in cases of disputed paternity.
These are usually civil cases, but they can be crimi-
nal cases if a rapist may have fathered the victim’s
child. '

The FBI’s forensic laboratories are the most im-
portant DNA profiling labs in the United States,
even though they were rather late getting in-
volved. The main commercial forensic laboratories
that do DNA profiling in the United States are
Lifecodes Corporation of Valhalla, New York, and
Cellmark Diagnostics of Germantown, Maryland.
All three use electrophoresis and restriction frag-
ment length polymorphism (RFLP) analysis. Re-
striction enzymes are used to cut the DNA at
specific sequences of DNA. The resulting fragments
vary in size among individuals, but all resulting
fragments from the same site on the genome of the
same individual are identical; in particular, they
have the same molecular weight.

Electrophoresis involves giving DNA samples an
electrical charge and placing them in a gel. Techni-
cians set up an electrical field in the gel to move
DNA fragments distances that depend on their
weight. The DNA is then transferred onto a nylon
membrane and the two strands that make up the
double helix are separated. Radioactive DNA probes
that have been designed to attach themselves to
particular fragments of DNA are added. The loca-
tions in the gel of these fragments are indicated as
bands on X-ray film, called an autoradiogram and
allow technicians to measure the distances trav-
eled. These distances are converted to molecu-
lar weights or “band weights” (in kilobases (kb):
thousands of Watson-Crick base pairs).

Single-locus probes yield most easily to quantifi-
cation and are being used increasingly by forensic
laboratories. A single-locus probe selects fragments
of DNA from a single site on the genome. So a
single-locus probe shows two bands, one paternal
and the other maternal. Using several single-locus
probes increases discrimination power. Multilocus
probes can show any number of bands, depending
on the number of sites selected by the probe.

To have a particular setting, suppose a criminal
spills his blood at the scene of the crime. A suspect
is identified and his DNA fragment lengths are
compared with those of the crime sample. Inferen-
tial problems in other settings are similar (except
that cases of disputed parentage—see Section
8—are qualitatively different). Perfect identifica-
tion is not possible because other people may have
DNA fragments that weigh the same as the crime
sample, and even if two fragments have different
molecular weights, they may not be distinguishable
because of laboratory measurement error. The
problem of inference is to take account of these
possibilities, and to account for sampling variabil-
ity, and decide whether the suspect is guilty. The
ultimate question, of course, is the purview of the
jury (or judge); the forensic statistician’s role is to
show the jury how to incorporate the DNA evidence
into the answer.

2. QUANTIFYING INFERENCE: CURRENT
PRACTICE

For each probe, technicians compare the suspect’s
band weights with those of the crime sample. Sci-
entists at Lifecodes Corporation (Baird et al., 1986)
indicate that a match occurs if there is no “detecta-
ble difference” between the band weights of the
suspect and crime sample. And some other labora-
tories use such an informal “visual-match” crite-
rion. If they claim a match, they estimate a “match
proportion.” This is the proportion of some refer-
ence population that would similarly match. For
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this purpose they use a data base of estimated band
weights (for each probe individually).

Calculating a proportion of matches requires a
formal match criterion. It is essential that the same
criterion be used to decide whether the suspect
matches as is used to decide whether someone who
is not a suspect matches. Obviously, laboratories
do not compare everyone in their data base to
decide who are ‘“visual matches.” Several
courts—including the Minnesota Supreme Court
in Hennepin County v. Schwartz—have reacted
negatively when a band weight of the suspect did
not meet the match criteria that was used to
calculate a match proportion.

Lifecodes and Cellmark call a band weight in the
data base a match if the distance between it and
the crime sample’s band weight is less than k&
standard deviations of the measurement error. (This
measurement error refers to the difference between
two band weights and so the s.d. is V2 times that
of a single measurement.) The FBI’s procedure is
based on preset bins; they take the proportion of
the reference data base that falls in the bin con-
taining the crime sample as the match proportion.
The widths of the FBI’s bins vary, but they are
generally larger than the +k s.d. bins of Lifecodes
and Cellmark.

Baird et al. (1986) indicate that Lifecodes once
used k = 2. Balazs, Baird, Clyne and Meade (1989)
mentions k = 3. Morris, Sanda and Glassberg
(1989) describe a matching procedure once used by
Lifecodes; Lander (1989b) shows that it is approxi-
mately equivalent to using k = 2/3. As of July
1989, Lifecodes used k = 3 (M. Baird, personal cor-
respondence). Evett, Werrett, Gill and Buckleton
(1991) point out that any such cutoff is arbitrary:
Why should 2.95 s.d.’s be a match and 3.05 s.d.’s
be exclusionary? And shouldn’t a perfect match be
stronger evidence than one in which the discrep-
ancy is 2.95 s.d.’s?

If the criminal has a #rue band weight that the
suspect does not have, then the two individuals
have to be different. So a suspect is excluded if any
band weight does not match the crime sample’s.
Match /binning procedures exclude a percentage of
guilty individuals because of measurement errors.
And this incorrect exclusion rate increases with
the number of probes used. Assuming independent
normal measurement errors and four single-
locus probes (and therefore, typically eight
bands), & = 2/3 excludes about 99% of guilty indi-
viduals; k& = 1, 2 and 3 exclude about 95%, 31% and
2%, respectively.

Based on 70 duplicate measurements, Baird et
al. (1986) estimate the standard deviation for the
difference between two measurements of a band
weight to be 0.6% of the band weight; this corre-

sponds to 0.6%/v2, or about 0.42% for a single
measurement of a band weight. Baird provided me
with several sets of replicate measurements that
make it clear that 0.6% is too small and that 0.85%
is better; this corresponds to 0.85%/v2, or about
0.6% for the s.d. of a single measurement. The
assumption that s.d. is proportional to band weight
is roughly supported by the data, although the fit is
not perfect and the data are not comprehensive.
The measurement s.d. is of critical importance for
all inferential procedures that have been proposed.
More and better-designed experiments are neces-
sary before using an estimate of s.d. in so serious a
setting as a murder trial.

The match proportion for a single band of a
single-locus probe is typically small, especially for
hypervariable loci and small k. In the heterozygous
case there are two bands, although if their weights
are sufficiently close together, the two bands may
appear to be one. (Resolving power depends on the
quality of laboratory equipment; according to Peter
Gill of the Home Office Forensic Science Service,
UK, the minimum distance that can be distin-
guished is on the order of from 1—2% of the band
weight.) The match proportion for both bands is the
product of the individual match proportions for the
two bands, times 2, using the Hardy-Weinberg
law: which band is maternal and which is paternal
is not known. (Testing a parent of a suspect gives
no worthwhile information without also testing a
parent of the criminal!)

The Hardy-Weinberg law assumes ‘“‘random
mating” and that the measured band weights are
independent. Evett, Werrett, Gill and Buckleton
(1989) make it clear that measurement errors are
not independent. Many of the factors that con-
tribute to the measurement error for one band also
contribute to the measurement error for other
bands. So the measurement errors between bands
are dependent and, in fact, positively correlated.
This dependence is called “band shifting.” (Repli-
cates of a single sample carried out and provided to
me by Lifecodes indicate a correlation of about 33%
for the weights of the two bands on probe D2S44
(n = 90) and 70% on probe D17S79 (n = 120).)

Laboratories multiply the resulting proportions
across all probes used. This assumes that the band
weights are independent across probes, which is
shown to be questionable by Cohen (1990). It also
assumes that measurement errors are independent;
this assumption is clearly incorrect because of band
shifting. Nevertheless, I will assume independence
in this article so I can compare the approach I
suggest with the match /binning approach.

Multiplying proportions gives estimates of over-
all match proportions that tend to be very small.
Lander (1989a) cites a case in which the match
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proportion was calculated to be 1 in 738 trillion.
The next section gives an example in which the
match proportion is larger than this, but small
nonetheless.

3. EXAMPLE: NEW YORK v. CASTRO

José Castro, an Hispanic male, was accused in
1987 of murdering Vilma Ponce and her 2-year-old
daughter. He was identified as the murderer by
Ponce’s common-law husband (Lewin, 1989). Life-
codes compared a sample of blood taken from the
defendant’s watch with that of Vilma Ponce and
reported odds of 1:189,200,000. (Lander, 1989a, b,
criticized this report on numerous grounds, some
statistical.) I will use the band weights reported
in this case to show how match proportions are
calculated.

Lifecodes used four probes: D2S44, D17S79,
DXYS14 and DXY1. The last of these is used to
~ ascertain sex; the results of this particular experi-

ment were questionable (Lander, 1989b). Table 1
gives the band weights (in kb) for the other three
probes. The pattern for D17S79 is typical for het-
erozygotic individuals and single-locus probes: two
bands, one inherited from the mother and the other
from the father. Regarding D2S44, apparently both
Ponce and the individual whose blood was on Cas-
tro’s watch are homozygotic: the maternal and pa-
ternal bands coincide (unless one is missing; see
discussion below). Actually, they are what I call
“measurably homozygotic’”’: the maternal and
paternal fragment lengths are sufficiently close
that the laboratory process cannot resolve them
as distinct bands. -

Lander points out several problems with Life-
codes’ use of probe DXYS14. He also argues that
“DXYS14 is poorly suited for forensic work, since it
can detect anywhere between 2 and 6 bands”’; that
is, it is a multilocus probe. I think it is “poorly
suited” only because good statistical methods are
not available for analyzing band weights of multilo-
cus probes; if such methods were available, this
probe would be quite powerful. In dny case, I will
restrict consideration to D2S44 and D17S79.

A reference population is required for computing
match proportions. Lifecodes used their Hispanic
data base, so I will too, but in Section 7, I will
criticize the criteria by which laboratories select

TaBLE 1
Fragment lengths in Castro case

Source/Probe = D2S44 D17879 DXYS14
Vilma Ponce  10.162 3.869 3.464 4.855 2.999 1.946
Blood on watch 10.350  3.877 3.541  4.858 2.995 1.957

populations to be used for reference. Lifecodes’ data
bases for these two probes are given in Balazs,
Baird, Clyne and Meade (1989); their Tables 1(C)
and 3(C) give the frequency distributions for “296
Hispanics” for D17S79 and ““294 Hispanics” for
D2S44. (Actually, these are from about half as
many individuals.) These are shown in Figures 1
and 2, in which I count n =295 and n = 292,
respectively. (I will describe the shaded areas of
these histograms presently.) Balazs, Baird, Clyne
and Meade gave a nonlinear scale for D2S44; the
different widths of the bars in Figure 2 are the
result of linearizing their scale.

Consider D2S44. I indicated above that Lifecodes
estimates the standard deviation between two
measurements to be 0.6% of their average:
(0.006)(10.256) = 0.0615 (kb). Three s.d.’s is 0.185
kb. The difference between Ponce’s band weight
and that of the blood on Castro’s watch was 10.350
— 10.162 = 0.188 (kb), which is greater than 0.185,
and so this is not a match when assuming k& = 3.
Lifecodes claimed a match.

I will indicate the match proportions reported by
Lifecodes, but I will first calculate these propor-
tions using Lifecodes current procedure, which uses
the data base proportion within k2 = 3 s.d.’s, or
1.8%, of the victim’s band weight: (0.180)(10.162)
= 0.183 (kb). A match would be declared (using
this definition) for any band weight within 10.162
+ 0.183, that is, from 9.979 to 10.345. The
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Fic. 2. Frequency distribution of band weights for probe D2 S44,
292 Hispanics. From Figure 3(C) of Balazs, Baird, Clyne and
Mead (1989); adapted by making the scale linear and changing
heights of bars so frequency is now proportional to area.

frequency in this interval is the area shaded in
Figure 2. Allocating the frequencies in the two
outermost categories proportionately gives a total
relative frequency of 4.9%. (It is evident that this is
an underestimate because their de facto match cri-
terion also included the band weight of the watch
sample.) The procedure Lifecodes used at the time
of the Castro case (Morris, Sanda and Glassberg,
1989) gave 2.1%. (Using k = 2/3 gives 1.4%; since
this is not too different from 2.1%, this lends empir-
ical support to Lander’s theoretical calculation
showing that this procedure is roughly equivalent
to using a bin size of +2/3 s.d.’s.)

Since they observed only one band on this probe,
Lifecodes concluded that both individuals were
(measurably) homozygous; under this assumption
the overall probe match proportion is the square of
the band frequency: (0.049)% = 1/420, or (0.021)% =
1/2270. Lander (1989b) claims that the watch sam-
ple may have contained a second, larger band that
was not visible on the autoradiogram because the
bloodstain sample was small and it may have de-
graded. He suggested that Lifecodes should have
used a monomorphic probe (one for which everyone
has the same band weight, say one at 15 kb) to see
whether their process was able to detect large band

weights in the watch sample. Under the circum-
stances, Lander claims that a more appropriate
calculation would be to take twice the match
proportion: 2(0.049) = 1/10, or 2(0.021) = 1/24.

I will consider both homozygote and heterzygote
frequencies, say p? and 2 p. However, while I agree
with Lander that the former is too small, his is too
large—perhaps much too large. Lander says “the
exact formula is 2p — p2.” I would like to modify
his formula to 2p(p + W) — p%, where W is the
probability that the watch sample’s second band is
larger than the measured band at 10.350 kb and
was not observed because of degradation. This spe-
cializes to the two extremes by taking W equal to 0
and 1 — p. Neither of these extremes is tenable: W
is obviously less than 1 — p even if 10.350 were the
largest band weight observable, which seems un-
likely. Referring to Figure 2, the total frequency of
band weights near 10.350 and larger shows that
p + W is no larger than 90%. Better estimates of
W are possible and could be provided by techni-
cians based on their experience. But in preparing
for eventualities such as existed in this case,
laboratories should estimate W for each possible
observed band weight and for various possible qual-
ities and quantities of sample. One way to do this is
to conduct experiments designed to estimate the
probability of missing a band as a function of its
weight (for samples of different quality and quan-
tity) and then averaging this with respect to the
frequency distribution of band weights in the
population.

Now consider probe D17S79. The average of the
larger of the two band weights is 3.873 kb. Three
s.d.’s is 3(0.006)(3.873) = 0.070 (kb). Since this is
greater than the difference in band weights, 0.008,
these bands match. The match proportion is the
shaded area within 3.869 + 0.070 shown in Figure
1: 11.1%. The procedure Lifecodes used at the time
of the Castro case gave 2.3%.

The distance between the smaller band weights

" on D17S79 is 0.077 kb. This is 3.66 s.d.’s and so

this band provides an exclusion for any k < 3.66.
Still, Lifecodes called a match and calculated a
match proportion of 6.8% for this band. Using 2 = 3
gives the shaded area in Figure 1: 15.5%.
Combining these proportions as described above
gives 2(0.023)(0.068) ~ 1104/320, and 2(0.111)
(0.155) = 1/29. Assume independence of probes
D2S44 and D17S79. Using the Lifecodes match
proportions, the estimated frequency of the ob-
served patterns on these probes in the Hispanic
population is (1/2270)(1/320) = 1/725,000 (homo-
zygosity in D2S44) and (1/24)(1/320) = 1/7610
(heterozygosity and missing band in D2S44). The
former was claimed by Lifecodes (it is opposed to
the figure 1/189,200,000 mentioned earlier, which
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was based on all four probes). Using k = 3, the
estimated frequency of this pattern on these probes
in the Hispanic population is (1/420)(1/29) =
1/12,200 (homozygosity in D2S44) and (1/10)(1/29)
~ 1/290 (heterozygosity and missing band in
D2S44).

A match proportion is an indirect measure of the

suspect’s guilt because its calculation assumes the
suspect is innocent. The approach of the next sec-
tion addresses a direct calculation of the probabil-
ity that the suspect is guilty. I will apply this
calculation to the Castro case in Section 7.

4, LIKELIHOOD RATIO OF GUILT TO
INNOCENCE: SINGLE-BAND CASE

The method described in this section was first
applied to a problem in forensic identification (that
of glass) by Lindley (1977).

Consider a single DNA band weight. This is
unrealistic (except possibly in paternity cases; see
Section 8) because even single locus probes have
pairs of bands, one maternal and the other pater-
nal. But the methodology carries over to pairs of
bands and also to multiple single-locus probes. Sec-
tion 5 describes this extension for the independent
case.

Suppose B is the true weight of the crime sample
band and o is the true weight of the suspect’s
band. In the scenario considered in the previous
section, if the suspect is guilty then 8 = «. If the
suspect is innocent then 8 may or may not equal «.
They will be equal if the suspect’s identical twin is
guilty, and possibility in other cases as well. But
for hypervariable loci, they are usually different
when the suspect is innocent. The values of § and
o are not observable since measuring band weights
is subject to error. Let y and x be the measured
band weights of the crime sample and the suspect,
respectively. I will discuss the distribution of
measurement error below.

The question of interest is whether the suspect is
guilty (G); that is, whether the suspect’s and crime
sample’s DNA fragments are from the same per-
son. A way to address this question is to find the
probability of G conditioned on the available evi-
dence. This requires Bayes’ theorem. It is conve-
nient to partition the evidence into two pieces, X
and E. Here, X is the set of measured band weights
of suspect, crime sample and n other individuals,
X=(x, y 2 29,...,2,). And E is all other evi-
dence, such as eyewitness accounts. Letting I (for
innocent) stand for the complement of G, Bayes’
theorem says that the posterior odds of guilt are
proportional to the prior odds of guilt:

P(G|X,E) _P(G|E)
() P(I|X,E) ~P(IE)’

where R is the Bayes factor (or likelihood ratio):

P(X |G, E)
T P(X|LE)

I will take background evidence E as understood
throughout and suppress it from the notation. With
this convention, the likelihood ratio is

P(X|G)
T P(X|I)°

I will focus on the likelihood ratio in this section
and consider the prior odds in Section 6.

I will temporarily consider a rather artificial set-
ting. Prior information indicates that if the suspect
is innocent then one of the other n individuals is
guilty, each with probability 1/n. This means that
B equals at least one of «, a5, ay,...,a,, the true
band weights of the suspect and of the other n
members of the population. This assumption would
be appropriate in a closed community of n + 1
individuals, all of whom are tested. (It is also ap-
propriate when the sample size n is sufficiently
large that there is effectively no sampling variabil-
ity. But it is not usually realistic. My main purpose
in considering it is that the calculations are easy
and instructive.)

I will assume that the measurement errors are
independent. Baird et al. (1986) suggest that they
are normally distributed with s.d. proportional to
the mean. Independent replicates supplied to me by
Baird support the assumption of normality. They
are equally supportive of the assumption of lognor-
mally distributed errors with constant s.d.; because
the s.d. is small, these two assumptions are very
similar. For mathematical convenience I will
assume that errors are lognormally distributed:

log y ~ N(v, c?), log x ~ N(g,c?),
log z; ~ N(g;, ¢?).

(Until now I have made no assumptions about the
relationship between observed band weights such
as y and actual band weights such as . But if, for
example, 8 is assumed to be the mean of y, then
v =log B — c?/2.)

Let m and s be the average and s.d. of log x and
log y:

log(xy) |log(x/y)]
m= — and s = —

Also, let s; be the s.d. of log z; and log y:

s = |log(z; /)|
=T o -
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Since G means that u = v, the likelihood ratio is

_p(X|p=v)
@) - op(X|1)

where I write lower case p to indicate that these
are densities. To give an example with rather easy
calculations I will make the usually unrealistic
assumption that the u’s are independent with im-
proper uniform prior distribution on (—o0, +o0). In
this case the numerator of (2) is

p(X|p=v)
= /p(XIF':U’/""F'l’---’I»"n)
“dF(p, py5- -5 1)

1 1 ) 5
- / 27cixy exp{— 22 [( og * = k)

+(log y — u)z—]} dp

1
o e

1 2
: exp{ - 2—02(10g 2, = #i) }d/"'i
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2
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|
aml,_.
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=
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2wetxy
n [1
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i=11\2;
1 n (1
- el -G/ T (£

= K exp{ —(s/c)z}.
The denominator of (2) has a similar form:
p(X|I)
= Y p(X|person i guilty)
i=1

* P(person i guilty | I)

(4)

I
M=

1
P(X|#i=”)"
— n

s

exp{ — (si/c)z}.

SR

i=1

So (1) becomes

5) exp{—(s/c)z}

n 'Yl exp{- (si/c)z} .
Equation (5) is especially simple (and in many
cases it gives answers similar to the usually more

realistic (9) that will be developed below). It shows
clearly the effect of single-band DNA evidence. The

maximum value of R occurs when the evidence is
most incriminating: x = y. If x and y are far apart
then R is small, decreasing exponentially as the
square of the log of their ratio. For example, if the
standard deviation s of log x and log y, which is
half the log of their ratio, is twice that of the
measurement standard deviation ¢, then R is only
exp{ —4} (or about 1.8%) of its maximum. And if
s = 3¢, so the crime sample is rather inconsistent
with the suspect, R is only 0.012% of its maximum.

If x and all the 2’s are equidistant from y, then
§=8 =8 = ... =35, in this case (5) gives R =1
and there is no evidentiary value in data X. If x
and z,, say, are equidistant from y, and other z’s
are much further away, then s = s; is much smaller
than the other s;’s and so R = n. And R is effec-
tively O if x and y are quite discrepant in compari-
son with some of the z’s. But while R can be
small, it cannot be zero. So if other probes are
consistent with guilt, the suspect may still have a
large overall likelihood ratio (see Section 5) and a
correspondingly large probability of guilt. Section 7
illustrates (5) using the Castro example.

The exponential nature of (5) stems from the
assumption of normal measurement errors. If the
actual distribution of errors has larger tails than
does the normal, then the analogous likelihood ratio
will be less affected by a large difference between x
and y. In practice, laboratories should do a careful
analysis of duplicate measurements to estimate the
underlying error distribution. If its tails are as
small as or smaller than the normal, then the
normality assumption will give reasonably accu-
rate conclusions. But the normal will give poor
results if there are outliers. (On the other hand,
the normal is much more robust than a +k s.d.
criterion.)

It is usually unrealistic to assume that the entire
set of possible criminals has been tested. More
typically, the tested individuals represent a sample
from some population; perhaps n is a few hundred,
not large enough to be confident that the sample
frequencies adequately reflect the population fre-
quencies. Take an extreme example. Suppose y and
x are near each other, but in a region containing
none of the z’s. Then R will be extremely large,
say 10%°. If we are certain -that the criminal is
among the n + 1 individuals tested and that our
assumed error distribution is correct (I'm speak-
ing hypothetically: We’re never certain!), then
this enormous value of R is reasonable and we’re
confident we’ve solved the crime.

In the example of the previous paragraph, sup-
pose the n individuals are a sample from a popula-
tion containing the criminal. The region containing
y and x is quite clearly a rather sparse region in
the population as well, but because of sampling
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variability there may be population members in
the region who have not been tested. While it may
be reasonable to say that the likelihood of the
suspect’s guilt is 10 billion times that of the sample
members combined, it is preposterous to make such
a conclusive statement when extrapolating to the
larger population. For suppose the next person
sampled happens to be within a standard deviation
or so of y. Then R will decrease by about eight
orders of magnitude. Such an observation deserves
to be influential, but not that influential!

In line with the previous paragraph, I will drop
the assumption that (g, py,...,n,) is the popula-
tion of band weights. I will now assume that each u
is a band weight selected from the appropriate
population and that (g, p4, ..., n,) is a representa-
tive sample from this population. For example, if a
murder takes place in an isolated, highly inbred
town, then the sample is supposed to be representa-
tive of the town; in particular, it would then be
unreasonable to use a sample from a larger popula-
tion of which the town is a subset. Making the
realistic assumption that G, the suspect is guilty,
and the reference data set Z = (z,...,z2,) are
independent, likelihood ratio (2) can be written
instead as

_ p(x,y|u=v,Z)
(6) R %912

In analogy with (3) and (4),

p(x,y|u= U,Z)
= /p(x’ylﬂau9ﬂ = U)dH([LIZ)

(7) / 1 { 1 9
- — —_[(log x —
27wcxy exp 2¢2 [( og % = k)

+(og ¥ - ')} aH (4 2),

and
p(x,5|2Z)
_/ 1
B cx\/ﬂ
1 2
© exp{ - 5 (g = - )| dH (41 2)
/ L
cyV2r

)
p{ ~ 5 (log y - v)z}dH(le),

where. H(- | Z) is the conditional distribution of the
population of actual band weights given the sample

of observed band weights. The problem is to find
H(:| Z), or a suitable estimate of it.

It would not be appropriate to use the empirical
distribution of the logs of the z’s to estimate H(- | Z)
in (7) and (8). First, the observed values of log z; do
not consider measurement error. Second, such an
estimate does not consider that Z is a sample and
not the population. Finding (7) or (8) can be accom-
plished using hierarchical Bayesian methods
(Berger, 1986). In particular, Ferguson (1983), Lo
(1984) and Kuo (1986) give approaches to density
estimation using Dirichlet process priors.

I will use a simple-minded density estimation
approach. A way to account for measurement error
is to use normal kernels and estimate H(-|Z) as

1. .
H,('12) = ~ Zjl N(log z;, c?).

There are several ways to account for sampling
variability. Of special concern is the possibility
that the sample values underrepresent the popula-
tion proportion near x. Such underrepresentation
inflates R and so can greatly exaggerate the evi-
dence in favor of G when x is near y. This problem
is especially severe when none of the z’s are near
x. One possible remedy is to include a uniform base
to the density estimate, as follows:
*

Hz('lz) =

U(Nl’ NZ)

n+ n*
n

1
2
+ p— iZ=:1 N(log z;,c ),

where U(N;, N,) is a uniform distribution on N,
and N,, a range chosen sufficiently large to include
the logs of all possible band weights. The parame-
ter n* is the number of observations to be spread
out uniformly from N, to N,. This particular com-
bination has the characteristic that it tends to
H,(-| Z) for large n, which is appropriate.

Still another way of accounting for sampling
variability is to smooth each data point more than
necessary for H,(:|Z). For example, multiplying
the standard deviation by b at each data point
gives

Hy(-|2) = %lZ::I N(log z;, (bc)z).

As I indicated in discussing H;, smoothing parame-
ter b = 1 accounts for measurement error in the
data base band weights. Since measurement error
is always present, b should be at least 1. Generally,
it should be greater than 1 and it should be larger
for smaller n. If n is so large that the sample
frequencies are effectively the same as the popula-
tion frequencies, then b could be set to 1.
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More generally than all the above:

n*

H4(’|Z) = "+ n* U(NpNz)

+

2
P i=1N(log z;,(be)?).

I will use Hy(-| Z)—which is the same as H,(:| Z)
with n* = 0—although extensions to general n*
are straightforward.

After much algebra in evaluating (7) and (8) with
Hy(-| Z) in place of H(-|Z), likelihood ratio (6)
becomes

_ Qu(m) exp{ - (s/c)"}
Q1 (log x)Q,(log y) ’

where, for j = 1, 2,

(©)

1 n
Q;(u) = W El el e

(These sums are trivial when calculating with a
computer.) It is not as easy to see how (9) works as
it is to understand (5); at least in some cases, such
as the Castro example (see Section 7), the two give
quite similar results.

A consideration in calculating (9) is choosing the
smoothing parameter b. When n is small then b
should be large, say around 5, and b should tend to
1l as n— o. If x and "y are close to each other in a
region in which there are few of the z;’s, then the
choice of b is crucial (see the example below), with
R being larger for b nearer 1. But if x is in a
region with at least moderate frequency, then the
choice of b is not as important (as in each of the
three bands considered in the Castro example of
Section 7).

To illustrate (9), consider the frequency distribu-
tion of Hispanics for probes D17S79 and D2S44
given in Figures 1 and 2. Figures 3 and 4 show the
corresponding smoothed version of these distribu-
tions; each figure shows two smoothings, one for
bc = 0.006 and the other for bc = 0.03.

Figure 5 is a contour plot of R as given in (9); the
axes are the average band weight (x + y)/2 and
difference in band weights (x — ¥)/2; ¢ = 0.006 and
b = 5. This plot gives approximate values of R;
for example, the two x’s in Figure 5 are the data
points in the Castro example of Section 7 and
correspond to R = 0.343 and R = 16.1 (cf. Table
3).

<
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Fic. 3. Smoothed versions of histrogram in Figure 1; b = 1 and
b = 5, with ¢ = 0.006 in both.

The larger the value of R, the stronger the evi-
dence of guilt; contour R = 1 in Figure 5 indicates
the locus of points where evidence X is neutral,
favoring neither guilt nor innocence. When x is in
a region of high frequency (cf. Figure 1 or Figure
3), the maximum value of R is smaller: inferences
are not as conclusive when the observed weights
are common in the population. And R is larger
when x is in a region of low frequency. Also, of

. course, R decreases as s increases (for fixed m).

To see the effect of b when both x and y are in a
region of low frequency, consider probe D2544 (Fig-
ure 4). Suppose x = ¥ = 9.1 kb. This is pretty con-
vincing evidence for two reasons: (1) x = y and (2)
there are no weights in the reference sample that
are nearby. Assuming ¢ = 0.006 and b =1 (the
wiggly curve in Figure 4), the value of R in (9) is
961,000. On the other hand, the smoothing that
results from assuming b = 5 (the smoother curve
in Figure 4) partially fills in the hole near 9.1 kb
and R is substantially decreased to 506. The latter
is much more reasonable since, for one thing, the
sample size is less than 300.

A way to smooth where it matters most is to
include the band weights of the crime sample (or
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F1c. 4. Smoothed versions of histrogram in Figure 2; b = 1 and
b =5, with ¢ = 0.006 in both.

suspect sample, but not both) in the reference data
base. This has the effect of making R smaller, and
therefore it is more conservative in the sense of
being weaker evidence against the suspect. In the
x=y=9.1 kb example for D2S44, adding band
weight 9.1 kb to the data base gives R = 338 for
b=1 and R =344 for b =5. I recommend this
procedure for standard practice, but it makes little
difference in the Castro example and so I have not
used it.

5. INDEPENDENT BANDS AND
INDEPENDENT PROBES

I indicated in the previous section that the sin-
gle-band case is not usually applicable in criminal
cases because for any given single-locus probe, each
individual has two distinct bands, one maternal
and the other paternal (except for homozygotes, in
which the two bands coincide). However, the calcu-
lations extend to independent bands of a single-locus
probe and to multiple independent single-locus
probes in a straightforward way. (As I indicated in
Section 2, measured band weights may be highly

0.06
|

Iu - yl/2
0.04
|

0.0
1

T T T T T T
25 3.0 35 4.0 45 5.0
In+yl/2

Fic. 5. Contour plot of likelihood ratio (9) in band weight
rather than log band weight; probe = D17S79, reference data
set = Hispanics from Figure 1, ¢=0.006, b=5. (Two x’s
described in Section 7.)

correlated. Evett and Pinchin of the Home Office
Forensic Science Service, UK, and I are extend-
ing the likelihood ratio approach to handle the
dependent case.)

Consider two bands of a single-locus probe. Sup-
pose x; and x, are the measured weights of the
crime sample DNA fragments, and y, and y, are
the measured weights of the suspect’s fragments. If
the suspect is guilty then there are two possibili-
ties: either the band with measured weight x; is
paired with y, or with y,. Let R, be the likeli-
hood ratio for the pair (x;, y,), calculated as in the
previous section at (5) or (9). Since the two possible
pairings are equally likely, the likelihood ratio for
the probe is

1 1
(10) R = ‘2‘R11R22 + §R12R21-

When the DNA evidence consists of both bands of a
single-locus probe, Bayes’ theorem can be used as
the previous section, with R given by (10).

Two special cases are of interest in calculating
(10). When x, is much larger than x, (in terms of
measurement s.d.’s) and y, is much larger than
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¥g, then R,, and R,; will be small; so in this case
1

Also, when x; = x, and y; = y, (both crime sample
and suspect are measurably homozygotic), then all
four single-band likelihood ratios are equal; in this
case

R =~ R2,.

The extension to several independent single-locus
probes is even easier: The likelihood ratios for the
individual probes are calculated as just indicated
above and multiplied together.

6. PROBABILITY OF GUILT

Calculations in Section 4 and 5 deal with the
likelihood ratio of guilt to innocence. It is appropri-
ate to present this likelihood ratio and describe its
calculation to a court. But its inverse is not the
probability of innocence, nor is there a transforma-
tion of it alone that gives the probability of guilt or
innocence. To use a likelihood ratio, the jury must
understand how it combines with other evidence in
the case.

Calculating the probability of guilt in view of the
DNA data and other evidence E requires Bayes’
theorem (1). The “other evidence” enters through
the prior probability P(G) or the prior odds,
P(G)/P(I). I have suppressed E in writing P(G),
e.g., for notational simplicity, but it is logically
correct to evaluate all probabilities discussed in
this paper as conditional on E. A job of the forensic
statistician is to explain to a court how to convert
P(G| E) into P(G| X, E). This is easier to accom-
plish using odds: Multiply P(G| E)/P(I| E) by R
to obtain P(G| X, E)/P(I| X, E).

A more challenging problem is to help jurors
assess P(G| E). Comparing preferences for the
prospect G as compared with well-understood bets
(coins and dice) may help in this endeaver (see
DeGroot, 1970, Chapter 6). At oft-made suggestion
is that P(G| E) should be one over the size of some
population. This may be reasonable if a population
of possible criminals can be identified, and if the
suspect is exchangeable with other members of this
population assuming E. (If the suspect is exchange-
able with them, they must all be suspects.) But to
take the population to be that of California, say,
just because the crime took place in California and
the suspect lived there, is much too conservative: it
replaces E (which includes information concerning
why the suspect was tested in the first place) with

the much weaker evidence that the suspect is a
Californian.

In using Bayes’ theorem in cases of disputed
parentage, blood banks set the prior odds of pater-
nity equal to 1. This assumes that the alleged
father has probability 1/2 of being the true father
apart from the genetic evidence. Such an assump-
tion is objectionable in paternity cases (Berry and
Geisser, 1986), but arbitrarily selecting 1/2 or any
other particular probability of guilt in criminal
cases would be wholly inappropiate—perhaps even
criminal! It would misrepresent the evidence and
subsume the roles of judge and jury. Even though
such an assumption is not made explicitly in crimi-
nal cases, it is difficult to state a likelihood ratio
without it being understood to mean posterior odds.

An important issue in assessing P(G| X, E) is
that DNA evidence X and other evidence E can
never really be independent for a juror, and their
dependence is difficult to evaluate. Part of the
background information always present is that the
defendant has been charged with a crime and that
the prosecution had what they perceive to be a case
worth prosecuting. The prosecution would probably
have dropped the case if the DNA evidence had
been exclusionary. So X and E are intertwined. It
is important for the prosecution to make it clear to
the jury why the case came to trial. For example, if
the police had planned to test everyone in a town
until finding a DNA match and the suspect hap-
pened to be first one tested, then the probability of
guilt separate from the DNA evidence is at most
one over the population of the town. At the other
extreme would be a suspect who was tested because
several eyewitnesses put him (and no others) at the
scene of the crime. I don’t mean that the prior
probability of guilt in the latter case is necessarily
near 1, but that other considerations being the
same it should be substantially greater than the
prior probability of guilt in the former case.

Match /binning does not lend itself well to using
Bayes’ theorem, but I want to compare it with the
likelihood ratio technique developed in Sections 4
and 5. So I will suggest how a match proportion
might be interpreted as a likelihood ratio. As in
Section 4,

P(G|X,E) P(X|G) P(G|E)
P(I|X,E) P(X|1) P(I|E)"

Now, instead of X = (x, ¥, 24, 2,..., 2,), take X
to be either X,, = (match, y, 2, 25,..., 2,) or Xy
= (not match, y, 2,, 25,..., 2,). Take the likeli-
hood P(X,|G) to be 0. Take the likelihood
P(X, | G) tobe 1 and P(X,,|I) to be the propor-
tion of 2’s close to y: the match proportion. Then
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the “likelihood ratio” is either
P(Xy|0)
P(Xy|I) 7
P(X,|G) 1
P(X,|'I)  match proportion -

or

In the next section I will use the latter expres-
sion to compare match /binning with the likelihood
ratio procedure developed in Section 4 and 5 in the
context of the Castro example.

7. EXAMPLE: NEW YORK v. CASTRO
(REVISITED)

As described in Section 3, suspect Castro had a
bloodstain on his watch that may have been the
blood of the victim Ponce. I assumed in Section 4
that measured weights of DNA fragments of the
suspect and of the crime sample were available and
we wanted to know whether they were from the
same person. In this example, the suspect may be
innocent even if the blood on his watch is that of
the victim. On the other hand, he may be guilty
even if the blood on his watch is not that of the
victim. Handling these possibilities is easy, but I
will avoid the extra algebra by assuming P(blood
on watch is Ponce’s| G) = 1 and P(blood on watch
is Ponce’s | I) = 0. This lets me illustrate the calcu-
lations described in the previous sections letting x
refer to the blood on the watch and y refer to that
of the victim, Vilma Ponce (vice versa gives the
same answer).

We need a sample Z = (z,2,,...,2,). It is
wrong to assume the race of the suspect as the
reference population. The appropriate population is
that of the blood on the watch, assuming it is not
Ponce’s. In particular, whether Ponce and Castro

are Hispanic is irrelevant (although the jury may

feel it likely that blood on the watch of an Hispanic

is that of an Hispanic). (The blood on his watch was
apparently found not to be Castro’s own. Indeed,
because of the problems pointed out in Lander,
1989a, b, this was the only DNA evidence that the
judge allowed to be introduced in the trial.) Evi-
dence that suggests a probability distribution con-
cerning the race of a person who might have spilled
blood on Castro’s watch is relevant; in particular,
that distribution can be used for averaging the
various likelihood ratios (or match proportion when
using match /binning). In the absence of such infor-
mation, or perhaps in any case, calculations should
be made for each possible reference population.
Since Lifecodes used their Hispanic data base as
the reference sample, I will too. )
Table 2 shows the likelihood ratio R calculated
from (5) for each of the three bands from D2S44
and D17S79 given in Table 1; the reference sam-
ples Z are given in Figures 1 and 2. I show this
table to illustrate (5), but I remind you that it
applies when there is a fixed population containing
the criminal and the entire population is
(x, 24, 29,..., 2,). Table 2 considers various values
of ¢ from 0.0042 to 0.03. As described at the end of
the previous section, entries should be compared
with Lifecodes’ calculations of 1/0.021 = 48,
1/0.023 = 43, and 1/0.0068 = 150. Consider the
first entry in Table 2: R = 0.289. There are two
reasons it is so small. The more important is that
the observed s.d. of log x and log y (s = 0.0092) is
much larger than the assumed laboratory s.d. (¢ =
0.0042). The other reason is that there are weights
in the data set Z that are much closer to y than is
x. The last two rows of Table 2 show the appropri-
ate product of the likelihood ratios for the three
bands; the penultimate row assumes homozygosity
and so the entries are comparable with 725,000
using Lifecodes’ method, while the last row as-
sumes heterozygosity and so the entries are compar-
able with 7610 using Lifecodes’ method. Assuming

TABLE 2
Likelihood ratios for New York v. Castro calculated using (5) (x = Ponce’s band weight; y = band weight of watch sample)
(4
Probe/Band 0.0042 0.006 0.008 0.010 0.015 0.020 0.025 0.030
p2s44 X =10.162 0.0289 2.20 4.43 5.46 5.02 3.98 3.29 2.84
y = 10.350
p17s79 *= 8869 20.0 14.1 11.1 9.19 6.47 4.97 3.98 3.30
y= 3.877 \
pi7s7e T 026 0.013 0.304 1.01 1.60 2.15 2.11 1.96 1.82
Combination: D2S44
homozygous 0.010 10 110 220 180 83 42 24
Combination: D2S44
heterozygous 0.018 2.4 12 20 17 10 6.4 43
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Lifecodes’ estimate of ¢ = 0.0042 (the leftmost col-
umn in Table 2), the entries tend to be much smaller
than Lifecodes’ figures. In fact, assuming homozy-
gosity in D2S44, the reference sample has about
1/0.010 = 100 times more likelihood than does
Ponce of accounting for the blood on Castro’s watch!

Table 3 is similar to Table 2, except that in Table
3 the likelihood ratio for each band is calculated
from (9). The table shows the effect of the smooth-
ing parameter b in relation to c. Calculations for
b < 1 are shown for illustration only; in practice b
should be at least 1. All three bands happen to be
in regions of moderately high density. So the s.d. of
the smoothing kernel, bc, has little effect on the
overall likelihood ratio. As indicated in Section 4,
had one or more bands occurred in sparse regions
then smoothing would have much more effect, with
a greater amount of smoothing making large R’s
smaller. Also as indicated in Section 4, the two x’s
on Figure 5 show the likelihood ratios (16.1 and
0.343) for the two bands of probe D17S79 and
assuming ¢ = 0.006 and bc = 0.03.

One conclusion from Table 3 is that if the blood
on Castro’s watch is indeed that of Vilma Ponce
(Castro has since pleaded guilty!) then Lifecodes
has underestimated their laboratory measurement
standard deviation. For example, assuming ho-
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mozygosity of D2S44 and using c¢ = 0.0042 (Life-
codes’s estimate) and bc = 0.03, the data are about
1/0.02 = 50 times more likely when assuming in-
nocence than when assuming guilt! Using c =
0.006, which is my estimate from the data Life-
codes used to derive ¢ = 0.0042, increases the over-
all likelihood ratio (to about 16) by three orders of
magnitude. But the table suggests that even this
estimate may be too small.

8. PROBABILITY OF PATERNITY

The above development adapts easily to calculat-
ing the probability that an alleged father of a child
is the true father. Now the evidence includes the
weights of the child’s, mother’s and alleged father’s
DNA segments. (The following discussion applies
with easy modifications when the mother’s is ab-
sent.) The likelihood ratio is called the “paternity
index” in cases of disputed paternity (Berry and
Geisser, 1986); the event G now means that the
alleged father is the true father. -

Consider a single probe. Gjertson, Mickey, Hop-
field, Takenouchi and Terasaki (1988) consider all
possibilities. I will consider only the simple case in
which mother, child and alleged father have two
widely separated bands and that one of the child’s

TABLE 3
Likelihood ratios for New York v. Castro calculated using (9) (x = Ponce’s band weight; y = band weight of watch sample)

c
Probe/Band be 0.0042 0.006 0.008 0.010 0.015 0.020 0.025 0.030
0.0042 0.334 2.51 5.34 6.91 6.99 5.39 4.04 3.19
D2S44 0.006 0.347 2.56 5.39 6.92 6.91 5.33 4.02 3.19
x =10.162 0.010 0.357 2.60 5.37 6.78 6.62 5.16 3.97 3.20
y = 10.350 0.020 0.317 2.28 4.67 5.86 5.82 4.78 3.88 3.25
0.030 0.272 1.97 4.07 5.17 5.33 4.57 3.85 3.30
0.0042 17.6 13.3 10.8 9.16 6.54 5.06 4.09 3.37
D17879 0.006 18.4 13.9 11.0 9.22 6.53 5.05 4.08 3.36
x = 3.869 0.010 19.7 14.6 11.4 9.34 6.54 5.04 4.05 3.34
y = 3.877 0.020 21.6 15.8 12.0 9.74 6.61 4.98 3.97 3.29
0.030 22.1 16.1 12.2 9.83 6.58 4.93 3.93 3.26
0.0042 0.019 0.363 1.10 1.65 2.04 1.97 1.84 1.73
D17S79 0.006 0.018 0.343 1.07 1.63 2.05 1.98 1.85 1.74
x = 3.464 0.010 0.016 0.324 1.04 1.62 2.09 2.03 1.89 1.76
y = 3.541 0.020 0.016 0.326 1.06 1.68 2.23 2.17 2.00 1.85
0.30 0.017 0.343 1.12 1.78 2.36 2.30 2.11 1.94
0.0042 0.019 15 170 360 330 140 61 30
Combination: D2S44 0.006 0.019 16 170 360 320 140 61 30
homozygous 0.010 0.020 16 170 350 300 140 60 30
0.020 -0.017 13 140 280 250 120 60 32
0.030 0.014 11 110 230 220 120 61 34
0.0042 0.0028 3.1 16 26 23 13 7.6 4.6
Combination: D2544 0.006 0.028 3.1 16 26 23 13 7.6 4.7
heterozygous 0.010 0.028 3.1 16 26 23 13 7.6 4.7
0.020 0.028 2.9 15 24 21 13 7.7 4.9
0.30 0.025 2.7 14 23 21 13 8.0 5.2
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bands matches unambiguously with one and only
one of the mother’s. The child’s other band is pater-
nal. Suppose y is the measured weight of this
latter band. )

The alleged father has two bands. If he is the
actual father, then the child has probability 1/2 of
inheriting each.” Assuming that the proportion of
homozygotes is negligible, this probability is the
same for essentially any possible father. So it will
cancel in calculating the likelihood ratio of pater-
nity versus nonpaternity. Let x denote the meas-
ured weight of the alleged father’s band that is
closer to y (and suppose that the other is much
further away). Then the question is whether v (the
true weight of the paternal band) is the same as u
(the true weight of the alleged father’s band), just
as in Section 4. So the calculation proceeds just as
in Section 4. In cases of disputed paternity there is
no multiplying of likelihood ratios for two bands on
the same probe. So there is one calculation as in (5)
or (9) for each single-locus probe.

If several independent single-locus probes are
used, the likelihood ratios for each can be multi-
plied, just as in Section 5. But for the same reasons
as in criminal cases, the assumption of indepen-
dence is suspect.

The appropriate reference population is again
problematic. Blood banks and other facilities that
do paternity testing use the race of the alleged
father to determine the reference population. They
should use the race of the true father, assuming he
is not the alleged father. If the latter is unknown,
or contested, then calculations should be made for
each race and perhaps also averaged in some way.

9. CONCLUSION AND DISCUSSION

The match/binning approach currently used by
forensic laboratories is a rather crude but satisfac-
tory procedure for inferring degree of match in a
scientific setting. The scientist understands that a

match criterion is arbitrary, that a perfect match is

better than a bare match and that a near miss is
not much different from a bare match. But a court-
room is not a scientific setting. Judges and juries
balk when told that while the difference between
the suspect and crime samples did not fall within
the laboratory’s definition of match, an expert be-
lieves it is a match. And it is reasonable for jurors
to think that a match proportion calculated using a
formal criterion is meaningless when an unspeci-
fied de facto match criterion, such as ‘“visual
match,” is used to decide whether the suspect and
crime samples match.

In contrast, the likelihood ratio approach I rec-
ommend is well adapted to making scientific infer-
ences in courtroom settings. The likelihood ratio

approach does not use an arbitrary match criterion.
Rather, when assuming a normal error distribu-
tion, the likelihood ratio changes gradually, getting
larger when the suspect’s band weights are closer
to the crime sample’s. If suspect and crime sample
band weights are moderately far apart on a particu-
lar probe, the likelihood ratio will be small, but it
will not be zero. This small likelihood can be more
than offset by likelihood ratios from other probes
on which the bands are close together.

The likelihood ratio or Bayes factor is calculated
as the ratio of the (integrated) likelihood of the
evidence assuming guilt to the likelihood of the
evidence assuming innocence; in particular, it does
not depend on assumptions of prior probability of
guilt. The posterior probability of guilt does depend
on the prior probability of guilt. Only a juror (or
the judge in nonjury cases) should assess the latter.
But forensic laboratories might reasonably supply
a table or graph demonstrating Bayes’ theorem and
showing how the genetic evidence serves to change
prior probabilities into posterior probabilities.

The overwhelming proportion of criminal cases
in the United States in which the prosecution uses
DNA profiling have been successfully prosecuted.
But in some cases laboratories have had a difficult
time convincing the court of the appropriateness of
their inferences. One such case is New York v.
Castro, described in Sections 3 and 7. Another is
Maine v. McLeod. The latter case centered on
whether there was band shifting and how to adjust
for it. The differences between the suspect’s and
crime sample’s band weights were outside Life-
codes’ matching criterion of +3 s.d.’s for all nine
bands of the four probes used. Lifecodes was still
using the same s.d. as in the Castro case, and so
their matching limits for the difference between
two bands were +1.8%. All nine differences were
between 2.67% (or 4.45 s.d.’s) and 4.90% (or 8.17
s.d.’s), and in every case McLeod’s band was larger
than that of the crime sample. If the suspect and
crime samples were from the same individual, then
this is band shifting.

In McLeod, Lifecodes used a monomorphic probe
called DXZ1 to correct for the alleged band shift-
ing. (Recall from Section 3 that a monomorphic
probe is the same in everyone, and so must be the
same in the two samples.) McLeods’ band on this
monomorphic probe was 3.15% larger than the
crime sample’s, so Lifecodes subtracted 3.15 from
the 9% differences of the bands on the other probes.
The nine results were then between —0.48% and
1.75%—all in the +1.8% range! The defense discov-
ered that Lifecodes had used a second monomorphic
probe, DYZ1, that they had not reported to the
prosecution. McLeod’s DYZ1 band was only 1.72%
larger than the crime sample’s. Subtracting this
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from the nine percentages left two of them outside
the +1.8% range! Hearing this ambiguity during a
pretrial hearing in December 1989, the prosecution
decided to drop the case.

A proper way to correct is to explicitly consider
correlations among bands (including those on
monomorphic' probes when available) in formulat-
ing likelihoods. An analysis, such as that described
by Berry, Evett and Pinchin (1991), gives a very
large likelihood ratio in cases such as McLeod.

There are problems with using probabilistic ar-
guments in court. Some courts allow them and
some do not. (In Minnesota they are allowed in
civil cases but not in criminal cases, although the
Minnesota Supreme Court seems to be unique in
this attitude.) Ellman and Kaye (1979) argue for
their use. Fairley (1973) presents arguments on
both sides. A major concern is the difficulty of
communicating probabilities or probabilistic rea-
soning to jurors. For example, they may not inter-
~ pret likelihood ratios of 100 billion and 100 any
differently. (Actually, when the prior probability is
greater than 50%, both give a posterior probability
of greater than 99%, so maybe they shouldn’t be
interpreted very differently!)

In the disputed paternity setting, for each probe
used there is only about half as much inferential
ability as there is in cases of forensic identifica-
tion: An individual has only one paternal gene.
But using the combined evidence of several inde-
pendent hypervariable loci can have enormous
inferential power, even in a paternity case.
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