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Statistical Methods for Data with
Long-Range Dependence

Jan Beran

Abstract. It is well known to applied statisticians and scientists that
the assumption of independence is often not valid for real data. In
particular, even when all precautions are taken to prevent dependence,
slowly decaying serial correlations frequently occur. If not taken into
account, they can have disastrous effects on statistical inference. This
phenomenon has been observed empirically by many prominent scientists
long before suitable mathematical models were known. Apart from some
scattered early references, mathematical models with long-range depen-
dence were first introduced to statistics by Mandelbrot and his co-
workers (Mandelbrot and Wallis, 1968, 1969; Mandelbrot and van Ness,
1968). Since then, long-range dependence in statistics has gained increas-
ing attention. Parsimonious models with long memory are stationary
increments of self-similar processes with self-similarity parameter H e
(1/2,1), fractional ARIMA processes and other stationary stochastic
processes with non-summable correlations. In the last decade, many
results on statistical inference for such processes have been established.
In the present paper, a review of these results is given. ‘
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1. INTRODUCTION

It is well known to experienced statisticians and
scientists that the assumption of independence is in
most cases only an approximation to the real depen-
dence structure. For example, to mention just a few
classical references, Box, Hunter and Hunter (1978)
call this assumption “the declaration of independence,”
Mosteller and Tukey (1977) discuss the unreliability of
the o/vn rule for the sample mean in a chapter called
“Hunting out the real uncertainty: How a/vn can mis-
lgad.” Student (1927) writes (also see Jeffreys 1939, p.
298) “After considerable experience, I have not encoun-
tered any determination which is not influenced by the
date on which it is made; from which it follows that a
number of determinations of the same thing made on
the same day are likely to lie more closely together
than if repetitions had been made on different days.”
Scheffé (1959) discusses how even small correlations
can have strong effects on statistical inference. Jeffreys
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(1939) writes: “Internal correlation habitually produces
such large departures from the usual rule that the
standard error of the mean is n™'2 times that of one
observation that the rule should never be definitely
adopted until it has been checked. In a series of obser-
vations made by the same observer, and arranged in
order of time, internal correlations is the normal thing,
and at the present state of knowledge hardly needs a
significance test any longer.”

In practice, large correlations for small lags can
already be detected quite easily for moderately large
data sets. Models with short-range memory (like
ARMA models, Markov processes) are well known and
often used in practice. In particular, Box and Jenkins
(1970) made ARMA models and related techniques
popular among practioners. These models have a
smooth spectrum and exponentially decaying correla-
tions. Already for these models, interval estimates and
prediction intervals can differ considerably from the
iid case, though asymptotic rates of convergence re-
main the same. For example, the standard deviation of
the sample mean X, is proportional, but not necessarily
equal, to a//n. Yet, there is strong empirical evidence
that often even for supposedly independent identically
distributed high-quality data the correlations may
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decay hyperbolically, that is, like |k|~® with a € (0, 1), ‘

implying nonsummability of the correlations. Al-
though single correlations may be small, the conse-
quences of this kind of (long-range) dependence for
classical tests and confidence intervals can be disas-
trous. Most estimates and test statistics have a slower
rate of convergence so that assuming independence or
some kind of short-range dependence leads to underrat-
ing uncertainty (measured by the size of confidence
intervals) by a factor which tends to infinity as the
sample size tends to infinity. For example, the standard
deviation of X, decays at a rate of n™*2, a € (0, 1),
instead of n~2. Thus, if a = 0.4, one needs approxi-
mately 100,000 observations to achieve the same preci-
sion (standard deviation) of X, as from 100 independent
observations drawn from a population with the same
variance.

Many applied statisticians and natural scientists had
been aware of this danger, even long before suitable
stochastic models were known. Best known is the oc-
currence of long-range dependence in geophysics and
hydrology (for a review, see Lawrance and Kotegoda,
1977). In particular, the so-called Hurst effect (Hurst,
1951) can be explained by slowly decaying correlations.
However, there are many other fields of application
where this type of correlation occurs. As early as 1895
the astronomer Newcomb discussed the phenomenon
of long-range dependence in astronomical data sets and
called it “semi-systematic” errors. He also proposed a
heuristic explanation by superposition of independent
random errors and constant systematic errors. Karl
Pearson (1902) observed slowly decaying correlations
in simulated astronomical observations. An example
of spatial long memory in agriculture is discussed by
Smith (1938); (also see Whittle, 1956). He analyzed 40
uniformity trials. The variance of the mean yield as
a function of n = number of plots turned out to be
proportional to n~¢ (with 0 < a < 1) instead of n~1. Fur-
ther examples are discussed, for instance, by Student
(1927) for chemical data, Jeffreys (1939) for astronomi-
cal data, Smith (1938) and Whittle (1956, 1962) for
agricultural data, Cox and Townsend (1948) for textile

-engineering data, Granger (1966, -1980), Mandelbrot
(1969, 1973), Carlin, Dempster and Jonas (1985), Carlin
and Dempster (1989) and Porter-Hudak (1990) for eco-
nomical data, Mandelbrot and Wallis (1969) for data
from biology, geophysics, meteorology and hydrology,
Damerau and Mandelbrot (1973) for linguistic data,
Burrough (1981) and Graf (1983) for environmental
data, Graf, Hampel and Tacier (1984) for high-quality
physical measurements, Haslett and Raftery (1989) for
meteorological data and Beran, Sherman, Taqqu and
Willinger (1992) for telecommunication data. Though
most known examples are time series, long-range de-
pendence is not restricted to this type of data. Several
of the examples above include spatial data with long

memory (also see Matheron, 1973; Haslett and Raftery,
1989; Solo, 1989; Gay and Heyde, 1990). Dependence
along more general structures, such as abstract graphs,
might be worth looking into. For more references, see
Mandelbrot and Wallis (1969), Mandelbrot (1983), Cox
(1984), Hampel et al. (1986), Kiinsch (1987), Hampel
(1987), Beran (1988) and Haslett and Raftery (1989).

The simplest models with long memory are station-
ary processes with correlations decaying hyperboli-
cally. A typical data set where such a model seems to
fit is the record of the Nile river minima (Figure 1). This
data played a key role in the discovery of long-range
dependence in hydrological data by the famous hydrol-
ogist Hurst (1951). The plot of the data reveals several
interesting features: At first sight the data might seem
nonstationary, in particular parts of the data seem to
have local trends or periodicities and the expected
value seems to be changing slowly. A closer look at
the whole series however shows that both, trends and
periodicities, change with time in an irregular way and
the overall mean seems to be constant. Such behaviour
is typical for stationary processes with long memory
(for the definition see below). For the Nile river minima,
the correlations p, = corr(X;, X;+:) decay approxi-
mately like |k|™¢ (as |k|—>) with a equal to 0.3 (see
Section 4).

Due to the vast number of examples from hydrology
and geophysics, long-range dependence is recognized
by most hydrologists and geophysicists to be the rule
rather than the exception. The phenomenon however
occurs in many other areas of application. Even in
situations where every precaution was taken to prevent
dependence between the observations, slowly decaying
correlations often occur. A typical example of such
high-quality data measured under ideal circumstances,
are the measurements of the 1-kg check standard
weight provided to us by the U.S. National Bureau of
Standards Washington (Figure 2). 289 high-precision
measurements on the 1-kg check standard weight were
made between 1963 and 1975, under conditions that
were kept as constant as possible. In spite of the ideal
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circumstances, the correlations seem to decay with a
rate approximately proportional to |k|~* with a equal
to 0.8 (see Section 4).

Several authors also discussed possible physical rea-
sons for the occurrence of long-range dependence and
derived physical models justified in their specific con-
texts (e.g., Cox and Townsend, 1948; Whittle, 1962;
Mandelbrot, 1971; Klemes, 1974; Cassandro and Jona-
Lasinio, 1978; Granger, 1980; Cox, 1984). In many
situations, it seems rather difficult to construct a useful
and sufficiently simple physical model. Yet, often the
processes emerging from such physical models turn
out to be long-memory processes of the above type.
The two best known classes of stationary processes
with slowly decaying correlations are increments of
self-similar processes (in the Gaussian case so-called
fractional Gaussian noise) and fractional ARIMA pro-
cesses.

Self-similar processes and the corresponding incre-
ment processes were first introduced to statistics by
Mandelbrot and co-workers (Mandelbrot and van Ness,
1968; Mandelbrot and Wallis, 1968, 1969). Brownian
motion is self-similar and was known for a long time.
Kolmogorov (1940) introduces fractional Brownian mo-
tion. Lamperti (1962) points to the fact that normalized
sums of random variables converge to self-similar pro-
cesses. For extensive surveys on self-similar processes
see Verwaat (1987) and Taqqu (1988). A stochastic
process (Y;):r. is called self-similar with self-similarity
parameter H, if for any ¢ >0 the stochastic process
(Yoe)er, is equal in distribution to the process
(c®Y )ier,. If Y, has stationary increments X; =Y, —
Y.-1 (i € N), then the covariances R, = cov(X;, X;+1) =
/. exp(ikx)f(x) dx are of the form

(1) Ri=c®(|k + 1|2 — 2|k + |k — 1|2H)/2,
where ¢ = var(X). The spectral density is given by

J

2 flx) = 2b(H, 6*)(1 — cos A) . i |27 + A| 721,

x €[—mn, 7],

with b(H, ¢%) = (2n) lo%sin(zH)I'(2H + 1). For H €
(1/2,1), f has a pole at zero of the form b|x|'~# and
L _. R, = . Note that from (1) one obtains

(3) var(X,) = o?n2H-2,

For H=1/2 the X/s are uncorrelated. The case
0 < H<1/2 where the spectrum is zero at zero and
L _. R. = 0 is less interesting for statistical applica-
tions. It can however occur after overdifferencing.

Fractional ARIMA models were introduced by
Granger and Joyeux (1980) and Hosking (1981). They
are a natural generalization of standard ARIMA(p, d, q)
models defined in Box and Jenkins (1970). By allowing
d = H — 1/2 to assume any value between —1/2 and
1/2, a fractional ARIMA process is defined by

) @®(B)(1 — B)’X, = O(B)e..

Here, the ¢,s are iid zero mean normal random vari-
ables, B denotes the backshift operator, ®(B) defines
the AR-part and ®(B) defines the MA-part of the pro-
cess and (1 — B)*=L;_,(#(—B)* is the fractional
difference operator. The spectral density is then of the
form .

- 1®™)?
|D(e™)]
For d = 0, we obtain the usual ARIMA models. Long
memory occurs for d > 0.
More generally, a stationary process is said to exhibit
long-range dependence if

(6) f(x) ~ -0 Ln(x)|x|'~2H, H e(1/2,1),

where L(+) is slowly varying for |x| = 0 or equivalently
(under weak regularity conditions on L(-)) if

(7) Ry~ - Lo(k)| R [*7%, H € (1/2,1),

with Ly(-) slowly varying for |k| = . For simplicity
we will assume that L(0) = lim,-o L:(x) exists and
0 < L1(0) < oo,

A generalization of fractional ARIMA models was

|1 — ™| %, x e[—n,n]

(5) flx)

>recent1y proposed by Gray, Zhang and Woodward

(1989); (also see Hosking, 1981). They propose to model
persistent cyclic behaviour by poles of the spectrum
at nonzero frequencies. Equations (4) and (5) are gener-
alized in the following way:

(4b) ®(B)(1 — 2uB + B%»X, = @(B)e;,
(where A = d/2, |u| = 1) and
(5b)  flx) = [©fe)|* |1 — 2ue™ + &**|~%, x e[—n, 7]

|D(e™)]

Note that for u = 1 we obtain the original definitions
(4) and (5).

The development of a theory of statistical inference
for long-memory processes has become a very active
field of research in the last decade. Though many prob-
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lems are still unsolved, for some basic situations suit-
able methods are sufficiently known nowadays to be
used in practice. This paper gives a review of recent
results. Most methods have been developed for time
series data. In this review, we therefore focus on these
methods. There would certainly be a need for more
methodological developments for the case of spatial
data with long memory, or even data with a more
general index variable. Typical examples from agron-
omy are discussed, for instance, in Smith (1938) and
Whittle (1956, 1962). Other areas of application would
be, for example, environmental sciences such as hydrol-
. ogy and meteorology. Some proposals of spatial models
with long-range dependence have been made by Whit-
tle (1962) and Renshaw (see his contribution to the
discussion of Haslett and Raftery, 1989).

Not much seems to be known about statistical infer-
ence for spatial processes with long memory. A method
of estimation for spatial models with long memory has
been proposed recently by Haslett and Raftery (1989);
(also see Kiinsch’s contribution to the discussion of
this paper). However, in their spatial model (and the
corresponding data), long memory occurs only in time,
not in the spatial index. More research would be needed
on models, statistical inference and data examples
where long memory occurs in the spatial index. Also,
multivariate models with long-range dependence might
prove useful in practical applications. Some research
in this direction has been proposed by Li (contribution
to the discussion on Haslett and Raftery, 1989). A
similar problem has been considered by Hui and Li
(1988). They defined fractional differenced periodic pro-
cesses where d = H — 1/2 varies with the season. To
my knowledge, no geheral theory on multivariate mod-
elling with long memory is known in the literature.
Possible alternative models for long-range dependence
and “intermediate” models in the sense of “medium
dependence” have been suggested by Tong, Kiinsch
and Tjostheim, and Jones (see their contributions to
the discussion of Haslett and Raftery, 1989). Devel-
oping such alternative models and the corresponding
statistical methods is certainly an interesting area for

" future research. For a list of references on the probabil-
istic theory of long-memory processes, we refer the
reader to Taqqu (1985, 1988) and Vervaat (1987).

2. POINT ESTIMATION

2.1 Location and Scale Estimation

At first, we consider estimation of u = E(X;) and
¢? = var(X;). Rather surprisingly, it turns out that, in
spite of slowly decaying correlations (7), the sample
mean does not lose much efficiency compared to the
best linear unbiased estimator (BLUE). An explicit
formula for the asymptotic efficiency (given by the

ratio of the two asymptotic variances) was derived by
Adenstedt (1974):

eff (X, fiBLUE)

@ _ n(2H — 1)H

" B(3/2 — H,3/2 — H)sinn(H — 1/2)’

Numerically, this is above 0.98 for all H €[1/2, 1] (Beran
and Kiinsch, 1985; Samarov and Taqqu, 1988). To cal-
culate the BLUE one would have to know or estimate
all covariances. For most practical purposes, an effi-
ciency loss of 2% does not matter so that the sample
mean is not only much easier to calculate but also a
sufficiently accurate estimate of u.

A surprising consequence of long-range dependence
is that robust estimation of 4 can be done without
losing efficiency under the Gaussian model (Beran,
1986, 1991). All M-estimators 7, defined by

=W Xi — T,) =0, turn out to be asymptotically
equivalent to the sample mean in the sense that var(X,)/
var(T,) = 1 and var(X,) V%X, — T,) = 0 in probability
(as n = =), This is very much different from the situa-
tion of iid observations. There the asymptotic variance
of T, is equal to E (y*X — u))/E*(y(X — u)), which is
larger than o2 for all nonlinear functions y.

Another interesting consequence of (7) was noted by
Percival (1985). Define X,(k) = m 'L, X;:, where k and
m are integers such that m < n/k and m + 1 > ni/k, that
is X,(k) is the sample mean based only on the observa-
tions at time points %, 2k, . . . , mk. For any fixed
integer k, the relative asymptotic efficiency of X, (k) com-
pared to X,(1), eff(Xu(k), Xx(1)) = lim,-ovar(X,(1))/
var (X.(k)), turns out to be equal to one. This is very
much in contrast to the iid case, where eff (X.(k),
X,(1)) is equal to 1/k. On the other hand, the deficiency
of X,(k) with respect to X,(1), as defined by Hodges
and Lehmann (1970), turns out to be infinite, even if
(7) holds.

In contrast to X,, the classical scale estimator s =
(n—1)7! &, (X; — X,)? is a bad estimator of 42. It
has a large bias and loses much efficiency. For H =
3/4, the efficiency is even equal to zero, because its rate
of convergence is slower than n~"2 An efficient n'%
consistent estimator of the scale will be discussed in
Section 2.4.

2.2 Regression and Analysis of Variance

Parametric regression models of the form
yi=pixi1+ Paxio+ - - -+ ﬂpxi,p + &,

i=1,...,n,

9

where the errors ¢; are generated by a stationary pro-
cess with slowly decaying correlations (7), have been
investigated in Yajima (1988, 1991) and Kiinsch, Beran
and Hampel (1992). The asymptotic distribution of the
least squares estimator f.sz and its efficiency com-
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pared to the best linear unbiased estimator BsLur de-
pends not only on the correlation structure but also on
the design matrix X = (x;5i=1,...,mj=1,...,p)
Asin the classical theory by Grenander and Rosenblatt
(1957), the asymptotic theory can be characterized in
terms of the so-called regression spectrum (as defined
by Grenander and Rosenblatt). Since the spectral den-
sity of & has a pole at zero, but is assumed to be
continuous otherwise, the efficiency of sz only de-
pends on the behaviour of the regression spectrum near
the origin. In particular, when estimating a polynomial
trend, the rate of convergence of both estimators is
slower than under independence by a factor propor-
tional to n¥~'2, The efficiency of Brsz is less than one
and is only a function of H and L;(0) (Yajima, 1988).
As we saw in the previous section for the case p =
1, x;1 = 1, the actual efficiency loss is not necessarily
large. On the other hand, when estimating seasonal
components, the rate of convergence is the same as
under independence and f.sz is asymptotically efficient
(Yajima, 1991).

A closer look at typical questions arising in analysis
of variance reveals an interesting dichotomy between
constants and contrasts. For standard complete ran-
dom designs, least squares estimates of contrasts have
asymptotically the same (conditional and uncondi-
tional) variance as under independence (Kiinsch, Beran
and Hampel, 1992). For finite samples, the classical
estimate of the variance of a contrast turns out to be
unbiased, even in the presence of long-range correla-
tions. This is very much in contrast to the estimation
of constants, where the variance decays to zero with a
slower rate than under independence [see (3) and Sec-
tion 3.3], and confirms the experience of applied statis-
ticians that constants are much more difficult to
estimate than contrasts. Standard programs for
ANOVA can therefore be used as long as the results
refer to contrasts and the validity of the inference.
Another question is how much efficiency can be gained
by estimating the covariances and/or choosing suitable
designs. For example, by using a blocked randomized
design instead of complete randomization, the variance
of the least squares estimator can be decreased consid-
erably (see Kiinsch, Beran and Hampel, 1992). At the
same time, the efficiency gain of the BLUE compared
to least squares becomes negligible.

Nonparametric regression of the form

(10) Y; = gliln) + &,

with errors & having correlations (7), was considered
by Hall and Hart (1989). The optimal rate of conver-
gence of kernel estimators of g turns out to be
n“H-96—2H)  which is slower than the optimal rate of
convergence n~% for weakly dependent observations.
For twice differentiable functions g, the optimal band-
width is found to be proportional to n2#~2/6-2H)

2.3 U-Statistics

Limit theorems for the empirical distribution func-
tion, U-statistics and von Mises statistics for long-
range dependent processes were considered by Dehling
and Taqqu (1989). They consider observations Y; =
G(X),i=1,...,n, where X; is a stationary Gaussian
process satisfying (7) and G is a function of Her-
mite rank m = 1. Here G is said to have Hermite
rank m, if E(G(X))H,(X;)) =0for0 <k <m — 1 and
E(G(X)H.(X)) # 0, where H}, is the kth Hermite poly-
nomial. In particular, if m = 1 and F,(x) is the empir-
ical distribution function F.(x) = X}_,1{Y; < x}, then
Ly(n)~Y2n1~H(F,(x) — F(x)) converges weakly, in the
space of all cadlag-functions (functions which are right
continuous everywhere with existing limit from the
left) on [— o, o] equipped with the supremum norm,
to a constant c(x) times a standard normal variable.
Thus, in contrast to the case of independent or weakly
dependent observations, the limit of the empirical pro-
cess is, up to a deterministic constant, one random
variable instead of a stochastic process. The conse-
quences for goodness of fit tests (Beran and Ghosh,
1990, 1991) are discussed below in Section 3.2. For a
law of the iterated logarithm for F, and its application
to U- and von Mises statistics see Dehling and Taqqu
(1988). Also, for applications to the chi-squared good-
ness of fit test and the Cramer-von Mises-Smirnov
goodness of fit, see Dehling and Taqqu (1990).

2.4 Estimation of H

As we saw in the previous sections, the rate of
convergence of many standard statistics is determined
by the value of the parameter H. For reliable statistical
inference, it is therefore important to obtain a good
estimate of H from the data. Several heuristic propos-
als have been made how to estimate H and ¢?, the best
known being the so-called R/S-statistic first introduced
by Hurst in hydrology (Hurst, 1951) and further inves-
tigated by Mandelbrot and his co-workers (Mandelbrot

" and Wallis, 1969; Mandelbrot and Taqqu, 1979). It has

some good robustness properties, in particular with
respect to long-tailed distributions (see Mandelbrot and
Taqqu, 1979), however under the Gaussian model it
loses much efficiency compared with maximum likeli-
hood type methods. A Bayesian approach to estimat-
ing H is discussed in Carlin, Dempster and Jonas (1985)
and Carlin and Dempster (1989). Asymptotic normality
of the maximum likelihood estimator was proved by
Yajima (1985) in a special case. The general proof was
given by Dahlhaus (1989). Efficient approximation to
maximum likelihood has been considered by several
authors. In Whittle’s approximation (Beran, 1986; Fox
and Taqqu, 1986) the inverse covariance matrix of
(X1, . . ., X,) is replaced by the two-sided infinite
dimensional matrix (as)ei= -~ With ap=ar—; =
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(2n)~! ffn f~Yx) cos(k — )x dx. One then has to mini-
mize (with respect to H and ¢?)

1) 3 aiC— R+ e [ logfisas
k=1 —-n

where C, = n 'L M(X; — X ) Xi+x — Xu). A discre-
tized version of (11), the so-called HUBO0O-estimator,
was proposed by Graf (1983). Heuristically, his approach
is based on the fact that the periodogram ordinates
I(w) = (27n) 7| Lj_; X explijw)|* are asymptotically ex-
ponentially distributed and independent for different
frequencies (also see Yajima, 1989). To be precise, this
limit theorem actually only holds for frequencies above
en”? for any fixed y<1/2 and & >0 (Kiinsch, 1987).
However, due to the averaging in (11) (or in the corre-
sponding discrete version), the periodogram ordinates
for frequencies below ¢n™? have asymptotically no
effect on the limit distribution of the estimator. Graf
also wrote a FORTRAN program for his estimator.
This program seems to be rather fast, so that excessive
CPU time does not seem to be a problem. The typical
CPU times (on a CDC Cybers 721/722/174 computer)
reported are 0.26 for n = 64, 0.45 for n = 128, 0.83 for
n = 256, 1.68 for n = 512 and 3.23 for n = 1,024. Note
that a “quick and dirty” way to get an approximate
solution of (11) can be obtained easily for models (such
as, e.g., fractional Gaussian noise) where H and the
variance are the only parameters to be estimated:

1. Use the following parametrization: f(1; H, %) =
o2f(A; H,1) where [ _log f(1; H,1) dA = 0. Note
that o2 is the variance of the innovation in the
infinite AR representation of the process.

2. Find the minimum of the function g(H)=
T I(A)fid; H,1) (n* = integer part of (n — 1)/2,
A; = 2mi/n) to obtain H. Obviously, this can be
done by simply calculating g(H) on a sufficiently
fine grid of H-values (and perhaps plotting g(H)
against H). The scale parameter is then estimated
by 62 = g(H).

If more than two parameters have to be estimated,
then computational problems become more serious. For
a discussion of these issues, see Hosking (1984), Carlin
(1987) and Haslett and Raftery (1989).

A third possibility of approximating the maximum
likelihood equations is to replace the inverse covariance
matrix by a one-sided infinite dimensional matrix. This
results in minimizing

n i—1
n~le72 Y (Xi — Xn — 2 bulXimr — X))?
(12) i=2 k=1
+ log 62,
where X; —u = Zz1b;(X;—; — u) + & is the infinite AR

representation of (Xi)iz and o? = var(e;). Essentially,
(12) minimizes the sum of the squared residuals

r= Xi - ._X:,, - ;;ibj(Xi—j - Xn) (l = 1, oo ey n) Note
that the residuals r; are estimates of the corresponding
innovations & = X; —u — XL b X, —w =1, ...,
n). The variance of the innovations, var(e;) = o? is then
estimated by n~'L}_,r?. This is analogous to corre-
sponding methods for autoregressive models. The ad-
vantage of (12) is that it is easy to obtain a more
robust version (robust in the time domain) by a simple
modification of (12) [see the equations (15a) and (15b)
below]. A problem with approximation (12) is that
the residuals r; can be a poor approximation to the
innovations ¢;, in particular for i close to n and large
values of H. In particular, this implies that the residu-
als r; are heteroscedastic which is not taken into ac-
count in (12). Although this has no influence on the
asymptotic distribution, it can lead to a considerable
bias and efficiency loss, if n is not very large. Following
Haslett and Raftery (1989), (12) can be improved by
replacing r; by % = (X; — X;Jv;"V2 where X; is the best
linear prediction of X; given X;—1, . .., X1 and v; is the
conditional variance of X; — X;. The residuals % can
be calculated exactly by the Durbin-Levinson recursion
(e.g., Hosking, 1982).

For all three estimators of § = H, or more generally
of a parameter vector 6 = (61, H, 63, . . ., 6x) (Where 6
is a scale parameter and the additional parameter 6;,
i = 3 characterize the short range dependence struc-
ture), a central limit theorem holds, with the same
asymptotic covariance matrix as for the maximum
likelihood estimator (Beran, 1984, 1986; Fox and
Taqqu, 1986; Dahlhaus, 1989), that is n'? (§ — §) is
asymptotically normally distributed with zero mean
and covariance matrix V = 2D~! where

(18) Dy = (2n) _ﬂnaigilog f(x)a%jlog flx) dax.
Note that 1/2D is the asymptotic AFisher information
matrix (Dahlhaus, 1989) so that § is asymptotically
efficient.

Considering a class of nested models with spectral

‘density flx) = flx; 6) and estimating 6 by the approxi-

mate maximum likelihood method (11), one can choose
the dimension of § by applying a version of Akaike’s
criterion (Beran, 1986, 1989b): Choose the model for
which

n—1

> aldCi+ X adR,

k=—(n—1) |klzn

(14)
+(27)7 | log flx; é) dx + %

AICM) =

is minimal. Here C} = n(n — |k|)"'C}, is the unbiased
and R, a consistent estimator of R;. For Markov pro-
cesses this criterion was derived by Kiinsch (1981).
There the second term vanishes. By an analogous tech-
nique as in Shibata (1976), (14) can be shown to be
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inconsistent. It overestimates asymptotically the num-
ber of parameters with positive probability. This means
that even asymptotically we have no guarantee that
we do not use an unnecessarily complicated model.
Consistency is however not necessarily the most im-
portant property. In practice the true model, if there
is any at all, will often by very complicated. The best
we can hope is to obtain a reasonable approximate
model. In many applications, the relevant criterion for
the quality of such a model is its predictive power. In
the sense of predictions, the AIC was shown to be
optimal in the context of short-memory linear models
(Shibata, 1980). I would suspect that an analogous
result holds here, though it would need a thorough
investigation.

In practice, parametric models are only approxima-
tions. Therefore, it is important to know how § behaves
under deviations from the model and to find alternative
robust methods of estimation. Here, we have at least
three kinds of possible deviations: nongaussianity, an-
other form of the spectrum at high frequencies or
another function L,( ) in (6), nonstationarity.

All three approximate maximum likelihood estima-
tors are defined via quadratic forms. This makes them
rather sensitive to deviations from Gaussianity. The
central limit theorem still holds for certain types of
non-Gaussian processes (Avram, 1988; Giraitis, 1989;
Giraitis and Surgailis, 1989; Terrin and Taqqu, 1991).
However, there are also examples of non-Gaussian pro-
cesses where the rate of convergence is slower than
n~12 (cf. Fox and Taqqu, 1985). In practice, we may
hope that such extreme cases do not occur. Yet it would
be useful to find methods that protect us against them.
Data cleaning and transformations will prevent the
worst. More robust estimators can be obtained for
instance by huberizing the equations obtained from
(12) by differentiation. That is, instead of minimizing
(12) one can solve the robustified “normal equations”

(15a) ZV/(G@_ZTiiri)=O Gj=2...,M)
=2

36;
and
(15b) > x(rila:) =0,
=2

where the y- and the x-function are suitably chosen
bounded functions and 6= (02 H,6s,...,0y). An
analogous central limit theorem also holds for such
estimators. In view of the results by Martin and Yohai
(1986) for (short-memory) linear processes, it seems
most likely that robustness can only be achieved if the
y- and y-functions are redescending. A more detailed
analysis of the robustness properties of such estima-
tors would be needed to decide which functions give at
the same time robust and efficient (under the Gaussian

model) estimates.

The second kind of deviation, in other words, devia-
tions from the assumed shape of the spectrum, has to
be expected for most data sets, in particular if we use
rather simple models —like fractional Gaussian noise—
that only reflect the long-range aspects of the data. For
short lags, the correlations are typically different from
those described by, for example, fractional Gaussian
noise. If one uses a wrong model, then the maximum
likelihood estimator (or any of the approximate MLE’s)
of H will be biased. This is the case because the maxi-
mum likelihood estimator uses periodogram ordinates
in the whole frequency range [0, 7] (see, e.g., the contri-
butions to the discussion of Haslett and Raftery, 1989,
by Smith and Dempster; also see Graf, 1983; Graf et
al., 1984). If, for example, the model has a flat spectrum
at high frequencies but the periodogram has high peaks
at high frequencies, the bias can be very large.

To avoid bias in H, one has either to choose the
right (or a better) model, for instance by introducing
additional parameters, or to bound the influence of
periodogram ordinates at high frequencies. Consis-
tency can be achieved even if the true spectrum differs
from the model spectrum outside a neighbourhood of
zero. This can be done however only at the cost of a
slower rate of convergence, by using only m periodo-
gram ordinates for the estimation of H with m <
(n — 1)/2 and m/n = 0 (n = o) (Geweke and Porter-
Hudak, 1988). It is interesting to note that this ap-
proach has analogies with the estimation of the tail of
a distribution of the form f(x) = ax~%(1 + bx° + o(x%))
(x = o, a,c > 0) (see R. Smith’s contribution to the dis-
cussion of Haslett and Raftery, 1989; Hall, 1982; Hall
and Welsh, 1984, 1985). In both cases (estimation of
the pole of a spectrum at zero and tail estimation for
a distribution), consistency can be achieved only at the
cost of a slower rate of convergence. Hall (1982) and
Hall and Welsh (1984, 1985) also give an optimal choice
for m and the corresponding optimal rate of conver-
gence. It might be worth considering if analogous opti-

. mally results could be derived for the estimation of H.

A compromise was proposed by Graf (Graf, 1983; Graf,
Hampel and Tacier, 1984; for an explicit formula, see
Beran, 1989a). His HUBINC-estimator bounds the in-
fluence of high-frequency ordinates in a way which
guarantees approximate consistency under deviations
from the ideal shape of the spectrum and rate of conver-
gence n” 2,

Under fractional Gaussian noise the bias is zero and
efficiency is above 74% for all H € (0, 1). The estimator
is defined as follows: Let a = 1 — 2H, 6 = (a,log b),
gnla, 2) = 2rnAH Y sin{rH)T{2H + 1}|'E[I{}], Axn=
2nkin, u(l) = min[3.5,0.5 + 0.3757/A], I(A) = max]0,
0.6{A/m — 0.36}"%], z; = I(A.) and w(f,z, 1) = [2b7'
A7°g7a A}]4Y where [Iii denotes truncation by U(4)
from below and by u(l) from above. Furthermore, let
mn(A) be equal to the mean of a standardized exponen-
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tial random variable that is is truncated by /(1) and
u(A). Also we define n* to be the largest integer below
ni2 — 1/2, é:(a, A) = logh + (3/da)log q.(a, A), daz, A) =
w(@,z, A)—mn(d) and "z 4,0 = [6i{a, A}dxfz, A},
02z, A}}. The HUBINC estimator of @ is the solution
of

n¥*

(16) Z '//(n)(zky Afk,m Q) = 0-
k=1

Note that if we choose /(A) = 0 and u(1) = «, then we
obtain Graf’s approximate maximum likelihood estima-
tor HUBO0O. Graf wrote a FORTRAN program to solve
.(16). As for the approximate maximum likelihood esti-
mator, CPU time does not seem to be a problem. The
typical CPU times are of the order of magnitude give
above for the approximate MLE.

A negative slope of the logarithm of the spectrum
near zero sometimes indicates a trend in the data rather
than long-range dependence. The question arises if and
how these two models can be distinguished. Bhatta-
charya, Gupta and Waymire (1983) showed that for
the nonstationary sequence Y; = X; + m; with X; sta-
tionary and weakly dependent and m; a slowly decreas-
ing trend, the R/S-estimator of H is asymptotically
between 1/2 and 1. This is an argument against using
the R/S-statistic, at least if the possibility of trend can
not be excluded a priori. A way to discriminate trend
from long-range dependence was proposed by Kiinsch
(1986). He proved that for Y; the periodogram I,(27xj/
n) has asymptotically a non-central x2-distribution with
noncentrality parameter going to zero uniformly for
|| > en™? (for any fixed &> 0,y <1/2), whereas for a
stationary process with spectrum (6) and L:(x) = const
it has (up to a constant) asymmptotically x!~2 times a
central y2-distribution. A consequence of this result is
that in contrast to R/S the approximate maximum
likelihood estimators discussed above are consistent
for Y;. They are based on averages of periodogram
ordinates divided by the spectral density. The effect of
periodogram ordinates for frequencies below en™ is
therefore asymptotically negligible. In practice, it
might be a good idea to leave out the first few periodo-

‘gram ordinates though some experience is needed to
choose a reasonable ¢ (for related results, also see
Hurvich and Beltrao, 1992). Apart from the formal
results, the decision between trend and long-range de-
pendence will also depend on the specific context and
the field of application.

Finally, one should not forget that a negative slope
of the periodogram at zero also occurs for certain kinds
of ARMA processes. Since we always deal with finite
data sets, it is in principle not possible to decide
whether the spectrum of the underlying process has a
pole at zero or if it is continuous at the origin with
negative slope in its neighbourhood. Also, transient
phenomena can not be excluded a priori. However, if

the underlying process in fact has long memory, then
in most cases short-memory models (e.g., ARMA) will
not give a good fit unless we use many (asymptotically
an infinite number of) parameters. Model selection cri-
teria that penalize lack of parsimony [e.g., (14)] will
therefore tend to exclude such models. In contrast to
that, the stationary processes defined by (6) [or (7)]
describe long-range dependence by one single parame-
ter H.

3. TESTS AND CONFIDENCE INTERVALS

3.1 Tests for Long-Range Dependence

Several tests for the so-called Hurst effect, in particu-
lar their power for distinguishing between fractional
Gaussian noise and an AR(1)-process, were considered
recently by Davies and Harte (1987). They consider
tests based on the R/S-statistic, tests derived from
likelihood ratio tests and locally optimal tests which
maximize the derivative of the power function at
H = 1/2. In cases where one has a clearly specified null
hypothesis and alternative, one might also derive other
types of tests, such as exact likelihood ratio tests or
likelihood ratio tests using an approximation to the
likelihood (see Section 2.4), Wald tests, score tests and
tests based on Bayes factors. The exact behaviour of
these tests in the context long-memory processes is an
open problem.

Given a stationary process with long-range depen-
dence, it is obvious from the central limit theorem in
Section 2.4 how to construct confidence intervals for
6. For example, for the model of fractional Gaussian
noise, an approximate 95%-confidence interval for H
is given by H + 1.96V12n~"2 where V = 2D~! and D
is the 2 X 2-matrix defined by (13) and (2). By fitting
Pearson curves to simulated moments of Q, Graf (1983)
obtained finite sample corrections. More general meth-
ods like small sample asymptotics have not yet been
investigated in this context.

3.2 Goodness of Fit Tests

First consider testing the (composite) null hypothesis
Hy:f(x) = flx; §) against the alternative Ha:f(x) # f(x;
0), where f is the true spectral density and f(x; ) is the
spectral density of a parametric model. In other words,
we want to test if the spectral density of our parametric
model is equal to the true spectral density in the whole
frequency range [0, ). A straightforward way to test
this hypothesis is to look at the estimated residuals
obtained from filtering the data X; = L;_,v: X + &
using the estimated coefficients wx(f). A portmanteau
statistic based on an increasing number of correlations
of the residual process can then be used to construct
a consistent omnibus test (Beran, 1992). The distribu-
tion of the test statistic under the composite hypothe-
sis (i.e., # unknown) turns out to be the same as under
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the simple hypothesis (¢ known). Obviously, if one
suspects deviation from the model spectrum in a spe-
cific direction, then other more powerful tests can be
constructed. In particular, if one wants to test a simple
hypothesis against a simple alternative (e.g., fractional
Gaussian noise versus AR(1)) one can construct likeli-
hood ratio type tests (see section 3.1).

The effect of long-range dependence on goodness
of fit tests for a (marginal) distribution, in particular
testing normality, was considered in Beran and Ghosh
(1990, 1991). The observation that, in practice, good-
ness of fit tests for a distribution almost always reject
the null hypothesis for sufficiently large data sets,
turns out to be not necessarily only due to the null
hypothesis being almost never true but also due to
the use of wrong rejection regions valid only under
independence. For example, suppose that we test the
simple null hypothesis that our data come from a
standard normal distribution. We use the Kolmogorov-
Smirnov test together with a corresponding table of
critical values obtained under the assumption of inde-
pendence. If in fact there is long-range dependence in
the underlying process, then the probability of re-
jecting the null hypothesis tends to one (as n tends to
infinity), even if the marginal distribution of the pro-
cess is actually standard normal. The case of a simple
hypothesis is different from the case of a composite
hypothesis. In the former, classical goodness of fit
tests reject the null hypothesis asymptotically with
probability one, even if the null hypothesis is true. If
the mean and variance are estimated from the data
(composite hypothesis), rejection under the null hy-
pothesis with asymptotic probability one only occurs
for H > 5/6. The reason for the different behaviour for
H < 5/6 is that, in this case, goodness of fit statistics
can be written asymptotically as functionals of so-
called Hermite processes of rank 3 and higher. For
these processes the central limit theorem holds for
H<1-—1/2-3) = 5/6 (e.g., Taqqu, 1979; Breuer and
Major, 1983).

3.3 Tests for Location and Prediction Intervals

* Confidence intervals for the mean have to take in-
to account not only the slower rate of convergence,
but also the variability of 4. If (6) holds, then var(X,)/
(c(n)n®-2) converges to one (as n—>=) where c(n) =
21" Ly(n"Y)I(—2H)sinn(1/2 — H). For a parametric
model, L; depends on 6 so that c(n) = c(n; ). Hence a
test statistic applicable to any Gaussian process with
(6) can be defined by

17) T=X,— u)c(n;g)‘llznl‘ﬁ,

where § is some reasonable estimate. With the HUB-
INC estimator of § = (log b(H, 6, H), b defined by (2),
fractional Gaussian noise as the basic model and set-
ting T =0 if H ¢ (0,1), a good approximation to the

distribution of 7' can be obtained (Beran, 1989a) that
is also applicable to rather short series (approximately
n = 60):

P(T < u) = (1 — (1 — Hn'¥q))

(18) + (1—®(Hn'?/a))

1—H (o
+ / / @ (ug(n7 0; z))(on(z) dzl dzz,
—H — - = —

where ¢,(z) is the two-dimensional normal density with
zero mean and covariance matrix n~'V, V as in section
2.4 and g(n, 6;2) = (c(n; @ + 2)/c(n; 6))Y?n?1. In particular
for small values of n finite sample corrections of V
based on simulations turned out to improve the approx-
imation. Note that the first two terms refer to the case
where H ¢ (0,1). They vanish asymptotically and can
be neglected except if » is small and H is near 1.

The method can be generalized to prediction inter-
vals for the arithmetic mean of future observations.

Prediction of single future observations is discussed
by Granger and Joyeux (1980), Hosking (1981) and
Peiris and Perera (1988) for the case where all parame-
ters of the model are known. For fractional ARMA
processes, predictions and prediction intervals follow
by standard calculations from (5).

4. TWO DATA EXAMPLES

We apply some of the methods described in the
previous sections to the two data sets introduced in
Section 1.

The Nile River data are plotted in Figure 1. The
periodogram is plotted in log-log-coordinates in Figure
3. The approximate maximum likelihood estimate
HUBO0 and the HUBINC estimate of H are 0.837 and
0.847 respectively. The corresponding approximate
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Fic. 3. Periodogram (in log-log coordinates) of the Nile River
minima.
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95%- and 99%-confidence intervals for H [obtained
from (13)] are [0.786, 0.888] and [0.770, 0.904] for the
approximate MLE and [0.788, 0.906] and [0.770, 0.925]
for the HUBINC estimate. In view of Figure 3, it is
not very surprising that there is such strong evidence
for long-range dependence. The question arises how
well a simple model like fractional Gaussian noise actu-
ally fits the data. This model was proposed by Mandel-
brot and Wallis (1968, 1969) for the Nile River data.
Its spectrum is flat for high frequencies so that it
only can model long-memory properties. Using the
generalized portmanteau goodness of fit statistic de-
scribed in Section 3.2, we obtain an approximate P-value
of 0.71. Thus, although the spectrum of fractional
Gaussian noise is described by one parameter only (apart
from the variance), it indeed provides a very good fit
to the observed spectrum. If instead we try to fit an
autoregressive model we need to use many more param-
eters. Using the Akaike criterion, the best ARMA-
model turns out to be an AR(7)-model. The P-value for
the goodness of fit test is approximately equal to 0.75.
So, the quality of the fit is practically the same as for
fractional Gaussian noise. However, we need seven
parameters instead of one. Moreover, the order of the
AR-model needed seems to increase with the sample
size. For the first » = 50, 100, 400 and 660 observa-
tions, the selection criterion chooses the orders 1, 2, 4
and 7, respectively.

As second example we consider the NBS data de-
scribed in Section 1. The differences of the measure-
ments (in micrograms) from 1 kg are plotted in serial
order in Figure 2. The periodogram in log-log coordinates
is given in Figure 4. The dates when the observations
were made are actually not exactly equidistant. These
irregularities, however, mainly influence the spectrum
at high frequencies. If we want to calculate confidence
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Fic. 4. Periodogram (in log-log coordinates) of the NBS 1-kg
check standard weights.

intervals for the mean, then we are only interested in
the behaviour of the spectrum near the origin (see
Section 3.3). Under these circumstances it seems par-
ticularly desirable that the estimate of H does not
depend strongly on the high-frequency periodogram
ordinates. Therefore, an estimator like the HUBINC
estimate is more adequate than one of the approximate
maximum likelihood estimates. The HUBINC estimate
of H is equal to 0.602, which is significantly larger
than 0.5, even at the level of significance 1% (Graf,
1983; Graf et al., 1984). The 95%- and 99%-confidence
intervals for the mean, based on (18), are [—19.4886,
—19.4649] and [—19.4937, —19.4599], respectively.
They are more than twice as large as confidence inter-
vals based on Student’s t-test. We also computed the
confidence intervals based on the first 128 observa-
tions. The length of the intervals is 0.04582 and
0.06882 for confidence levels 95% and 99% respec-
tively. Comparing this to the length of the intervals
based on all 289 observations, we see that for such
small values of n the decreasing fluctuation of H has
a considerable effect on the intervals so that their
length decreases faster than n*~!, Also, already for
n = 128 the confidence intervals are more than twice
as large than the confidence intervals based on the
t-test. This illustrates that even for relatively small
sample sizes and weak long-range dependence the effect
of such dependence on statistical inference is very
strong. Here, this effect is even stronger for n = 128,
because the estimate of H based on the first 128 obser-
vations turns out to be slightly higher (H = 0.634)
than the estimate for the whole series.

5. CONCLUDING REMARKS

Long-range dependence is often encountered in prac-
tice, not only in hydrology and geophysics but in all
fields of statistical applications. If not taken iuto ac-
count, it can completely invalidate statistical inference.
For many standard situations, new statistical methods
as well as properties of classical techniques are suffi-
ciently known nowadays to be used in practice.

More research is needed, however, both to deal with
more complex situations and to refine the methods in
use. Central limit theorems for processes with long-
range dependence are rather different from the classical
type of theorems, so that many standard results in
statistics do not hold. The classical methods should be
investigated under this aspect, and methods that also
perform well under long-range dependence should be
developed. Also, in many applications spatial long-
range dependence as well as multivariate time series (or
multivariate spatial data) with long-range dependence
occur. The development of statistical methods for such
data will certainly be a rewarding task for future re-
search.
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Comment: Short-Range Consequences of

Long-Range Dependence

Arthur P. Dempster and Jing-Shiang Hwang

We welcome Jan Beran’s informative sketch of the
history of long-range dependence in many fields of
applied statistical science, and likewise his review of
the results of several decades of work by mathematical
statisticians, mainly on asymptotic sampling theory
of various robust as well as normality-based efficient
estimators.

Our experience has been with applications of the
models, most recently in Hwang (1992) and Dempster
and Hwang (1992), to simultaneous estimation of em-
ployment time series of 51 U.S. states (including DC)
given short input time series of » = 48 months. Since
our data are fixed, we have emphasized issues related
to modeling both time series of sampling error, which
a priori have no long-range dependence (ignoring biases
that cannot be assessed from our data), and underlying
true time series, which appear empirically to have long-
range dependence with parameter H close to 1 (but not
greater than 1 because nonstationarity of unemploy-
ment and employment rate series is a priori implau-
sible).

-For inference about the true series; we have empha-
sized Bayesian thinking, and associated computational
issues related to likelihoods of our fixed data, always
under assumptions of normality, which appear gener-
ally to be reasonable in our case study. Although our
theoretical approach to statistical inference is very
different from that of Beran, we agree with his opening
remarks about dangers from behaving as though tradi-

Arthur P Dempster is Professor and Jing-Shiang
Huwang is Postdoctoral Fellow at Department of Statis-
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tional ways of thinking about level and variability of
underlying short-memory stationary time series mod-
els continue to hold in the presence of stationary long-
memory models. We direct our brief comments to
exposing a few basic small n distinctions between in-
ferences appropriate in situations characterized by
short-range dependence and those with long-range de-
pendence. We begin by exhibiting artificially generated
pseudorandom “time series” that render in graphical
form the main points about estimating the mean and
variance of fractional Gaussian noise (fGn) data. We
have found it convenient to use alternative notation 72
and d in place of 6% and H, where d = 2H — 1 and 7 is
chosen so that the spectral density

flA)~72~¢

for A close to zero. On this scale, —1 <d <1 defines
the range for fGn, but 0 < d < 1 is the range of interest

for long-range phenomena, with d = 0 corresponding

to white noise and d = 1 marking the upper boundary
where the spectral density first becomes nonintegrable
at zero frequency. We use the same frequency domain
conventions as Beran, namely, that —7 <A<z and
that f(A) is scaled so that ¢ is its average value with
respect to uniform measure. Appropriate roles for the
alternative scale parameters 72 and ¢ are elaborated
below.

Figure 1 displays four series, each of length n = 64,
simulated from four different fGn models with d = 0.8,
0.9, 0.99, 0.999. Part of the reason for the near coinci-
dence of the curves apart from their levels is that all
four were generated from innovations based on the
same 64 normal pseudorandom values. In addition,
however, the similarity implies covariance structures
with remarkably similar forecast operators and resid-



