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Covariance Adjustment in Randomized
Experiments and Observational Studies
Paul R. Rosenbaum

Abstract. By slightly reframing the concept of covariance adjustment
in randomized experiments, a method of exact permutation inference is
derived that is entirely free of distributional assumptions and uses the
random assignment of treatments as the “reasoned basis for inference.”
This method of exact permutation inference may be used with many forms
of covariance adjustment, including robust regression and locally weighted
smoothers. The method is then generalized to observational studies where
treatments were not randomly assigned, so that sensitivity to hidden biases
must be examined. Adjustments using an instrumental variable are also
discussed. The methods are illustrated using data from two observational
studies.
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1. RANDOMIZATION INFERENCE AND
COVARIANCE ADJUSTMENT

1.1 Introduction: The Role of Randomization
in Inference

Calling randomization the “reasoned basis for infer-
ence” in experiments, Fisher (1935) showed that exact
inferences about the effects caused by treatments could
be based solely on distributions created by the physi-
cal act of randomization, without assumptions. Since
then, an extensive literature has shown that various
commonly used procedures, such as Wilcoxon’s (1945)
rank sum test, may be viewed as randomization tests
(e.g., Lehmann, 1999), and many other procedures,
such as analysis of variance, may be viewed as ap-
proximations to randomization tests (e.g., Kempthorne,
1952, Section 8). Much less has been written about ran-
domization inference for covariance adjustment—Cox
(1956) is one exception—in part because of computa-
tional difficulties that once seemed insurmountable, but
today look rather modest.
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In addition to providing a basis for exact, distribu-
tion-free inference in randomized experiments, the the-
ory of randomization inference is helpful in clarifying
the greater uncertainty that is present in observational
studies of treatment effects, where treatments are not
randomly assigned (Rosenbaum, 1995). It is possible
to quantify the added uncertainty in observational stud-
ies only if analyses of randomized experiments are ex-
plicit about the role that randomization plays in infer-
ence. It is, of course, possible to incorporate random-
ization in inference in other ways; for instance, Rubin
(1978) developed the important role that randomiza-
tion plays in Bayesian inference.

1.2 Outline

The current paper develops a theory of randomiza-
tion inference for covariance adjustment in completely
randomized experiments in Section 2, extends this to
observational studies free of hidden bias in Section 3
and then discusses covariance adjustment of matched
pairs in observational studies in Section 4. Sensitivity
to hidden bias is discussed in Section 5. The use of
instrumental variables is discussed in Section 6. More
complex forms of matching are discussed in Section 7.

In the case of simple rank tests, such as Wilcoxon’s
(1945) rank sum and signed rank tests, textbooks
often present parallel discussions of randomization
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inference and inferences derived from independent
and identically distributed sampling of an infinite
population. For instance, in his first four chapters,
Lehmann (1999) discussed randomization inference
and infinite population models in alternate chapters.
Also, Lehmann (1986, Section 5.10, Theorem 5.6,
page 231) showed that, to be distribution-free, a test
must effectively be a randomization test.

There is an extensive literature on nonparametric and
distribution-free methods for regression, but this lit-
erature typically uses population models rather than
randomization inference. Adichie (1978) tested non-
parametric hypotheses about a subset of linear re-
gression coefficients by applying conventional non-
parametric tests, such as the signed rank test, to
residuals from a reduced regression model. See also
Quade (1967), Koul (1970), Jureckova (1971), Jaeckel
(1972), Kraft and van Eeden (1972) and McKean and
Hettmansperger (1978); see Adichie (1984, Section 3)
and Hajek, Sidak and Sen (1999, Section 10.1.2) for
surveys of this literature. In this approach (1) it is as-
sumed that the regression model is “correct,” that is,
the model generated the observed data, (2) an estimate
of the reduced model coefficients is needed that has
convergence at rate

√
n, where n is the sample size,

(3) and only asymptotic results are obtained. The ran-
domization theory of covariance adjustment is differ-
ent. The reduced model is simply a fit, not a stochas-
tic model, and it need not be “correct” in any sense—
rather, it is hoped, but not needed, that the residuals
from the fit are more stable than the responses them-
selves. An exact distribution theory is available, and
neither the level of tests nor the coverage of confidence
intervals requires

√
n convergence, so for example, the

covariance adjustment may use a smoother with a dif-
ferent rate of convergence. Although large sample ap-
proximations are useful in the randomization theory,
the needed approximations are simply the usual, sim-
ple large sample approximations for the rank sum or
signed rank statistics.

The relationship between randomization and covari-
ance adjustment has been discussed from several per-
spectives. Cox (1956) discussed a form of weighted
randomization that led to estimates of mean squares as-
sociated with covariance adjustment that are unbiased
over the randomization distribution. Robinson (1973a)
showed that conventional least squares analysis of co-
variance may be approximately justified by random
assignment of treatments, rather than assuming lin-
ear models with random normal errors. Puri and Sen

(1969) derived the randomization distribution of non-
parametric analysis of covariance by conditioning in an
infinite population model; this setup then forms a nat-
ural framework for asymptotic approximations to the
randomization distribution. Box and Guttman (1966)
and Hooper (1989) combined random errors and ran-
dom assignment of treatments. Gabriel and Hall (1983)
performed randomization tests with a restricted set of
treatment assignments. Gail, Tan and Piantadosi (1988)
discussed the randomization distribution of a statistic
motivated by fitting a generalized linear model. Raz
(1990) applied randomization inference to regressions
using smoothers.

The use of randomization in experiments has its
critics; see, for instance, Harville (1975). He argued
that in laboratory experiments, where the units are
transistors or cell cultures, selection biases are likely
to be small and randomization should be replaced
by optimal design. Whether or not that is true of
laboratory experiments, in studies of human subjects in
medicine, public health, economics and public policy,
substantial selection biases are often plausible if not
likely, and preventing bias through random assignment
is a central concern.

1.3 An Example: DNA Damage from
an Occupational Hazard

This section introduces the first of two examples that
will be used to illustrate methods. Table 1 contains data
from an observational study by Zhao, Vodicka, Sram
and Hemminki (2000) of a specific alteration of human
DNA possibly caused by occupational exposure to the
chemical 1,3-butadiene, which is used to produce a
variety of polymers. At a chemical operation in the
Czech Republic, they compared 15 exposed males who
worked with 1,3-butadiene to 11 male controls who
worked in the heat production unit. Blood samples
yielded DNA from lymphocytes and the DNA adduct
N -1-(2,3,4-trihydroxybutyl)-adenine (N -1-THB-Ade)
was measured in adducts per 109 nucleotides. There are
three covariates: age, smoker and cigarettes per day.

The original study compared N -1-THB-Ade levels
among exposed and control workers using Wilcoxon’s
rank sum test, finding significantly higher levels among
exposed workers. In performing this analysis, the rank
sum statistic was compared with its usual null distri-
bution, which is the correct distribution if the treat-
ment or exposure has no effect and subjects are ran-
domly assigned to treatment or control. Of course, ran-
dom assignment was not used here, because it would
be unethical to expose workers to an environmental



288 P. R. ROSENBAUM

TABLE 1
Human DNA adducts for workers exposed to 1,3-butadiene

and controls

Group Age Smoking Cigarettes/day N -1-THB-Ade∗

Exposed 57 S 15 0.3
50 S 20 0.5
28 S 15 1.0
59 S 40 0.8
23 S 20 1.0
49 S 15 12.5
49 S 2 0.3
24 S 5 4.3
45 NS 0 1.5
48 NS 0 0.1
38 NS 0 0.3
44 NS 0 18.0
43 NS 0 25.0
44 NS 0 0.3
57 NS 0 1.3

Control 36 S 10 0.1
20 S 20 0.1
31 S 10 2.3
50 S 25 3.5
31 NS 0 0.1
54 NS 0 0.1
54 NS 0 1.8
55 NS 0 0.5
44 NS 0 0.1
49 NS 0 0.2
51 NS 0 0.1

Source: Zhao et al. (2000).
∗ N-1-(2,3,4-trihydroxybutyl)-adenine in adducts per 109

nucleotides.

hazard as part of a controlled experiment. Moreover,
1,3-butadiene is contained in cigarette smoke, and
more than half of the exposed workers were smokers,
while fewer than half of the controls were smokers.
Notice, for instance, that the two highest N -1-THB-
Ade levels among controls were found among the four
smokers. Three alternative strategies for adjusting for
the covariates will be considered. As it turns out, the
original analysis by Zhao et al. (2000) holds up well,
agreeing with the adjusted analyses, so the three ob-
served covariates cannot explain the higher levels of
N -1-THB-Ade among exposed workers.

Common covariance-adjustment models involve ad-
ditive treatment effects, but an additive effect will not
adequately describe the N -1-THB-Ade levels in Ta-
ble 1. In the current paper, following conventional
practice with extremely skewed data, the
N -1-THB-Ade levels will be transformed by taking
logs, so that additive models on the log scale be-
come multiplicative models on the original scale. Here,

logs are quite successful in reducing asymmetry and,
of course, they do not change rank tests of no ef-
fect. Nonetheless, logs shift the focus of attention in
a way that is, perhaps, undesirable. Specifically, logs
amplify the small, perhaps unimportant, variations in
low N -1-THB-Ade levels and they subdue the large,
perhaps important, variations in extremely high N -1-
THB-Ade levels. An alternative method of analysis for
data of this sort, without transformations, is discussed
in Rosenbaum (1999a).

The second example, discussed in Section 4.2, will
be used to illustrate additional techniques, including
instrumental variables and sensitivity analyses for un-
observed covariates.

2. COVARIANCE ADJUSTMENT IN
RANDOMIZED EXPERIMENTS

2.1 Treatments, Responses under Alternative
Treatments, Random Assignment

There are n subjects, j = 1, . . . , n, and subject j has
two potential responses: the response rTj that would
be observed if j were assigned to treatment, and the
response rCj that would be observed if j were as-
signed to control (Neyman, 1923; Rubin, 1974, 1977).
The effect caused by giving the treatment in place of
the control is a comparison of rTj and rCj such as
rTj − rCj , but such an effect can never be calculated
from observed data, because subject j receives either
treatment, displaying response rTj , or control, display-
ing response rCj , but rTj and rCj are never jointly ob-
served for the same subject j . In addition, subject j
has a vector xj of covariates describing j prior to treat-
ment.

Of the n subjects,m are selected at random to receive
the treatment; the remaining n − m are assigned to
control. That is, each of the

(n
m

)
possible treatment

assignments has the same probability, namely
(n
m

)−1.
Write Zj = 1 if subject j receives the treatment
and Zj = 0 if subject j receives the control, so that∑n

j=1 Zj = m. Notice that rTj is observed if Zj = 1
and rCj is observed if Zj = 0, so the observed response
of subject j is Rj =Zj rTj + (1 −Zj )rCj .

In randomization inference (Fisher, 1935), the only
stochastic quantities are those that involve the random
assignment of treatments, Zj , so that randomization
creates all of the distributions used for inference, and
randomization forms “the reasoned basis for inference”
in Fisher’s words. Specifically, the potential responses
and covariates, (rTj , rCj ,xj ), j = 1, . . . , n, are fixed
features of this finite population of n subjects. In con-
trast, the observed response Rj of subject j changes
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with the random treatment assignment Zj , so Rj is
not fixed. In this view of inference in experiments, the
exact inference is the randomization inference derived
from the randomization distribution of statistical quan-
tities. In this view, parametric distributions, such as
the Normal, the t-distribution and the F -distribution,
are never models for data; rather, they are approxi-
mations to randomization distributions—they are good
approximations to the extent that they reproduce ran-
domization inferences with reduced computational ef-
fort (e.g., Welch, 1937; Wilk, 1955; Cox, 1956, 1958;
Kempthorne, 1955; Robinson, 1973a, b).

The treatment effect is additive if there is a con-
stant τ , such that rTj − rCj = τ for j = 1, . . . , n; in this
case, control responses, rCj , vary from one subject j to
another, but for every subject, the treatment raises the
response by the same amount τ . Because rTj and rCj
are never jointly observed, in terms of observable quan-
tities, the additive model asserts that the distribution
of treated responses rTj is shifted upward by τ when
compared to the distribution of control responses rCj ,
and the magnitude of the shift does not vary with the
covariates, a common nonparametric model (Lehmann,
1999). Analysis of covariance often assumes an addi-
tive treatment effect and often takes inference about τ
as the goal. Nonadditive effects are possible and conse-
quential in some contexts; see Section 6 for one nonad-
ditive model and see Rosenbaum (1999a) for another.

Write Z =(Z1 . . . Zn)
T , R = (R1 . . . Rn)

T , rC =
(rC1 . . . rCn)

T and so forth, and write X for the matrix
with n rows xTj , j = 1, . . . , n. Recall that Z and R are
observed, but rC is not. Notice that if the treatment
effect is additive, then the vector of adjusted responses
R − τZ = rC is fixed, not varying with the random
treatment assignment Z.

2.2 Randomization Inference Ignoring
the Covariate

Randomization inference about, say, an additive
treatment effect τ , uses the randomization distribution
of a statistic t (Z,R − τ,Z) = t (Z, rC). Notice that
if τ were known, the distribution of t (Z,R − τ Z) =
t (Z, rC) would be known since rC is fixed and Z has a
known distribution created by the randomization.

For instance, a familiar statistic, t (Z,R − τZ), is
Wilcoxon’s rank sum statistic in which the adjusted re-
sponses R − τZ are ranked from 1 to n, with average
ranks for ties, and the ranks of the treated (Zi = 1) sub-
jects are summed to yield the value of the rank sum sta-
tistic t (Z,R − τZ). The null hypothesis H0 : τ = τ0 is
tested by computing t (Z,R−τ0 Z) and asking whether

it falls in the tail of the randomization distribution,
which for the Wilcoxon’s rank sum without ties is
the distribution of the sum of m numbers randomly
selected from {1, . . . , n}. Write qj for the rank of
Rj − τ0Zj , so that t (Z,R − τ0 Z)= qT Z for the rank
sum statistic, where q = (q1 . . . qn)

T . Under the null
hypothesis, H0 : τ = τ0, Rj − τ0Zj = rCj and q is
fixed. A two-sided 95% confidence interval for τ is
found by testing every value τ0 and retaining in the
interval the values not rejected by such a two-sided
0.05-level test (Lehmann, 1963; Moses, 1965). The
Hodges–Lehmann (1963) point estimate of τ is found
by equating the statistic t (Z,R − τZ) to its expec-
tation under the randomization distribution, namely
m(n+ 1)/2 for Wilcoxon’s rank sum, and solving
for τ , with small allowance for the discreteness of
the rank sum as a function of τ . For the rank sum,
the Hodges–Lehmann estimate turns out to equal the
median of all pairwise differences between the m ob-
served treated responses and the n−m observed con-
trol responses. See Lehmann (1998) for detailed dis-
cussion of these standard methods.

In the example in Section 1.3, the Wilcoxon’s rank
sum statistic for testing no effect is 242.5, allowing
for ties. With the given pattern of ties, the null ran-
domization distribution of the rank sum has expecta-
tion 202.5 and variance 362.62, yielding the standard-
ized deviate 242.5−202.5√

362.62
= 2.10, so the null hypothesis

of no treatment effect would not be plausible if these
data had been observed in a randomized experiment.
Testing hypotheses H0 : τ = τ0 on the log scale in a
one-sided 0.05-level test leads to a one-sided 95% con-
fidence interval of τ ≥ 0.41 or a multiplicative effect of
eτ ≥ 1.51 or a 51% increase. This confidence interval
would be appropriate in a randomized experiment.

As is well known, appropriate randomization infer-
ences about τ may be drawn ignoring the covariate.
However, adjustment for chance imbalances in the co-
variate using covariance adjustment may increase the
efficiency of the inference.

2.3 Using Covariates in Fitting Potential
Control Responses

Although rC is not observed, imagine for a moment
using some algorithm that fits rC using X, yielding a
vector of residuals e. For instance, one might fit rC us-
ing X by least squares linear regression, by robust lin-
ear regression (Huber, 1981), by rank linear regression
(Jaeckel, 1972) or by using a smoother such as Lowess
(Cleveland, 1979). The specific fitting algorithm used
is of practical importance, but it does not affect
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the logical structure of the argument presented here.
Write ε̃(·) for the function that creates residuals from
rC and X, so ε̃(rC)= e, where for notational simplicity
the dependence on X is not explicit in the notation.

Notice that there is no stochastic model here, just
an algorithmic fit, because in randomization inference,
rC and X are fixed quantities that do not vary with
the random treatment assignment Z. Hence, ε̃(rC)= e
is a fixed vector computed from the fixed quantities
rC and X, not a random variable or a by-product of
estimation. If the randomization had picked a different
treatment assignment Z, yielding different observed
responses R, the quantity ε̃(rC) = e is not changed.
Notice also that ε̃(rC)= e cannot be computed because
rC is not observed.

Viewed as a batch of n fixed numbers, the residuals e
may be much more stable and less dispersed than
the responses under control rC , because much of the
variation in rC may be captured by the covariates X.
Although randomization inference using the responses
themselves and ignoring the covariates yields tests
with the correct level and confidence intervals with
the correct coverage rate, more precise inference might
have been possible if the variation in fitted values had
been removed. In other words, one would like to use
the residuals e in place of the control responses rC in
performing the randomization test, believing e to be
less dispersed; however, neither e nor rC is observed.

2.4 Randomization Inference with
Covariance Adjustment

Suppose that we wish to test the hypothesis
H0 : τ = τ0 using an exact, randomization inference,
but adjusting by covariance adjustment for X. Given
what has been said, the procedure is straightforward.
Calculate the adjusted responses R − τ0Z, which equal
rC when the null hypothesis is true. Then compute
ε̃(R − τ0Z) = e0, say, which equals ε̃(rC) = e when
the null hypothesis is true. Under the null hypothesis,
H0 : τ = τ0, the residuals e0 = e are both fixed, not
varying with the treatment assignment Z and known.
From the residuals, calculate a test statistic t (Z, e0) and
test the null hypothesis by comparing the test statistic
to its randomization distribution.

For instance, one might test H0 : τ = τ0 by comput-
ing the adjusted responses R − τ0Z, fitting the linear
model to these adjusted responses, say, using a fit-
ting algorithm yielding an m-estimate, then finding the
residuals e0 and applying Wilcoxon’s rank sum statis-
tic t (Z, e0) to these residuals, so t (Z, e0) is the sum
of the ranks of the residuals for treated subjects. If the

null hypothesis is true and if the residuals e0 are untied,
the exact randomization distribution of t (Z, e0) is sim-
ply the distribution of the sum of m numbers randomly
selected from {1, . . . , n}. With ties, one uses average
ranks, obtaining a slightly more complex exact distrib-
ution.

Gail, Tan and Piantadosi (1988) took a similar ap-
proach to testing the hypothesis of no effect, by fitting
a generalized linear model and using the randomiza-
tion distribution of the associated test statistic. Resid-
uals ε̃(R − τ0 Z) need not be obtained from a linear
fit. Instead, the residuals might result from a smoother,
such as Cleveland’s (1979) Lowess. See Raz (1990)
for discussion of randomization tests of no effect after
smoothing.

If one uses linear least squares with a constant term
to obtain residuals and if the test statistic is simply
the sum of the residuals t (Z, e0) = ZT e0, then the
Hodges–Lehmann estimate is the usual least squares
estimate of a covariance adjusted difference between
groups. To see this, write H = X(XT X)−1X, so that
e0 = (I − H)(R − τ0Z), which equals e = (I − H)rC
if the hypothesis H0 : τ = τ0 is true. If X contains a
constant term, the mean of the fixed residuals, 1

n
eT 1,

is zero. Hence, in a randomized experiment, the ex-
pectation of ZT e is E(eT Z)= eT E(Z)= eT (m

n
1)= 0.

The Hodges–Lehmann estimate τ̂ , equates t (Z, e0) =
ZT e0 = ZT (I − H)(R − τ0Z) to its expectation at the
true τ (here 0) and solves 0 = ZT (I − H)(R − τ̂ Z)
for τ̂ , which is τ̂ = (ZT (I − H)R)/(ZT (I − H)Z),
which is the usual least squares estimate (see Seber,
1977, Section 3.7).

In the examples in this paper, residuals are obtained
from linear regressions fitted using Huber’s (1981)
m-estimates with the weight function he proposed, as
implemented in S-Plus; see Venables and Ripley [1994,
page 215, glm(·, family = robust)]. Consider again
the example of Section 1.3. To test the null hypothe-
sis of no effect, the logs of the N -1-THB-Ade levels
are regressed on age, a binary smoking variable and
cigarettes per day, and the rank sum test is applied to
the residuals, yielding a rank sum of 241 with no ties.
Because there are no ties, standard formulas for mo-
ments and the tabulated exact distribution may be used.
The null expectation of the rank sum is 202.5 and the
null variance is 371.25, yielding a standardized devi-
ate of 1.998. If this were a randomized experiment, the
null hypothesis would remain implausible even after
covariance adjustment for the three covariates. The hy-
pothesis H0 : τ = τ0 is tested by subtracting τ0 from
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the logs of the N -1-THB-Ade levels for treated sub-
jects, refitting the model with these adjusted responses
and applying the rank sum test to the residuals. Testing
hypotheses H0 : τ = τ0 in this way leads to a one-sided
95% confidence interval of τ ≥ 0.29 or a multiplica-
tive effect of eτ ≥ 1.34 or a 34% increase. Again, these
calculations would be appropriate in a randomized ex-
periment in which every subject has the same chance of
receiving the treatment. What can be done if the chance
of receiving the treatment varies with covariates?

3. COVARIANCE ADJUSTMENT IN
OBSERVATIONAL STUDIES WITH

AN UNKNOWN PROPENSITY SCORE

3.1 Unknown Assignment Probabilities
in Observational Studies

An observational study resembles an experiment
to the extent that the goal is to estimate the effects
caused by a treatment by comparing treated and con-
trol units. However, in an observational study, the units
are not randomly assigned to treatment groups, and the
groups may not have been comparable prior to treat-
ment (Cochran, 1965). Visible, recorded pretreatment
differences are called overt bias and are removed by
adjustments, such as matching, perhaps in combination
with covariance adjustment. Unobserved pretreatment
differences are called hidden bias and must be studied
by other means, such as sensitivity analysis. The cur-
rent section and Section 4 discuss adjustments for overt
biases assuming hidden biases are absent, whereas Sec-
tion 5 discusses sensitivity analysis for hidden biases.

In an observational study, unlike an experiment,
the treatment Zj is not randomly assigned (Cochran,
1965), so that the πj = Pr(Zj = 1) may vary with j

and are unknown. The argument in Section 2 is
inapplicable in this case. Suppose treatments were
assigned independently with unknown πj , so that
Pr(Z = z) =∏n

j=1 π
zj
j (1 − πj)

1−zj . If one knew that
the πj were equal, then the conditional distribution
Pr(Z = z|∑Zj = m) would equal the randomization
distribution in Section 2.

The study is said to be free of hidden bias if
the πj , though unknown, are known to be functions
of the observed covariates xj alone. If instead the
πj are functions of both the observed covariates xj
and also relevant unobserved covariates uj , then there
is hidden bias due to uj . When there is no hidden
bias, adjustment for observed covariates xj permits
inference about treatment effects, but hidden bias must
be addressed in other ways; see Section 5.

3.2 Conditional Permutation Tests

This section briefly reviews a method discussed in
Rosenbaum (1984), where formal results, algorithms
and examples may be found; see also Robins, Mark
and Newey (1992) and Robins and Ritov (1997) for re-
lated developments. Suppose the study is free of hidden
bias and, moreover, log(πj /(1 − πj )) = λT xj , where
the first coordinate of xj is always 1, so that the first
coordinate of λ is a constant term. Then XT Z is suffi-
cient for λ (Cox, 1970) and the conditional distribution
Pr(Z = z|XT Z) is a known distribution, free of the un-
known parameter λ, and it gives a known exact null dis-
tribution for a test statistic t (Z,R − τ0Z) = t (Z, rC).
In a sense, this test performs a version of covariance
adjustment, because on the conditional sample space
with XT Z fixed, the least squares adjusted estimate
τ̂ = (ZT (I − H)R)/(ZT (I − H)Z) is a linear function
of the unadjusted total in the treated group ZT R.

When the test statistic has the form t (Z, rC)= qT Z,
where q is a function of rC , the conditional permuta-
tion test, which rejects when qT Z is in the upper tail of
the distribution obtained from Pr(Z = z|XT Z), is the
same as the exact, uniformly most powerful unbiased
test of H0 : θ = 0 in the model log(πj /(1 − πj )) =
λT xj + θqj . Of course, θ = 0 when the hypothesis is
true (H0 : τ = τ0), because log(πj /(1 − πj)) = λT xj
and R − τ0Z = rC is constant, not varying with Z.
However, if the hypothesis is false (τ �= τ0), then
R − τ0Z = rC + (τ − τ0)Z and the adjusted responses
R − τ0Z will help to predict Z. When the sample size
is moderately large, the uniformly most powerful un-
biased test of H0 : θ = 0 may be replaced by one of
the several more familiar and computationally simpler
tests associated with maximum likelihood estimation
of the logit model log(πj /(1 − πj)) = λT xj + θqj .
The large sample procedures have an advantage com-
pared to the most powerful unbiased test: they are less
affected by the degree of discreteness of X.

Consider, again, the example in Section 1.3, and
assume in this section that the study is free of hidden
bias and the propensity score follows a logit model,
log(πj /(1 − πj ))= λT xj . The hypothesis of no effect,
H0 : τ = 0, is tested by Wilcoxon’s rank sum using a
logit regression of exposure to the treatment Zj , on
a constant term, the three covariates in xj and the
ranks qj of the N -1-THB-Ade levels. The ratio of
the coefficient of qj to its approximate standard error
is 1.89, leading to rejection of the null hypothesis
in a one-sided 0.05-level test. In other words, the
ranks of the N -1-THB-Ade levels predict exposure
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to treatment Zj adjusting for covariates, so it is not
plausible that the treatment has no effect. Similarly,
the hypothesis H0 : τ = τ0 is tested by subtracting τ0
from the responses of treated subjects, ranking the
adjusted responses R − τ0Z and testing H0 : θ = 0
in the logit regression log(πj/(1 − πj)) = λT xj +
θqj . Repeating this for each τ0 gives a one-sided,
95% confidence interval of τ ≥ 0.41 or eτ ≥ 1.51 or
a 51% increase. This turns out to be nearly the same as
the unadjusted estimate in Section 2.2. However, unlike
the test performed in Section 2.2, the test performed
in this section did not assume the πj ’s are known and
constant, not varying with xj .

3.3 Conditional Permutation Tests with
Covariance Adjustment

Sections 2.4 and 3.2 offer two different methods of
incorporating covariance adjustment into a random-
ization test such as Wilcoxon’s rank sum test. Ei-
ther may be used in a randomized experiment, but
only the method of Section 3.2 is appropriate in an
observational study free of hidden bias. The meth-
ods may be combined. Assuming the null hypothe-
sis H0 : τ = τ0 for the purpose of testing it, the fixed
residuals ε̃(R − τ0Z)= ε̃(rC) are computed, and from
them, the ranks q, which are used in the logit model
in Section 3.2 to test H0 : θ = 0, are computed. Un-
der the assumptions in Section 3.2, the ranks q do not
help to predict Z when H0 : τ = τ0 is true, but will
vary systematically with Z when the hypothesis is false
(τ �= τ0), so that R − τ0Z = rC + (τ − τ0)Z.

In the example in Section 1.3, the hypothesis of no
effect, H0 : τ = 0, yields a deviate of 1.92 for testing
H0 : θ = 0 in the logit regression, so no effect is not
plausible. Testing hypotheses of the form H0 : τ = τ0
in this way yields a 95% one-sided confidence interval
of τ ≥ 0.29 or eτ ≥ 1.34 or at least a 34% increase,
similar to Section 2.4. Although the four tests in
Sections 2.2, 2.4 and 3.2 and the current section,
produced similar results in this example, and they
formed two pairs of tests with nearly identical results,
this is a feature of the data in Section 1.3 and is not to
be expected in general.

4. MATCHED OBSERVATIONAL STUDIES
WITHOUT HIDDEN BIASES

4.1 Matching and Covariance Adjustment

In matching, treated and control subjects are paired
so that they are similar before treatment on some as-
pects of observed covariates. One strategy for matching

with desirable properties is to match on the propensity
score, that is, the conditional probability of exposure
to treatment given observed covariates; see Rosenbaum
and Rubin (1983) for a discussion. This sort of match-
ing will be combined with covariance adjustment in the
current section, assuming the study is free of hidden
bias.

In simulations, Rubin (1973, 1979) showed that co-
variance adjustment of matched pair differences is
more robust to model misspecification than covariance
adjustment alone and has greater statistical efficiency
than matching alone. In a practical example, Dehejia
and Wahba (1999) demonstrated the hazards of rely-
ing on models alone, without matching or stratification.
Methods for constructing matched samples have been
discussed by Rosenbaum and Rubin (1985), Rosen-
baum (1989, 1991a), Gu and Rosenbaum (1993), Ming
and Rosenbaum (2000) and Li, Propert and Rosen-
baum (2001). Implementation in SAS has been dis-
cussed by Bergstralh, Kosanke and Jacobsen (1996)
and Ming and Rosenbaum (2001). Matching also facil-
itates the incorporation of thick description into quan-
titative studies (Rosenbaum and Silber, 2001).

4.2 An Example: Effects of Increasing
the Minimum Wage

Economic theory predicts that raising the minimum
wage will depress employment. Card and Krueger
(1994, 1995) examined this prediction when New Jer-
sey raised its minimum wage by about 20% from $4.25
to $5.05 an hour on 1 April 1992. They looked at the
change in the number of full time equivalent employees
from before the wage increase to after the increase at
fast food restaurants such as Burger King and Wendy’s,
comparing New Jersey to adjacent eastern Pennsylva-
nia, where the minimum wage was not increased. Al-
though starting wages increased substantially in New
Jersey, when compared to Pennsylvania, there was a
negligible change in the number of employees.

From their data, 66 pairs of restaurants, one from
New Jersey, the other from eastern Pennsylvania, were
examined in Rosenbaum (1999b, Table 2). The pairs
were matched for chain and starting wage before the
increase. For example, the first pair consisted of two
Burger Kings, one in New Jersey, the other in eastern
Pennsylvania, both paying a starting wage of $4.25
an hour before the increase. However, the pairs were
not matched for two other, less important covariates,
namely whether the store was company owned and the
number of hours the store was open on a weekday
before the wage increase. As it turns out, in the first
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pair, neither Burger King was company owned and
the New Jersey restaurant was open 17 hours while
the Pennsylvania restaurant was open 16.5 hours. As
an illustration of the methods of the current paper,
the 66 pairs will be reanalyzed, making additional
covariance adjustments for company ownership and
hours open. As seen in the boxplots in Rosenbaum
(1999b, Figure 1), the data contain several outliers—
perhaps due to survey respondents who misunderstood
questions needed to compute full time equivalent
employment—and so robust or nonparametric methods
are needed here. Aspects of this study are discussed in
Rosenbaum (1999c). The data in Table 1 are being used
to illustrate methodology, not to reach conclusions
about the effects of the minimum wage, which would
require consideration of issues beyond the scope of this
paper.

4.3 Notation for an Observational Study with
Matched Pairs

In the observational study, there are I matched
pairs, with one treated subject and one control in
pair i, i = 1, . . . , I . In the example, I = 66. Quantities
defined in Section 2 for a completely randomized
experiment are essentially unchanged except that they
now have a second subscript i indicating the pair.
For instance, the j th subject in matched set i has
covariates xij , with no coordinate for a constant term,
and would exhibit response rCij if assigned to control
or response rT ij if assigned to treatment, the treatment
effect being additive if rT ij− rCij = τ for all i, j .
In the example, xij is two-dimensional: it records a
binary variable indicating company ownership (1 for
company owned; 0 otherwise) and number of hours
open on a weekday before the wage increase. In the
example, for j th restaurant in the ith pair, the bivariate
potential responses (rT ij , rCij ) record the after-minus-
before change in the number of full time equivalent
employees if the minimum wage were increased to
$5.05, recorded in rT ij , and if the minimum wage
were not increased, recorded in rCij , where, of course,
rT ij is observed for New Jersey restaurants and rCij is
observed for Pennsylvania restaurants. Also, Zij = 1 if
the j th subject in matched set i received the treatment
or Zij = 0 if this subject received the control, with∑2

j=1Zij = 1 for each i. In the example, Zij = 1 for
a New Jersey restaurant and Zij = 0 for a restaurant in
eastern Pennsylvania.

Write Vi = Zi1 − Zi2, so Vi = 1 if the first subject
in the pair is the treated subject and Vi = −1 if the
second subject is the treated subject. Write yCi =

rCi1 − rCi2 and di = xi1 − xi2, both of which are fixed,
not varying with the treatment assignment. Under the
model of an additive treatment effect, the difference in
observed responses, Ri1 − Ri2 = Yi say, is a random
variable which equals (rCi1 + τZi1)− (rCi2 + τZi2)=
yCi + τVi , whereas Yi − τVi = yCi is fixed. For the
example, Table 2 records the observable quantities
Ri1 − Ri2, di = xi1 − xi2, where for convenient
display the restaurants are renumbered, j = 1,2, so
the New Jersey restaurant is always first. Write Y =
(Y1 . . . YI )

T , yC = (yC1 . . . yCI )
T , V = (V1 . . . VI )

T

and D for the matrix with I rows consisting of the di ,
i = 1, . . . , I .

TABLE 2
Employment and wages from Card and Krueger: 66 Pairs of

New Jersey and Pennsylvania restaurants

Company Hours Wage
Employees owned open change

Pair Chain Yi di1 di2 Li Sheets

1 BK 12.50 0 0.5 0.65 (230,521)
2 BK 13.00 0 0.0 0.80 (258,45)
3 BK −5.00 0 1.0 0.87 (168,48)
4 BK 20.50 0 −0.5 0.80 (267,41)
5 BK −2.25 1 1.5 0.80 (91,435)
6 BK 3.50 0 −1.5 0.30 (105,476)
7 BK −17.50 0 −2.0 0.30 (340,501)
8 BK 5.00 0 0.5 −1.20 (385,477)
9 BK 9.50 0 0.5 0.80 (66,40)

10 BK 3.00 0 0.5 0.80 (38,37)
11 BK 5.50 0 3.0 0.80 (200,430)
12 BK −1.00 0 −1.0 0.80 (68,471)
13 BK −0.50 0 2.5 0.15 (202,472)
14 BK −12.50 0 −1.0 0.80 (418,434)
15 BK 9.50 0 −1.0 0.78 (249,522)
16 BK 16.00 0 −0.5 0.80 (84,42)
17 BK 3.00 0 1.0 0.55 (64,475)
18 BK 1.50 0 −3.0 0.70 (70,478)
19 BK 24.75 1 1.5 −0.05 (213,432)
20 BK −19.50 0 −2.5 0.50 (2,450)
21 BK −18.25 0 −4.0 0.55 (172,503)
22 BK 15.00 0 −1.0 0.55 (71,448)
23 BK 8.50 0 −1.0 0.75 (114,473)
24 BK −17.50 0 −3.0 0.05 (156,449)
25 BK 4.00 1 3.5 1.00 (89,474)
26 BK −12.75 1 −9.0 0.05 (298,451)
27 BK −4.50 0 −2.0 0.75 (371,469)
28 BK 4.50 0 −3.0 0.05 (409,468)
29 BK 18.75 0 −3.0 0.18 (152,445)
30 BK 3.00 0 −5.5 0.30 (85,470)
31 KFC −1.50 1 2.0 0.80 (278,438)
32 KFC −2.50 0 −2.5 0.80 (216,51)
33 KFC −7.00 −1 0.5 0.05 (185,454)
34 KFC −4.00 −1 0.0 0.55 (158,485)
35 KFC −0.50 0 −1.5 0.50 (159,50)
36 KFC 2.50 −1 2.0 0.80 (318,407)
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TABLE 2
Continued

Company Hours Wage
Employees owned open change

Pair Chain Yi di1 di2 Li Sheets

37 KFC 5.50 0 1.5 0.05 (299,458)
38 KFC −6.50 −1 0.0 0.30 (30,483)
39 KFC 3.50 −1 1.0 0.05 (31,455)
40 KFC −3.25 0 0.0 −0.20 (274,481)
41 RR 8.25 0 0.0 0.70 (351,459)
42 RR 0.50 −1 −1.0 0.55 (366,492)
43 RR −20.00 1 −1.0 0.80 (325,514)
44 RR 6.50 −1 −1.5 0.30 (101,511)
45 RR 19.25 0 1.0 0.14 (225,516)
46 RR 3.50 0 −9.0 0.80 (6,509)
47 RR −2.00 0 0.0 0.35 (34,487)
48 RR −5.00 0 4.5 0.30 (78,462)
49 RR −3.00 1 2.0 0.80 (349,489)
50 RR −6.00 0 3.0 0.30 (164,515)
51 RR 3.25 0 0.5 0.05 (163,490)
52 RR 14.00 0 1.0 0.30 (161,496)
53 RR −9.50 0 2.0 0.05 (33,495)
54 RR 10.00 1 0.0 0.30 (190,488)
55 RR 19.00 −1 3.0 0.15 (77,493)
56 WE 0.50 0 1.0 1.05 (226,59)
57 WE 4.00 0 0.0 0.70 (195,443)
58 WE −0.50 0 0.0 0.80 (310,60)
59 WE −6.50 0 3.0 0.30 (247,444)
60 WE −44.00 0 0.0 0.80 (142,441)
61 WE −16.00 −1 −0.5 0.60 (104,57)
62 WE 6.50 −1 4.0 0.55 (248,58)
63 WE −6.25 −1 −0.5 0.05 (166,498)
64 WE 13.25 −1 1.5 0.05 (82,499)
65 WE 12.50 0 −0.5 0.25 (406,56)
66 WE 4.00 −1 1.0 0.30 (36,61)

Notes: The restaurants are denoted BK, Burger King; KFC, Ken-
tucky Fried Chicken; RR, Roy Rogers; WE, Wendys. Data are from
Card and Krueger (1995, page 18). Sheet Numbers are Card and
Krueger’s restaurant identification numbers. More detail for these
pairs is given in Table 1 of Rosenbaum (1999b).

In close parallel with Section 2.3, consider a fit to
the potential control responses rCij , with a pair effect
plus a linear term in xij , say αi + βxij . Following
Rubin (1973, 1979), the pair effect αi is eliminated
by differencing the two responses in pair i. Then the
difference between the two control responses in pair i
is yCi = rCi1 − rCi2, which is fitted by (αi + βxi1)−
(αi + βxi2)= βdi with no constant term. Differencing
within pairs is effectively a special case of alignment
within blocks, as discussed by Hodges and Lehmann
(1962), and the general case of alignment will be
discussed in Section 7.

Write # for the set of possible values of Z =
(z11 z12 . . . zI2)

T , that is, the set containing the 2I vec-

tors Z = (z11 z12 . . . zI2)
T of dimension 2I with zij ∈

{0,1}, and
∑2

j=1 zij = 1 for all i. Each such Z corre-
sponds with a unique V in an obvious way.

4.4 Treatment Assignment without Hidden Biases
and with Overt Biases Balanced by Matching

For observational studies, two situations are consid-
ered: one here and the other in Section 5. In a random-
ized, matched study, a treatment assignment would be
picked at random from # so each z ∈ # would have
probability 2−I . Suppose instead that treatments were
independently assigned with unknown probabilities πij
that are functions of the observed covariates xij and
then the pairs are formed based on the observed co-
variates such that Zi1 + Zi2 = 1, but πi1 = πi2 for
i = 1, . . . , I . For instance, if πij is a function of xij ,
then one way to produce such pairs is to match exactly
for xij , in which case the pairs are homogeneous in xij
and covariance adjustment is superfluous. However, if
πij is a function of xij , then πij is the propensity score,
and another way to produce such pairs is to match on
the propensity scores πij , in which case the pairs will
typically be heterogeneous in xij , and further covari-
ance adjustments for chance imbalances in xij may be
useful.

If πi1 = πi2 for i = 1, . . . , I , then the conditional
distribution of Z given Zi1 + Zi2 = 1, i = 1, . . . , I ,
equals the randomization distribution; that is, it is uni-
form on #, with each z ∈ # having probability 2−I
(see Rosenbaum, 1984, 1995, Section 3, for a discus-
sion and the elementary proof). Notice in particular
that given Zi1 + Zi2 = 1, the chance that Zi1 = 1
is πi1/(πi1 + πi2), which is 1

2 if πi1 = πi2. In other
words, if it suffices to adjust for the observed covari-
ates xij and the matching controls the probability of
treatment given xij , even if the pairs are not matched
for xij itself, then the matching creates the random-
ization distribution. This situation is assumed in Sec-
tion 4. In Section 5, πij will be assumed to be a func-
tion of xij and an unobserved covariate uij , so πij is
not the propensity score given xij , and matching on xij
alone or functions of xij such as the propensity score
will not typically balance uij .

4.5 Matched Pairs and the Signed Rank Test

To test the hypothesis H0 : τ = τ0, use the hypothe-
sized τ0 to calculate the adjusted response differences
Y − τ0V, which equal the fixed vector of response dif-
ferences under control yC if the null hypothesis is true.
Use some form of regression with no constant term to
fit the adjusted response differences Y − τ0V using D,
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obtaining residuals e0 = ε(Y − τ0V) = (e01 . . . e0I )
T ,

which under the null hypothesis equal ε(yC), a fixed
quantity not varying with V. Let qi be the rank of |ei|
with average ranks for ties, let si1 = 1 if ei > 0, si1 = 0
otherwise and let si2 = 1 if ei < 0, si2 = 0 otherwise.
Wilcoxon’s signed rank statistic is the sum of the ranks
of the absolute differences in the residuals for pairs in
which the treated subject had the larger residual, that
is, t (Z, e0)=∑I

i=1
∑2

j=1Zij sij qi , where sij and qi are
fixed constants under the null hypothesis.

Because Pr(Z = z)= 2−I for each z ∈ #, it follows
under the null hypothesis H0 : τ = τ0, that the signed
rank statistic t (Z, e0) has as its exact null distribution
the usual distribution of Wilcoxon’s signed rank sta-
tistic. In particular, if there are neither ties nor zero
residuals, then its null expectation and variance are
E{t (Z, e0)} = I (I+1)

4 and var{t (Z, e0)} = I (I+1)(2I+1)
24 .

A confidence interval for τ is obtained by inverting
the test, that is, by testing each hypothesis H0 : τ = τ0
and retaining those τ0’s that are not rejected (Lehmann,
1986, Section 3.5, Theorem 3.4, page 90). A point es-
timate τ̂ is obtained by the general principle suggested
by Hodges and Lehmann (1963): equate the statistic
to its null expectation t (Z, e0) = t{Z, ε(Y − τ0V)} =
I (I+1)

4 and solve for the point estimate τ̂ , with slight
allowance for the discreteness of a rank statistic.

A minor technical point deserves mention. The
argument just given is correct as it stands. However,
the order of the two subjects, j = 1 and j = 2, in
pair i is arbitrary and therefore one might prefer that
this order did not affect inferences about τ . For many
fitting procedures ε(Y − τ0V), the issue does not arise,
because t{Z, ε(Y − τ0V)} and its null distribution are
unchanged by changing the order within a pair. For
instance, this is true if the regression is fitted using
common m-estimates and the test statistic is the signed
rank statistic. [To show this, suppose ε(Y − τ0V) is
the vector of residuals obtained by m-estimation in
which the adjusted responses Y − τ0V are regressed
on D with an odd ψ(·) function, ψ(a) = −ψ(−a)
for all a, so one solves for β in the system of
equations 0 = ∑

Diψ(Yi − τ0Vi − DT
i β̂); see Huber

(1981, Section 7.3). Now reversing the order in pair i
changes Di to −Di , changes Yi − τ0Vi − DT

i β to
−(Yi−τ0Vi−DT

i β), and, because,ψ(·) is odd,ψ(Yi−
τ0Vi − DT

i β) changes to −ψ(Yi − τ0Vi − DT
i β), so

Di ψ(Yi − τ0Vi −DT
i β) is unchanged, the solution β̂ is

unchanged and the residual Y − τ0V − DT
i β̂ becomes

−(Y − τ0V − DT
i β̂), qi is unchanged, si1 and si2 are

interchanged, Zi1 and Zi2 are interchanged and the

signed rank statistic t (Z, e0) = ∑I
i=1

∑2
j=1Zij sij qi

is unchanged, as desired.] The situation with local
smoothers is different. Suppose Di is a scalar, say Di ,
and Yi −τ0Vi is regressed on Di using a local smoother
such as Cleveland’s Lowess. Now, changing the order
within pair i changes the signs of both Yi − τ0Vi
and Di .

4.6 Covariance Adjustment in the Example

In the minimum wage example, there are I = 66
pairs of restaurants, in which Yi is the NJ-minus-
PA difference in the post-minus-pre change in the
number of full time equivalent employees. There are
two unmatched covariates, namely whether the store
was company owned and the number of hours the store
was open on a weekday; see Table 2.

With I = 66 pairs, under the null hypothesis, the
signed rank statistic T has null expectation I (I + 1)/
4 = 1105.5 and null variance I (I + 1)(2I + 1)/24 =
24505.25, and standardized deviate {T − I (I + 1)/4}/√
I (I + 1)(2I + 1)/24. One computes t{Z, ε(Y −

τ0V)} for various τ0 and compares it with this null
distribution. If τ0 = 2.065, the signed rank statistic
is 1105, slightly below the null expectation of 1105.5,
but if τ0 = 2.0649, the signed rank statistic is 1106,
slightly above the null expectation, so τ̂ = 2.065, that
is, contrary to economic theory, a gain of about two
employees per restaurant. If τ0 = −0.58, the signed
rank statistic is 1413, yielding a deviate of 1.96. If
τ0 = 4.8075, the signed rank statistic is 798, yielding a
deviate of −1.96. Hence, the approximate 95% confi-
dence interval for τ0 is [−0.58, 4.81], so a loss of about
half an employee is plausible, but so is a gain of about
five employees. This confidence interval does not sug-
gest dramatic declines in employment in the fast food
industry brought on by the increase in New Jersey’s
minimum wage. Again, these inferences assume there
is no hidden bias. How might the conclusions change
if hidden biases are present?

5. SENSITIVITY TO HIDDEN BIAS: MATCHED
STUDIES WITH COVARIANCE ADJUSTMENT

5.1 Treatment Assignment in
an Observational Study

A sensitivity analysis asks how hidden biases of var-
ious magnitudes might alter conclusions. Although all
studies are sensitive to sufficiently large biases, stud-
ies vary markedly in their degree of sensitivity to hid-
den bias; see the examples in Rosenbaum (1995, Sec-
tion 4). Here, a simple method of sensitivity analysis
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for the signed rank statistic (Rosenbaum 1987, 1991b,
1995, Section 4) is generalized for use with covariance
adjustment. Essentially, it is shown that it is appropri-
ate to carry out this standard sensitivity analysis on
the residuals from a regression fit. Other methods of
sensitivity analysis have been discussed by Cornfield
et al. (1959), Greenhouse (1982), Rosenbaum and Ru-
bin (1983), Rosenbaum (1986, 1996), Manski (1990,
1995), Gastwirth (1992), Angrist, Imbens and Rubin
(1996), Copas and Li (1997), Gastwirth, Krieger and
Rosenbaum (1998), Lin, Psaty and Kronmal (1998)
and Berk and De Leeuw (1999). In particular, Rosen-
baum (1986) and Lin, Psaty and Kronmal (1998) dis-
cussed sensitivity analyses for particular types of co-
variance adjustment, although from a very different
point of view than is taken here.

The chance that subject j = 1 in pair i receives the
treatment Zi1 = 1 given that one subject in pair i re-
ceives the treatment Zi1 + Zi2 = 1 is πi1/(πi1 + πi2).
The sensitivity analysis model says matched subjects
may differ in their chances of receiving the treatment
by at most a factor of * ≥ 1,

* ≥ Pr(Zi1 = 1)

Pr(Zi2 = 1)
= πi1

πi2(1)
= πi1/(πi1 + πi2)

πi2/(πi1 + πi2)
≥ 1

*
for i = 1, . . . , I.

When * = 1, it follows that πij /(πi1 + πi2) = 1
2 for

each i, j , resulting in the randomization distribution.
When * > 1, it follows that Pr(Zij = 1) is unknown,
so there may not be a single inference about the
treatment effect τ , but rather a range of inferences
(e.g., a range of possible significance levels), reflecting
uncertainty about how treatments were assigned, with
the range widening as * increases. A sensitivity
analysis computes the range of possible inferences for
several values of *, thereby displaying the degree to
which hidden biases of various magnitudes might alter
the conclusions of the study.

The model (1) may be derived by assuming that the
matching has failed to control for an unobserved binary
covariate uij associated with *-fold increase in the
odds of exposure to treatment. See Rosenbaum (1987,
1995, Section 4) for detailed discussion.

5.2 Sensitivity Analysis for Covariance Adjustment

The procedure is similar to that in Section 4.5 except
that the signed rank statistic is no longer governed by
its randomization distribution, but rather has a range
of distributions implied by (1). Specifically, to test

the hypothesis H0 : τ = τ0, compute the signed rank
statistic T = t (Z, e0)=∑I

i=1
∑2

j=1Zij sij qi exactly as
in Section 4.5, where sij and qi are fixed under the null
hypothesis.

When * > 1, the null distribution of the signed rank
statistic is unknown, but is bounded by two known

distributions. Let T be the sum of I independent
random variables, i = 1, . . . , I , taking values 0 with
probability 1

1+* and the value (si1 + si2)qi with value
*

1+* . Similarly, let T be the sum of I independent
random variables, i = 1, . . . , I , taking values 0 with
probability *

1+* and the value (si1 + si2)qi with

probability 1
1+* . Inequality (1) implies that the null

distribution of the signed rank statistic T is bounded
in the sense of stochastic order by the distributions
of T and T , that is, Pr(T ≥ k) ≥ Pr(T ≥ k) ≥
Pr(T ≥ k) for every k; see Rosenbaum (1987, 1995,
Section 4) for proof. As a consequence, for each fixed
* ≥ 1, although the significance level Pr(T ≥ k) is
unknown, bounds on its value are easily computed. The
sensitivity analysis computes these bounds for several
values of * to display the sensitivity of the inference to
hidden bias.

The expectation and variance of T and T are

E
(
T
)= *

1 + *

∑
(si1 + si2)qi,

E(T )= 1

1 + *

∑
(si1 + si2)qi,

var
(
T
)= var(T )= *

(1 + *)2

∑{(si1 + si2)qi}2.

If there are neither ties among the |ei| nor zero
differences |ei| = 0, then si1 + si2 = 1 for every i, and
then there are standard simplifications

∑
(si1+si2)qi =∑

qi = I (I + 1)/2 and
∑{(si1 + si2)qi}2 = ∑

q2
i =

I (I + 1)(2I + 1)/6; see Lehmann (1999, problem 84,
page 51). Bounds on point estimates and confidence
intervals follow immediately in the usual way, that
is, by inverting tests to get confidence intervals and
using the device of Hodges and Lehmann (1963) to
get point estimates; see Rosenbaum (1987, 1993, 1995,
Section 4).

5.3 Example: Sensitivity Analysis for
Minimum Wage Effects

Table 3 displays a concise sensitivity analysis for
Card and Krueger’s minimum wage study in Sec-
tion 4.2. Within pairs exactly matched for restaurant
chain and closely matched for starting wages at base-
line, covariance analysis makes further corrections for
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TABLE 3
Minimum point estimates and maximum P -values

H0 :τ

	 τ̂min −2 −4

1 2.06 0.0021 0.000029
1.5 0.14 0.069 0.0039
2 −1.22 0.29 0.038

the two unmatched covariates. The anticipation of a
negative employment effect by economic theory, to-
gether with the neutral to slightly positive differences
found by Card and Krueger, suggest that a sensitiv-
ity analysis might reasonably ask: Would small hidden
biases reconcile economic theory with the Card and
Krueger data?

For this reason, Table 3 asks the following three
questions repeatedly for several values of * in (1).
What is the minimum point estimate τ̂min possible sub-
ject to the bound (1)? What is the maximum signif-
icance level, subject to (1), for testing the hypothe-
sis of a 2 employee decline H0 : τ = −2? What is the
maximum one-sided significance level, subject to (1),
for testing the hypothesis of a 4 employee decline
H0 : τ = −4? For the typical restaurants, the number
of full time equivalent employees was about 20, so a
decline of 2 employees is about 10% and 4 employees
is about 20%.

In Table 3, the row labeled * = 1 repeats the analysis
in Section 4.6 assuming no hidden biases, because
when * = 1 in (1), the randomization distribution
within pairs is produced. In this case, there is only one
point estimate, namely a τ̂ = 2.06 employee gain, and
there is only one significance level for each hypothesis,
namely 0.0021 for H0 : τ = −2 and 0.000029 for
H0 : τ = −4. If there were no hidden biases, the point
estimate suggests a gain in employment and substantial
declines are not plausible.

These results are not materially altered by a small
hidden bias of * = 1.5. A bias of this magnitude
refers to an unobserved variable u, say a binary
attribute, strongly related to employment change and
about 50% more common in New Jersey than in eastern
Pennsylvania—that is, an odds ratio of 1.5 linking u

and the state. For * = 1.5 in Table 3, the minimum
point estimate remains slightly positive and neither
hypothesis looks especially plausible.

For a moderate bias of * = 2, the minimum possible
point estimate compatible with (1) is now somewhat
negative, a decline of about τ̂min = −1.22 employees.

The hypothesis of a two employee decline is now plau-
sible for some πij satisfying (1), whereas a four em-
ployee decline is still implausible for all πij satisfy-
ing (1).

The parameter * measures the degree of departure
from a randomized experiment. One way, perhaps the
best way, to develop a feeling for various magnitudes
of * is to proceed empirically, looking at past observa-
tional studies, noting the value of * at which the con-
clusions become sensitive to hidden bias, that is, the
value at which several competing and conflicting in-
terpretations are simultaneously plausible. A number
of such examples are given in Rosenbaum (1995, Sec-
tion 4). By comparison with other studies, the current
study is neither sensitive to extremely small hidden bi-
ases, as was true of a study of coffee as a cause of my-
ocardial infarction, nor extremely insensitive to large
biases, as was true of several studies of smoking as a
cause of lung cancer or diethylstilbestrol as a cause of
vaginal cancer.

A confidence interval for a parameter quantifies and
expresses the uncertainty that is due to sampling vari-
ation; however, it does not dispel that uncertainty. In
parallel, a sensitivity analysis quantifies and expresses
the uncertainty that is due to hidden bias, but does not
dispel that uncertainty. In both cases, it is useful to
have an objective measure of the degree of uncertainty
that is actually present in the study at hand, because
the degree of uncertainty varies from study to study
and is difficult to appraise without quantitative tech-
niques.

6. INSTRUMENTAL VARIABLES

6.1 Role of Instrumental Variables

In Sections 4 and 5, the effects on employment of
changes in minimum wage laws were modelled as a
constant, additive effect of the laws themselves. One
might reasonably believe that minimum wage laws
affect employment primarily, if not exclusively, by
changing wages. For example, if one raised the min-
imum wage to $5.05 per hour in a region where market
forces had already pushed starting wages well above
$5.05, then one might expect to see negligible conse-
quences for employment, whereas a similar change in
law in different market conditions might produce dif-
ferent effects. One might possibly believe that what is
stable from one circumstance to another is not the ef-
fect of increasing the minimum wage as recorded in
law, but the effect of increasing the wages paid to em-
ployees. If one believed this, one might wish to model
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the change in employment in terms of actual changes
in wages, using the change in law as an instrumental
variable.

Estimation using instrumental variables (IV) has a
long history and is a standard topic in econometrics;
see Davidson and MacKinnon (1993, Section 7) for
one good textbook discussion and see Manski (1995)
for a less traditional but insightful discussion. More re-
cently, Angrist, Imbens and Rubin (1996) recast the IV
argument, stripping away most modelling and distri-
butional assumptions and expressing the IV argument
in terms of potentially observable outcomes. In their
approach, they argued that it is sometimes natural to
model the effect of an assigned treatment on one out-
come, not in terms of the assignment to treatment or
control, but rather in terms of the effect of the treat-
ment on a second outcome. Typically, this second out-
come is really a measure of the degree to which the as-
signed treatment is actually delivered. What is unique
about the IV argument is that the assigned treatment—
the instrument—and the delivered treatment—the sec-
ondary outcome—both enter the estimation, but with
very different roles.

This issue arises perhaps most clearly in clinical tri-
als with noncompliance, for instance, in which patients
consume only part of the drug assigned to them by the
experimental protocol. In a randomized clinical trial,
the assigned treatment is randomized, but it does not
describe the treatment the patient actually received. If
noncompliance is ignored, and the assigned treatment
groups are compared, then the so-called intent-to-treat
estimate is obtained. It accurately estimates the effect
of encouraging patients to take a drug, but it does not
estimate the effect of the drug. If the assigned treatment
is ignored and groups are defined by the dose they actu-
ally received, the benefits of randomization are lost and
a severely biased estimate of effect may result. The IV
estimate uses the randomly assigned treatment as an
instrument for the dose of treatment actually received.
See Rosenbaum (1996) for a very simple numerical ex-
ample of how this works. The use of IV in randomized
experiments with noncompliance is discussed with var-
ied terminology by Sommer and Zeger (1991), Sheiner
and Rubin (1995), Frangakis and Rubin (1999) and
Barnard, Frangakis, Hill and Rubin (1999). In Angrist,
Imbens and Rubin (1996), the assigned treatment was
the Vietnam era draft lottery, while the delivered treat-
ment was actual military service. In randomized clin-
ical trials with noncompliance and in the draft lottery,
there is reason to hope that the assigned treatment is
randomized or nearly so, and there is good reason to

doubt that the delivered treatment is randomized. In
these examples, the instrument is valuable because it
is randomized, but the secondary outcome is valuable
because it reflects the potent part of the treatment, the
part that is likely to produce effects. Central to the IV
argument is that the instrument affects the outcome
only indirectly through the secondary outcome, and
the instrument is associated with the secondary out-
come; see Angrist, Imbens and Rubin (1996) for some
specifics, and see Rosenbaum (1996, 1999b) for meth-
ods of exact permutation inference using instrumental
variables.

The minimum wage example is both more typi-
cal and more problematic than the clinical trial and
Vietnam draft lottery examples. Here, the change in
New Jersey’s minimum wage is the instrument and the
change in starting wages is the secondary outcome.
The analyses in Sections 4 and 5 are analogous to
the intent-to-treat analysis; they focus on the change
in law, whether or not the change in law resulted in
changes in wages. Here, it is plausible but not certain
that changes in minimum wage laws affect employ-
ment only indirectly through changes in starting wages.
As discussed in Section 4, it is far from clear that the
instrument is randomized—that is, that the New Jer-
sey restaurants can safely be viewed as a simple ran-
dom sample from the finite population of New Jer-
sey and eastern Pennsylvania restaurants. For this rea-
son, one needs to examine the sensitivity of IV esti-
mates to possible departures from random assignment
of the instrument. Without covariance adjustment, a
simple method of exact permutation inference and sen-
sitivity analysis for IV was discussed in Rosenbaum
(1996, 1999b). Here, that method is extended for use
with covariance adjustment. All that is involved is the
merging of two methods, namely the methods of Sec-
tions 4 and 5 above and the methods of permutation
inference for IV, so the discussion that follows can be
brief.

6.2 Methods for an Instrumental Variable

In addition to the outcome of primary interest,
(rCij , rT ij ), whose observed value is Rij , there is a sec-
ondary outcome, (wCij ,wT ij ), whose observed value
is Wij = ZijwCij + (1 − Zij )wT ij . In the minimum
wage example, (rCij , rT ij ) describes the change in
full time equivalent employment and (wCij ,wT ij ) de-
scribes the change in starting wages, where C in-
dicates the control condition in which the minimum
wage is not increased and T indicates the treat-
ment condition in which it is increased from $4.25
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to $5.05. The increase in New Jersey’s minimum
wage forced many, but not all, New Jersey restau-
rants to sharply raise the starting wage; indeed, many
raised their starting wage from the old minimum to
the new minimum, so wT ij = $0.80 for these restau-
rants.

The effect of the treatment is modelled in terms of
the secondary outcome, rT ij − rCij = β(wT ij −wCij ),
which implies Angrist, Imbens and Rubin’s exclusion
restriction, and this model says the treatment effect on
employment is proportional to the effect on starting
wages. For instance, if a restaurant paid $5.10 an hour
before the increase and would raise the wage by $0.25
whether or not the minimum wage was increased, then
wT ij = wCij = 0.25, and this model says this one
restaurant should experience no effect on employment,
rT ij − rCij = β(wT ij − wCij ) = 0. The model of an
additive treatment effect, used in Sections 4 and 5,
is the special case in which wT ij = 1 and wCij = 0
for all i, j , so treatment assignment Zij is the same
as treatment received Wij . Write Li = Wi1 − Wi2 for
the observed difference in the secondary outcomes,
so Li is the matched pair difference in the change
in starting wages. The adjusted difference Yi − βLi

takes one of two possible values, namely the value
(rT i1 −βwT i1)− (rCi2 −βwCi2) if the first unit in pair
i received the treatment, Zi1 = 1, or the value (rCi1 −
βwCi1) − (rT i2 − βwT i2) if the second unit in pair i
received the treatment, Zi2 = 1 − Zi1 = 1. Therefore,
under the model rT ij − rCij = β(wT ij − wCij ), the
adjusted difference Yi − βLi equals

Zi1{(rT i1 − βwT i1)− (rCi2 − βwCi2)}
+ (1 −Zi1){(rCi1 −βwCi1)− (rT i2 − βwT i2)}

= (rCi1 − βwCi1)− (rT i2 − βwT i2)

= ỹCi, say,

which is constant, not varying with the treatment
assignment Zij . Write L = (L1 . . .LI )

T and ỹC =
(ỹC1 . . . ỹCI )

T .
To test H0 :β = β0, fit the adjusted responses, Y −

β0L, using D in a model without a constant term,
obtaining residuals ẽ0 = ε(Y − β0L) = (̃e1 . . . ẽI )

T ,
which equal the fixed ε(̃yC) if the null hypothe-
sis is true. Compute the signed rank statistic, T =
t (Z, ẽ0) = ∑I

i=1
∑2

j=1Zij sij qi , as in Section 4.5,
where sij and qi are fixed under the null hypoth-
esis because they are functions of fixed quantities.
Under the null hypothesis, in the absence of hidden
bias, this signed rank statistic has its usual randomiza-
tion distribution, whereas under the sensitivity analysis

model (1), bounds on its distribution are the same as in
Section 4.2.

One obtains a two-sided 95% confidence set for β by
testing each hypothesisH0 :β = β0, retaining in the set
those values of β0 not rejected in a two-sided 0.05-level
test. The 95% confidence interval is the shortest inter-
val containing this set.

6.3 Identifying Conditions, Long Confidence
Intervals, Rejecting the IV Specification

Discussions of IV methods typically involve an
identifying assumption which asserts, in one form or
another, that the instrument Zij is positively related
to the secondary outcome Wij . For instance, this
assumption would be true if the treatment Zij had
a positive effect on the secondary outcome wT ij >

wCij for all i, j , because Wij = ZijwT ij + (1 −
Zij )wCij , and the assumption would be false if the
treatment did not affect the secondary outcome wT ij =
wCij for all i, j . Without some such assumption,
typical IV methods are inconsistent, and there is often
concern about the performance of IV methods when
the correlation between Zij and Wij is low. No such
assumption was made or needed in Section 6.2 and this
merits some discussion.

As noted in Rosenbaum (1999b) in a simpler but es-
sentially parallel context, in exact permutation infer-
ence for IV, the assumption that Zij and Wij are corre-
lated is not needed. However, whenZij andWij are un-
related or weakly related, the confidence interval for β
may be quite long, perhaps infinite in length, possibly
a half line or the entire line. This is familiar in nonpara-
metric inference: when relevant information is limited,
a nonparametric interval maintains 95% coverage by
becoming longer, perhaps infinite in length. For exam-
ple, the standard nonparametric 95% confidence inter-
val for the 99% quantile from a sample of size 20 will
be a half line, properly reflecting the fact that, with-
out distributional assumptions, 20 observations help to
provide a lower bound but not an upper bound on the
99% quantile. In the same way, when Zij and Wij are
weakly related, the confidence interval for β may be
long or infinite; that is, the hypothesis test may fail to
reject H0 :β = β0 for every β0.

This is a desirable property of permutation methods
when compared to conventional methods. The data at
hand speak to the question of whether Zij and Wij are
sufficiently strongly related to use IV methods. Better
than assuming, perhaps incorrectly, that Zij and Wij

are sufficiently strongly related to use IV methods, the
permutation inference correctly reflects the observed
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relationship between Zij and Wij and requires no
assumptions. This is desirable for two reasons. First,
an assumption is replaced by an observation. Second,
cases at the margin, where Zij and Wij are related but
perhaps not as strongly as one might hope, are not
forced into an artificial dichotomy of “identified” or
“unidentified”; rather, they result in an interval that is
appropriately somewhat longer.

The IV model may be incorrect or misspecified,
and evidence of this may arise in the following way.
The IV model says the effect of the treatment on the
primary outcome is proportional to the effect of the
treatment on the secondary outcome, that is, rT ij −
rCij = β(wT ij −wCij ). Just as the test of H0 :β = β0
may fail to reject every β0, returning the entire line as
a confidence interval, it may alternatively reject every
hypothesis H0 :β = β0, returning the empty set as the
confidence interval. For instance, we would expect an
empty confidence set in a sufficiently large study if the
model rT ij − rCij = β(wT ij − wCij ) were wrong in
the sense that the treatment had a large effect on the
primary outcome, say rT ij − rCij = τ � 0, but it had
no effect on the secondary outcome, wT ij = wCij for
all i, j , so that no value of β can represent this effect.
An empty confidence set for β should be viewed as
a rejection of the IV model rT ij − rCij = β(wT ij −
wCij ).

In the econometric terminology commonly used to
describe IV methods, one might say that permuta-
tion methods automatically appraise the identifying as-
sumption, perhaps returning a confidence interval of
infinite length if the assumption is inappropriate, and
automatically conduct a specification test, perhaps re-
turning an empty confidence interval if the specifica-
tion is incorrect.

6.4 Instrumental Variable Estimates in
the Minimum Wage Example

In Table 2, in the first pair, i = 1, of Burger King
restaurants, the starting wage in New Jersey rose from
the old minimum of $4.25 to the new minimum of
$5.05, so W11 = $0.80, whereas in the Pennsylvania
restaurant the starting wage rose from $4.25 to $4.40,
so W12 = $0.15, and the difference is L1 = W11 −
W12 = $0.65; that is, the New Jersey restaurant raised
its wage by $0.65 more than did the Pennsylvania
restaurant. The coefficient β attempts to model the
effect of the minimum wage increase in terms of the
changes in wages, here $0.65, rather than in terms
of the dichotomous change in the law, because the

TABLE 4
Minimum point estimates and maximum P -values using IV

H0 :τ

	 β̂min −2.5 −5

1 4.28 0.009 0.001
1.5 0.25 0.17 0.054
2 −2.52 0.50 0.25

change in law forced larger changes in wages on some
restaurants than on others.

Table 4 displays the covariance adjusted estimates
and sensitivity analysis from the IV model, with adjust-
ment for the two covariates. Conventional economic
theory predicts that a rise in wages will result in a
decline in employment, that is, a negative value for β .
Using the randomization distribution within pairs, * =
1, the single point estimate is positive, β̂ = 4.28, or a
4.28 employee increase for a $1.00 increase in wages.
Two hypotheses consistent with conventional theory
are tested, namely H0 :β = −2.5 and H0 :β = −5,
which parallel the hypotheses in Table 3. The New Jer-
sey law raised the minimum wage by $0.80, so these
hypotheses correspond to declines of two or four em-
ployees in a pair of restaurants with stable wages in
Pennsylvania and the full $0.80 increase in New Jer-
sey, namely −2.5 × 0.80 = −2 and −5 × 0.80 = −4.
In the absence of hidden bias, * = 1, neither hypothe-
sis is plausible.

For a small bias of * = 1.5, the minimum point es-
timate, β̂min = 0.25, is still positive, although the hy-
pothesis H0 :β = −2.5 is no longer implausible for
some assignment probabilities satisfying (1). For a
moderate bias of * = 2, the minimum point estimate,
β̂min = −2.52, corresponds to a decline of two employ-
ees for an $0.80 increase in starting wages, and both
hypotheses are plausible for some assignment proba-
bilities satisfying (1). In this one example, the IV esti-
mate is about as sensitive to bias as the additive effect
estimate in Section 5.

7. MATCHING WITH MULTIPLE CONTROLS AND
FULL MATCHING

Various matching structures are often used in place
of matched pairs. For instance, if controls are plentiful
and inexpensive, but treated subjects are limited or ex-
pensive, then matching with multiple controls may in-
crease precision with little increase in cost (Ury, 1975;
Smith, 1997). Matching with a variable number of con-
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trols per treated subject may remove substantially more
bias than matching the same number of controls in a
fixed matching ratio (Ming and Rosenbaum, 2000). Ex-
amples of matching with multiple controls are in Jick
et al. (1973), Cohn et al. (1981) and Smith (1997).
Even greater reductions in bias are possible with full
matching, in which a treated subject may have several
controls or a control may have several treated subjects
(Rosenbaum, 1991b; Gu and Rosenbaum, 1993). In
particular, full matching may be applied when a fixed
data set is available essentially without cost and one
wishes to use every available treated and control sub-
ject.

In studies with more than two subjects in a matched
set, one might replace the signed rank statistic by the
extension proposed by Hodges and Lehmann (1962),
namely the aligned rank statistic. The procedure is
as follows. Matched set i now contains ni ≥ 2 sub-
jects, numbered j = 1, . . . , ni , of which mi received
the treatment, 0 < mi < ni , where mi = ∑ni

j=1Zij ,
with N = ∑

ni subjects in total. In a randomized
experiment or an observational study without hid-
den biases and with the propensity score controlled
by the matching, the

( ni
mi

)
possible treatment assign-

ments in matched set i are equally likely, each hav-
ing probability

( ni
mi

)−1. Under the model of an ad-
ditive treatment effect τ , the hypothesis H0 : τ = τ0
is tested by computing the adjusted responses, Rij −
τ0Zij , and aligning them by subtracting their mean
in each matched set, yielding aligned, adjusted re-
sponses

(Rij − τ0Zij )− 1

ni

ni∑
k=1

(Rik − τ0Zik).

The covariates also are aligned, subtracting their means
within each matched set. The aligned, adjusted re-
sponses are regressed on the aligned covariates, per-
haps using robust regression, and the residuals are
ranked from 1 to N with average ranks for ties. The
sum of the ranks of the residuals for treated subjects is
the test statistic.

When there are no covariates, the method just
described reduces to the aligned rank statistic of
Hodges and Lehmann (1962). On the other hand, if
least squares is used to fit the regression, if the residuals
themselves are used instead of the ranks and if τ

is estimated by the general device of Hodges and
Lehmann (1963), so the sum the residuals for treated
subjects is equated to zero and solved as a function
of τ0, then the resulting solution τ̂ is the usual least

estimate of τ in a regression with treatment indicator,
matched set indicators and covariates.

When treatment assignments within matched sets
have the randomization distribution, with each assign-
ment having probability

( ni
mi

)−1, the aligned rank sta-
tistic has its usual permutation distribution as studied
by Hodges and Lehmann (1962). A sensitivity analysis
for the aligned rank statistic was proposed and illus-
trated by Gastwirth, Krieger and Rosenbaum (2000),
and it too may be applied to the ranked residuals from
the regression. The logic justifying this is the same as
in Sections 4 and 5.

8. CONCLUSION

Starting with Fisher’s (1935) approach to inference
in randomized experiments, an exact, distribution-free
theory of covariance adjustment in experiments was
developed in Section 2. The method removes a hypoth-
esized treatment effect from the responses, fits these
adjusted responses using covariates and applies con-
ventional permutation methods to the resulting resid-
uals. The method is general: the adjustment for co-
variates may use robust regression fitting or functional
smoothers, yet exact inferences result. This method is
applicable in randomized experiments.

The method was then extended to observational stud-
ies in two cases: with and without hidden biases.
If there are no hidden biases, then treatment assign-
ment probabilities are functions—typically unknown
functions—of observed covariates. With overt biases
but no hidden biases, inferences about treatment effects
are possible after appropriate adjustments that reflect
the relationship between treatment assignment and ob-
served covariates. In the absence of hidden biases, es-
timates, tests and confidence intervals were developed
in Sections 3 and 4. There is hidden bias if treatment
assignment probabilities depend on both observed co-
variates and a relevant unobserved covariate. A sensi-
tivity analysis displays how inferences might be altered
by hidden biases of various magnitudes, as discussed
and illustrated in Section 5. The same method works
with an instrumental variable, in which the assigned
treatment and the delivered treatment are not always
the same (Section 6).
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Comment
J. Angrist and G. Imbens

1. INTRODUCTION

Paul Rosenbaum has been an articulate and tireless
advocate of randomization inference (RI) as a “rea-
soned basis for inference” when assessing treatment ef-
fects. In this paper and previous work he has extended
the scope for RI beyond the traditional field of ran-
domized trials into the much messier world of obser-
vational studies. The current paper provides a charac-
teristically lucid discussion of the use of RI in obser-
vational studies, where the possibility of overt biases
commonly motivates covariance adjustment. The pa-
per discusses an approach based on propensity-score
style conditioning on sufficient statistics, incorporates
regression adjustment into an RI framework and offers
an extension to research designs involving instrumen-
tal variables (IV). An especially interesting feature of
his discussion of IV is the link to the recent literature
on weak instruments, where standard inference based
on normal approximations to sampling distributions is
often inaccurate. Rosenbaum also discusses the use of
sensitivity analyses.

Although the intellectual case for RI is attractive,
model-based population inference remains the method
of choice in our field of economics and in many fields
involving the analysis of social statistics. In particu-
lar, regression is an enduring empirical workhorse. At
the same time, recent years have seen a number of
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steps toward a more agnostic use of regression mod-
els as fitting devices that summarize causal relation-
ships without being assumed to accurately represent
functional relationships. We argue that the conceptual
gap between the use of regression for RI and the use of
regression with population inference has largely been
closed. On the other hand, practical issues, such as
the accuracy of confidence interval coverage using as-
ymptotic arguments in finite samples, are unresolved.
We hope that the current paper will stimulate addi-
tional research comparing the operational characteris-
tics of RI with the characteristics of other methods. The
purpose of this comment is to point out links to re-
lated work by economists and to highlight areas where
the RI/population-model distinction seems to us to be
sharpest.

2. AGNOSTIC REGRESSION

A compelling conceptual feature of RI is that it is
closely tied to the notion of a randomized experiment.
A primary virtue of experiments is their simplicity and
transparency. In principle, with a randomized trial, no
adjustments are required: with a large enough sample,
the estimated treatment effects will be invariant to the
selection of variables used for adjustment and to the
method used to implement the adjustment. In prac-
tice, however, randomization may leave chance im-
balances, and experiments are typically analyzed with
some kind of regression adjustment or matching strat-
egy to control for covariates. Moreover, in observa-
tional studies, where treatment assignment is almost
always confounded with covariates, adjustment is es-
sential.

If treatment is indeed confounded with covariates,
the most important research design issue is whether the
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covariate information at hand is adequate to remove
bias. This is a question Rosenbaum has addressed in
his extensive work on sensitivity analysis. Once covari-
ates have been selected, however, a number of imple-
mentation options are available. These include match-
ing, regression and matching on the propensity score.
In Section 2.3 of the paper, Rosenbaum suggested co-
variate adjustment be implemented by using regression
to provide an “algorithmic fit.” He implicitly contrasts
this “model-free” use of regression with earlier papers
cited in his outline (Section 1.2), where distribution-
free methods are applied to regression models based
on a more literal view.

The first point we would like to make is that adoption
of an agnostic view of regression is not central to the
distinction between RI and population models. An ag-
nostic view of regression is appropriate for any mode of
inference. This is illustrated in Angrist (1998), which
is concerned with estimating the effects of military ser-
vice on the post-service civilian earnings of volunteer
soldiers. For any military applicant observed after ap-
plication, define random variables to represent what
the applicant would earn had he served in the military
and what the applicant would earn had he not served
in the military. Denote these two potential outcomes
by Y0 and Y1 and denote veteran status by a dummy
variable D. Treatment assignment is assumed to be
ignorable conditional on a covariate vector X, which
summarizes the criteria used by the military to se-
lect soldiers from the pool of applicants. Angrist
(1998) computed treatment effects using the regres-
sion of Y on a saturated model for X and the treatment
dummy D,

Y = α + βx + δrD + ε,(1)

where βx is a main effect for each possible value taken
on by the discrete covariate vector X and ε is an error
term defined as the difference between Y and the pop-
ulation regression of Y on X and D. The population
regression coefficient δr can be written

δr =E
{
(D −E[D|X])Y}/E{(D −E[D|X])D},

which in turn can be shown to be

E
{
E[Y1 − Y0|X]w(X)},

where

w(X)= P [D = 1|X](1 − P [D = 1|X])
E{P [D = 1|X](1 − P [D = 1|X])} .

Thus, the population regression coefficient and its sam-
ple analog provide a weighted average of the covariate-
specific treatment effects, E[Y1 − Y0|X], with weights

given by the conditional variance of treatment in each
covariate cell. The regression equation (1) plays the
role of a computational device in the spirit of Rosen-
baum’s “algorithmic fit.” In particular, the conditional
expectation function E[Y|D,X] is not restricted to be
linear and the individual treatment effects are not re-
stricted to be constant. Note also that there is no ex-
trapolation in this saturated example. In other words,
values of X where the probability of treatment is 0 or 1
do not figure in the estimand.

The previous example uses the discreteness of co-
variates to provide a simple agnostic interpretation of
regression estimates. More generally, however, it is
common in many applications to view regression as
providing the best linear approximation to an unre-
stricted conditional mean function (see, e.g., Chamber-
lain, 1984, or Goldberger, 1991), as providing an av-
erage derivative (Angrist and Krueger, 1999) or as an
average arc slope (Yitzhaki, 1996).

We can make a similar point with reference to the
Hodges and Lehmann (1962, 1963) model discussed at
the end of Rosenbaum’s Section 7. An important spe-
cial case of the Hodges–Lehmann estimation strategy
Rosenbaum describes, and one likely to have special
appeal for practitioners, amounts to estimating a re-
gression with treatment status and a full set of match-
set indicators on the right hand side. In this case, re-
gression estimates a weighted average of set-specific
treatment effects, with each effect weighted by the
conditional variance of treatment in the match set.
Thus, regression provides a natural summary statistic
for causal relationships. In our view, this statistic has
much to recommend it (computational simplicity and
efficiency for constant effects) and is easily compared
to previous research results using regression. Again,
however, there is no need to take the regression model
literally, although auxiliary assumptions such as ran-
dom sampling and linearity may matter for inference.

3. INFERENCE PROBLEMS

As the above discussion suggests, we do not see a
sharp distinction between the use of regression in the
manner described by Rosenbaum and the application
of this tool in much modern empirical work. Still a
choice remains: as Rosenbaum shows, inference with
reference to a population agnostic regression function
of the type described above can be carried out in a
RI framework instead of using traditional population
models. In our view, the question of whether RI
provides substantially more accurate inference is at the
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heart of the RI/population-model trade-off. The right
standards for making this choice seem to us to be the
usual ones for alternative statistical procedures, the
accuracy of nominal significance levels and statistical
power in the scenario of interest.

With independent data and using sample sizes com-
mon in the cross-section empirical studies we are fa-
miliar with, it seems very likely that normal approxi-
mations to sampling distributions are acceptably accu-
rate. In such cases, RI may be conceptually appealing,
but will generate inferences that differ little in practice
from population models. Of course, if outcome distri-
butions are particularly skewed or if sample sizes are
unusually small, there are likely to be some differences
and RI may well be more accurate, at least under the
simple null hypothesis of no effect.

An especially fruitful field for the application of RI
seems likely to be cross-sectional settings with de-
pendent data such as a group-randomized trial (GRT).
Here, the need to estimate correlation structures makes
inference challenging. A similarly important setting in
economics, where GRT’s are still rare, is the estima-
tion of treatment effects for treatments that vary at a
group level such as a city or state, with the analysis
using data on microunits such as individuals or firms.
The Card and Krueger study Rosenbaum discusses is
one such application. The standard population model
for inference in such cases implicitly uses a “design ef-
fect” to adjust standard errors for dependence within
groups (Moulton, 1986), but these models are restric-
tive, imposing an equicorrelated structure that may not
be accurate. Modern variations on the design effect ap-
proach, such as Liang and Zeger’s (1986) generalized
estimating equations, base inference on an asymptotic
argument that requires a large number of groups for
accuracy. In many such studies, there are only a few
groups. Randomization inference sidesteps the need to
estimate the dependence structure and appears to have
good operating characteristics even in settings with few
groups (for recent evidence on this point in GRTs,
see Braun and Feng, 2001; Bertrand, Duflo and Mul-
lainathan, 2001, similarly assess the accuracy of RI for
state-level interventions).

4. SENSITIVITY ANALYSES

In a series of papers, Rosenbaum has developed an
approach to sensitivity analyses for observational stud-
ies. Even after adjusting for overt biases, researchers
remain unsure as to whether there are hidden biases. In
some cases additional information such as instrumen-
tal variables may reduce the likelihood of hidden bias.

In many cases, however, there are no plausible instru-
ments. Sensitivity analysis is an approach to investigat-
ing the robustness of inferences in such settings. In the
framework Rosenbaum has developed, a single para-
meter, *, captures the effect of hidden biases. The pa-
rameter * summarizes the degree to which the assign-
ment mechanism is assumed to deviate from an exper-
iment where treatment status and potential outcomes
are independent. This type of sensitivity analysis is rare
in economics and should be more widely used.

Two related procedures for sensitivity analysis that
have gotten some attention from economists are the
use of bounds and the exploration of sensitivity to
observed covariates. Manski (1990) suggested an ap-
proach based on bounding the range of treatment ef-
fects consistent with the data, while imposing few
assumptions beyond restrictions on the support of
random variables such as 0–1 and discreteness. In
some cases, these bounds can be derived by taking
Rosenbaum-style sensitivity analyses to extremes. In
other words, by varying the sensitivity parameter over
the whole real line, one can obtain the range of val-
ues of the parameter of interest that is consistent with
the observed data. A second form of sensitivity analy-
sis works as follows. Estimate treatment effects using
all available covariates and then explore the impact
of omitting covariates one at a time or of dropping
specific subsets (see, e.g., Altonji, Elder and Taber,
2000). Invariance to the set of control variables nat-
urally boosts confidence in a causal interpretation of
the estimated effects. This approach can be fitted into
Rosenbaum’s framework by using the correlation be-
tween observed covariates and outcomes to calibrate
the sensitivity parameter *.

5. EXTENSION TO INSTRUMENTAL VARIABLES

A particularly interesting application of Rosen-
baum’s approach to RI arises in instrumental vari-
ables settings. Instrumentals variables methods were
originally developed for the estimation of simultane-
ous equations models by Wright (1928) and Haavelmo
(1944), but are increasingly used to solve the problem
of hidden bias that has been at the center of Rosen-
baum’s work (see, Angrist and Krueger, 1999, for ex-
amples).

The key assumption in such applications is that the
instrumental variables are not correlated with hidden
sources of bias and that they affect the outcome solely
through their effect on the treatment of interest. A lead-
ing example is that of randomized experiments with
one-sided noncompliance. Assuming that individuals
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who do not take the treatment despite being assigned
to it are not affected by their assignment, then random
assignment to treatment is an instrumental variable for
the effect of treatment on the outcome.

In econometric studies, inference with instrumen-
tal variables is typically based on large-sample ap-
proximations to the sampling distribution derived from
a population model. Simple IV estimands are given
by the ratio of two differences, with the denominator
equal to the difference in average exposure to the treat-
ment by assignment. The normal approximation can
be poor when the difference in average exposure by
treatment assignment in the denominator is small, that
is, when noncompliance is high. In addition, the stan-
dard asymptotic approximation can be highly mislead-
ing when a single coefficient is estimated with many
instrumental variables using two-stage least squares
(a procedure for combining alternative instruments to
produce a single estimate; see, e.g., Bound, Jaeger and
Baker, 1995).

A number of alternatives to standard asymptotic ar-
guments have been proposed for models with weak
instruments and/or many instruments. Bekker (1994)
suggested asymptotic approximations based on an al-
ternative parameter sequence with the number of in-
struments increasing with the sample size, and Cham-
berlain and Imbens (1996) discussed Bayesian meth-
ods using hierarchical models for this case. Staiger
and Stock (1997) discussed asymptotic approximations
based on a correlation between the instruments and the
treatment that vanishes as the sample size increases.
Rosenbaum’s work provides a new and elegant ap-
proach to the weak/many instruments problem. His ap-
proach leads to exact confidence intervals based on RI,
regardless of the number or power of the instruments.
In fact, in related work, Imbens and Rosenbaum (2001)
showed that RI is the only way to obtain exact confi-
dence intervals for IV estimates.

Finally, at the end of Section 6.3, Rosenbaum sug-
gests an important check for IV coherence or what
econometricians would call a specification check.
Rosenbaum notes that instruments that have a strong
association with outcomes, but a weak or nonexistent
association with the causal variable of interest (the “en-
dogenous regressor” in econometric parlance) cannot
possibly satisfy the assumptions motivating IV estima-
tion in the first place. Such simple coherence checks
should be a routine part of IV analyses. We should also
note, however, that in Rosenbaum’s RI setup, this sce-
nario may be manifested by empty confidence inter-
vals. Although empty confidence intervals may not be
unwelcome when the model is misspecified, a less at-
tractive implication is that when confidence intervals
are narrow, one cannot distinguish the possibility that
the inferences regarding the effect of interest are pre-
cise from the possibility that the underlying model is
not compatible with the data.

6. CONCLUSION

Rosenbaum argues persuasively for RI as a concep-
tual framework and a practical tool. He has shown
here and in other work that the scope for RI is much
wider than previously noted and extends to observa-
tional studies with overt and hidden biases. He has sug-
gested specific methods for implementing these ideas
that make them readily applicable. We look forward
to seeing more applications of these methods in eco-
nomics and further discussion and evidence on the rela-
tive merits of RI and strategies based on population in-
ference. At a minimum, the use and exploration of such
methods promotes recognition of the value of an ap-
proach to observational studies that uses the language
and methods of the randomized trial as a guiding prin-
ciple.

Comment
Jennifer Hill

1. INTRODUCTION
Paul Rosenbaum has contributed an extremely help-

ful paper that consolidates nearly two decades of re-
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search on a class of nonparametric approaches to
causal inference in the context of observational stud-
ies. Rosenbaum first reminds the reader of the use of
permutation tests with data from randomized experi-
ments, and then he presents and justifies extensions for
application to observational study data. This presen-
tation elucidates the similarities with and differences
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from the idealized template for causal inference, the
controlled randomized experiment. Rosenbaum draws
on the strengths of existing approaches (matching and
instrumental variables), but allows for fewer distri-
butional assumptions. In addition, he demonstrates
straightforward approaches to sensitivity analysis for
each method.

My comments will primarily, although not exclu-
sively, pertain to Rosenbaum’s estimation strategies in
the context of matched pairs, as that is the area with
which I am more familiar.

2. STRENGTHS

There are considerable strengths to the methods
discussed. I will highlight a few that I view as among
the most important.

Within the context of propensity score matching,
the distributional assumptions for treatment effect es-
timates are difficult to derive analytically. For this rea-
son, reliable estimators for the variance of these treat-
ment effect estimates in practice have yet to be de-
fined. Rosenbaum’s techniques may provide a robust
approach both for estimating average treatment effects
as well as for forming confidence intervals in certain
observational settings.

With regard to instrumental variables estimation,
Rosenbaum’s techniques do not require the assump-
tion that the instrument and “treatment” of interest
are strongly correlated. Relative strength of the instru-
ment is reflected in the length of the corresponding
confidence interval. The issue of the impact on infer-
ence of so-called “weak instruments” (see, for exam-
ple, Nelson and Startz, 1990b, a; Bound, Jaeger and
Baker, 1995; Staiger and Stock, 1997) and the inher-
ent complications in judging instrument strength and
adjusting confidence intervals accordingly can thus be
avoided altogether. His approach also provides greater
evidence about model misspecification than might be
typical.

The emphasis on sensitivity analysis is much needed.
So many of the current debates about the efficacy
of competing methodologies in causal inference are
at heart debates about the adequacy of the ignor-
ability assumption (Rubin, 1978; Little and Rubin,
1987). Propensity score matching, for instance, gen-
erally achieves what it purports to; given sufficient
overlap in the distributions of the observed covariates,
it balances these covariates across treatment groups.
So examples where matching is used and yet bias re-
mains should point to a failure to control for all con-

founding covariates—that is, violation of the ignora-
bility assumption—rather than a “failure” of the ap-
proach. Given the seeming difficulty in satisfying ig-
norability in many observational settings then, analy-
ses that explore the sensitivity of conclusions to unob-
served covariates should ideally be included as an in-
tegral part of all causal analyses. Achieving this ideal
can be greatly facilitated by the existence of straight-
forward approaches such as those described by Rosen-
baum.

3. ADDITIVE TREATMENT EFFECTS
AND MATCHING

The focus on additive treatment effects within the
context of matching applications (for example in sit-
uations where there is no obvious instrument) is po-
tentially problematic. If the response surfaces across
treatments are not parallel this assumption will not
hold. Yet the existence of nonparallel, and in partic-
ular nonparallel and nonlinear, response surfaces is
one of the strongest motivations for the use of match-
ing techniques. If the response surfaces are linear
why wouldn’t standard regression work just as well
for covariance adjustment, even perhaps more effi-
ciently than the techniques proposed? If this is the
case, it is only the scenario where the response sur-
faces are nonlinear and parallel (a seemingly unlikely
combination) when there seems to be a more ob-
vious advantage for the approach discussed in Sec-
tion 4.5 over simpler techniques such as linear regres-
sion.

In the absence of the arguably unrealistic assump-
tion of additive treatment effects, however, the choice
of the best summary of the individual treatment effects
(e.g., average treatment effect and median treatment ef-
fect) becomes much more messy (for an interesting dis-
cussion of the inadequacy of average treatment effects
in a policy context, see Angrist and Dehejia, 2001).
However, given that an appropriate statistic is chosen,
it appears that permutation tests could be performed
for any such choice. Although some statistics might re-
quire calculation of the exact permutation distribution,
with current computing technology Monte Carlo esti-
mates of these distributions should be fairly trivial to
perform.

These concerns point to the more general need for a
closer examination of the types of empirical situations
within which we might expect to see gains from using
techniques such as the ones described in this paper.
Optimally, such an exploration would rely either on
empirical data in a context where the “true” answer
is known (e.g., see LaLonde, 1986; Friedlander and
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Robins, 1995; Dehejia and Wahba, 1999; Heckman,
Ichimura and Todd, 1997) or on simulations that are
well calibrated to real data. The disadvantages of
the former strategy are the complications created by
missing data typically present in real studies and the
difficulty in using an effect estimate, about which we
also have uncertainty, as a benchmark. The simulation
option can be tricky to perform in ways that do not bias
the simulations results toward a particular technique.
Either, however, should help us to gain better insight
about when competing techniques perform well or
poorly in practice.

4. ADDITIONAL COMMENTS

One small weakness in presentation (that admittedly
may have been beyond the scope of the paper given its
breadth) was that both examples had very small num-
bers of covariates. In my opinion, the most convincing
examples of observational studies (in the absence of a
truly convincing instrument) rely on far greater num-
bers of covariates to support the necessary ignorability
assumptions. It was unclear to me how the current con-
clusions would change if many more covariates were
included.

In addition, a remaining concern about the confi-
dence intervals estimated in the matched pair setting
via the Rosenbaum approach is that they appear to ig-
nore the variability inherent in creating the matched
pairs. The matched pairs are taken as a given. In re-
ality which control units are picked can be strongly
influenced by the properties of the covariate distri-
butions of the comparison units that are not chosen
as matches. It is unclear, however, how this uncer-
tainty would be reflected in the interval estimates de-
scribed.

5. CONCLUSION

Rosenbaum describes a rich class of techniques
applicable to an important area, causal inference in
observational settings, still sorely in need of robust
approaches to inference. These methods should at the
very least be considered a strong starting point for ex-
ploration of new approaches that are less dependent on
distributional assumptions (as these are) but in addition
can accommodate more realistic complications such as
non-additive treatment effects in matched pairs stud-
ies.

Comment
James M. Robins

1. INTRODUCTION

I am grateful to the Associate Editor, Alicia
Carriquiry, for the opportunity to discuss Paul
Rosenbaum’s paper. This technically flawless and beau-
tifully motivated paper touches either directly or in-
directly upon many major issues in causal inference:
superpopulation model-based versus observed study
population randomization-based inference; the risks
versus the benefits of assuming a constant additive
treatment effect; how to find optimal covariance-
adjustment procedures for randomization-based in-
ference; the assumptions under which bias due to
unmeasured confounding can be corrected by an in-
strumental variable; the relationship between differ-
ent sensitivity analysis methodologies; and, finally, the
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scientific role of sensitivity analysis in the interpreta-
tion of observational studies. Rosenbaum has thought
deeply about many of these issues, both in the paper
under discussion and in previous papers. In my dis-
cussion I shall consider each of these issues, because
I find them important and often interrelated. Here is
a summary of my major points. I argue in Section 4
that the model-based locally efficient semiparametric
estimators can provide near optimal covariance ad-
justment even for randomization-based inference. Sec-
ond, in Section 4.1, I derive a formal equivalence
between Rosenbaum’s sensitivity analysis methodol-
ogy and a special case of a methodology described in
Section 3 below that was introduced in Robins (1997,
1998) and Robins, Scharfstein and Rotnitzky
(2000).

Third and perhaps most importantly, in Section 5,
I argue that Rosenbaum’s approach to sensitivity analy-
sis, although logically flawless and mathematically el-
egant, may be scientifically useless. The problem is as
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follows. Rosenbaum’s sensitivity analysis model will
only be useful if experts can provide a plausible and
logically coherent range for the value of the sensitivity
parameter *∗, that measures the potential magnitude
of hidden bias. Define a measure of hidden bias (i.e.,
of confounding by unmeasured factors) to be “para-
doxical” if its magnitude can increase as we decrease
the amount of hidden bias by measuring some of the
unmeasured confounders. In Section 5, I prove that
Rosenbaum’s *∗ is a “paradoxical” measure. A sensi-
tivity analysis methodology based on a “paradoxical”
measure of hidden bias may be scientifically useless
because, without prolonged and careful training, users
of the methodology may reach grossly misleading, log-
ically incoherent conclusions. I need to emphasize that
the same arguments I use here against Rosenbaum’s
methods apply equally to certain methods based on
paradoxical measures developed by myself and col-
leagues Andrea Rotnitzky and Daniel Scharfstein.
Indeed I am just continuing here the criticism in
Scharfstein, Rotnitzky and Robins (1999, Sec-
tion 7.2.3) of our own methods, partly in the hope
that Rosenbaum, in his rejoinder, can succeed in con-
vincing me that the aforementioned training is not so
difficult as to render both his methods and ours scien-
tifically useless. In Sections 3.2 and 5, I suggest an al-
ternative sensitivity methodology described in Robins,
Scharfstein and Rotnitzky (2000) and Scharfstein, Rot-
nitzky and Robins (1999) that avoids paradoxical mea-
sures of hidden bias.

Finally, even in the absence of hidden bias due to
unmeasured factors, it is my opinion that whatever
Rosenbaum believes may be gained by eliminating
the need for a hypothetical superpopulation is off-
set by Rosenbaum’s assumption that individual out-
comes are deterministic and that an additive treatment
effect model holds. Furthermore, even when there
exist interval estimators for the effect of treatment in
the observed study population that are valid without the
assumption of additivity, arguments given in Section 2
suggest that interval estimators for the treatment effect
in the superpopulation are more relevant for medical
decision-making. Finally, my alternative sensitivity
analysis methodology requires a superpopulation
model to be well defined.

2. SUPERPOPULATION VERSUS OBSERVED
STUDY POPULATION INFERENCE

Consider an observational or randomized study
where there are n subjects, j = 1, . . . , n, with observed

data {(rj ,Zj , xj ), j = 1, . . . , n}, where r denotes re-
sponse, Z denotes treatment and x denotes a vector
of pretreatment covariates. We shall also assume there
exist counterfactual (potential outcome) data r·j =
(rzj ; z ∈ Z), where Z is the set of possible treatments
and rzj is subject j ’s response were treatment z taken.
The observed and counterfactual data are linked by the
consistency assumption that rj = rZj j . We have gener-
alized Rosenbaum by allowing for nondichotomous Z.
Following Rosenbaum, we take (r·j , xj ) to be nonran-
dom and Z = (Z1, . . . ,Zn)

′ to be random with sup-
port Z. Let πj (zj ) denote the marginal density of Zj .
Rosenbaum considers both the independence model in
which the density of Z is π(Z) = ∏

j πj (Zj ) and the
always m-treated model in which we condition the in-
dependence model on the event that exactly m sub-
jects were treated. Let z = 0 denote a baseline treat-
ment level. The average effect of treatment z in the
finite study population is τ ∗

n (z) = n−1∑
j [rzj − r0j ].

Rosenbaum’s parameter of interest is τ ∗
n ≡ τ ∗

n (1).
When we wish to emphasize the dependence of τ ∗

n (z)

and τ ∗
n on r· = {r·j , j = 1, . . . , n}, we will write

τ ∗
n (z, r·) and τ ∗

n (r·).
An investigator usually wishes to generalize his or

her findings from the observed study population to
a larger similar population. That is, he or she is in-
terested in the external validity of the inferences to
be drawn from the data. For example, an investi-
gator who considers recommending a medical inter-
vention must hope the observed study population is
representative of the population of the potential re-
cipients of that intervention. The simplest model is to
consider the study population as a random sample of
a larger population (Lehmann, 1975). That is, we re-
gard the n study subjects as randomly sampled without
replacement from a large superpopulation of N sub-
jects of potential recipients of treatment. Then, in the
limit N → ∞ and n/N → 0, and we can model the
data on the n study subjects as independent and iden-
tically distributed. That is, we have (R·j = {Rzj , z ∈
Z},Zj ,Xj ), j = 1, . . . , n, i.i.d. copies of the random
vector (R·,Z,X) drawn from the superpopulation law
FR·,Z,X . Let E( ) denote expectation under FR·,Z,X .
Then τ ∗(z) = E[Rz − R0] is the average causal ef-
fect of z in the superpopulation. Under squared er-
ror loss and assuming higher values of r are desirable
and no treatment–covariate interaction, the as yet un-
treated N − n members should receive the treatment
zopt that maximizes τ ∗(z). Thus one goal is to estimate
the superpopulation dose–response function τ ∗(z). Of
course, an investigator should recognize the limitations



COVARIANCE ADJUSTMENT 311

of the above superpopulation model when (1) as of-
ten occurs in randomized clinical trials, he or she be-
lieves the dose–response function τ (z) of potential re-
cipients of the treatment differs from that of the ob-
served study population to an extent unaccountable by
sampling variability or (2) as happens rarely, the size
of the pool of potential recipients is not much larger
than the size of the study population. In situation (1),
the superpopulation confidence interval still serves as a
useful informal lower bound on uncertainty concerning
τ ∗(z) in the population of potential recipients.

To study the relationship between our i.i.d. super-
population model and Rosenbaum’s observed study
population model, we will obtain the latter from the
former by conditioning as follows. Suppose we assume
that πj (zj ) depends on subject j only through (xj , r·j ),
so that πj(zj ) = π(zj , xj , r·j ). This entails no restric-
tion if there are no ties. Rosenbaum considers the dis-
tribution of estimators τ̂ of τ ∗

n ≡ τ ∗
n (z) under π(Z) =∏

j πj (Zj ). We can precisely reproduce this inference
by taking π(z, x, r·) as our superpopulation conditional
density f (z|x, r·) for Z given (X,R·) and considering
the conditional distribution of τ̂ given R· ≡ {R·j , j =
1, . . . , n} = r·, and X = x ≡ {xj , j = 1, . . . , n}. In
the always m-treated sampling model, we additionally
condition on the event

∑
j Zj = m. Note the observed

study population causal effect τ ∗
n (z) = n−1∑

j [rzj −
r0j ] is fixed given the conditioning event R· = r·. State-
ments about consistency and asymptotic normality will
refer to an asymptotics in which n→ ∞, N → ∞ and
n/N → 0.

We now have the machinery required to compare
superpopulation and finite population inference. As
in Rosenbaum’s Section 2.2, assume the always
m-treated model with Z dichotomous and treatment
completely randomized so π(1, x, r·j ) is a constant π
and data on X are not recorded. Unlike Rosenbaum,
suppose we estimate the average treatment effect by
the difference τ̂ = P̂1 − P̂0 between the sample mean
P̂1 =∑

j ZjRj/m in the treated and the sample mean
P̂0 = ∑

j Rj (1 − Zj )/(n − m) in the untreated. Con-
sider the variance decomposition

var

(
τ̂

∣∣∣∣∑
j

Zj =m

)
= E

{
var

[
τ̂

∣∣∣∣R·,
∑
j

Zj =m

]}

+ var

{
E

[
τ̂

∣∣∣∣R·,
∑
j

Zj =m

]}
.

Now τ̂ is unbiased for finite study population treat-
ment effect τ ∗

n = τ ∗
n (r·) under the randomization distri-

bution f (Z|R· = r·,
∑

j Zj = m), that is, E[τ̂ |R· =

r·,
∑

j Zj = m] = τ ∗
n (r·). Thus we see that the su-

perpopulation variance var(τ̂ |∑j Zj = m) of τ̂ will
be greater than the average finite sample variance
E{var[τ̂ |R·,

∑
j Zj =m]} unless τ ∗

n (r·) is the same for
all r· in a set of probability 1. This can occur only if
there is an additive treatment effect, that is, in the su-
perpopulation R1j − R0j is a constant τ ∗ with prob-
ability 1. However, if R is a Bernoulli outcome and
0 < τ ∗

n (r·) < 1, then the hypothesis of additive treat-
ment effects cannot hold (as the only values of τ ∗

n con-
sistent with additivity are 0, −1 and 1). In this setting,
the superpopulation variance var(τ̂ |∑j Zj = m) of τ̂
is the usual binomial variance (p0(1 −p0))/(n−m)+
(p1(1 − p1))/m, where p0 = E[R0] and p1 = E[R1].
Robins (1988) and Copas (1973) showed that the ran-
domization variance var[τ̂ |R· = r·,

∑
j Zj =m] is

pn0(1 − pn0)

n−m
+ pn1(1 − pn1)

m
− s(κ),

where pnk = n−1∑
j rkj and s(κ) ≡ −(p0n + p1n −

2p0np1n − p1n(1 − p1n)− p0n(1 − p0n) − κ), where
κ is not identified and can lie anywhere in the range
|p1n − p0n| ≤ κ ≤ min(p0n + p1n,2 − p0n − p1n).
Furthermore, s(κ)≥ 0 with equality only when (i) κ =
0 and p1n − p0n = 0 or (ii) |p1n − p0n| = 1. Let ŝ(κ)
be s(κ) with P̂1 and P̂0 substituted for p1n and p0n.
Robins (1988) showed that the interval estimator

C(0.95)= (
P̂1 − P̂0

)
± 1.96

[
P̂1(1 − P̂1)

m
+ P̂0(1 − P̂0)

n−m

− ŝ
(|P̂1 − P̂0|)]

is a large sample conservative 95% confidence in-
terval for τ ∗

n (r·) under the randomization distribution
as n → ∞, with length less than that of the usual
binomial interval with probability approaching 1 when-
ever τ ∗

n (r·) /∈ {0,−1,1}. Note that |P̂1 − P̂0| is con-
sistent for the minimum possible value of κ . For
example, when m = 100, n − m = 100, P̂1 = 40/100
and P̂0 = 15/100, the usual “binomial 95% interval”
is 0.250 ± 0.118, while the conservative large sample
95% confidence interval for τ ∗

n under the randomiza-
tion distribution is 0.250 ± 0.102. Thus, for large n,
the usual 95% binomial interval is approximately 10%
wider than it needs to be to cover τ ∗

n at its nominal
rate under the randomization distribution. However, the
usual 95% binomial interval is the smallest possible
interval that will cover the superpopulation parameter
τ ∗ = τ ∗(1) at its nominal rate in large samples.
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Robins (1988) also showed that the interval (P̂1 −
P̂0)± 1.96[(P̂0(1 − P̂0))/m+ (P̂0(1 − P̂0))/(n−m)],
which differs from the usual binomial interval by hav-
ing P̂0(1−P̂0) in the numerator of both terms, is a large
sample 95% confidence interval for the average causal
effect

∑
j Zj (r1j − r0j )/m of treatment on the treated

under the randomization distribution. Recently Rosen-
baum (2001b) has considered exact inference for this
random quantity under the additional assumption that
treatment does not both help some subjects and harm
others. Finally, a caveat is in order. Although it appears
quite advantageous to use C(0.95) in lieu of the stan-
dard 95% binomial interval, in fact, the increased preci-
sion that comes from usingC(0.95) depends wholly on
the nonidentifiable assumption that outcomes are de-
terministic. To see why, note there is no data evidence
to contradict the assumption of a stochastic counter-
factual model in which r1j and r0j are the outcomes
of Bernoulli experiments with counterfactual success
probabilities p1j and p0j , respectively. In that case,
τ ∗
n is redefined as n−1∑

j p1j −p0j and, even in large
samples,C(0.95) is not guaranteed to cover τ ∗

n at a rate
greater than or equal to 0.95 if any of the p1j and p0j

are not exactly equal to either 0 or 1.

2.1 Implications of Possible Nonadditivity for
Continuous Responses

In this section, we consider a randomized drug study
without data on covariates X and with a dichoto-
mous treatment given independently to each subject
with probability π . Hereafter we assume continuous
responses in the sense that there are no ties either
in the r1j or in the r0j among the n study subjects.
As in the binomial case, the additivity assumption
r1j − r0j = τ ∗ for all subjects j has testable conse-
quences. Specifically, it implies a shift model under
which the empirical marginal distribution of the r1j

differs from that of the r0j by a shift τ ∗. Without going
into details, a test of the shift model could, for exam-
ple, be based on the difference from the zero vector
of test statistics D(τ̂ ), where D(τ) = n−1∑

j d(rj −
τZj)(Zj − π) and d(·) is a possibly nonlinear vec-
tor function chosen by the analyst and τ̂ is, say, the
Hodges–Lehmann estimate of τ ∗. Suppose a test of
the shift model does not reject; indeed, we shall sup-
pose the shift model is actually true with shift para-
meter τ ∗. Even then, in many settings, the hypothe-
sis of a constant treatment effect is rather biologically
implausible due to between-individual differences in

bioabsorption, metabolism and so forth. We now con-
sider the consequence of this fact for randomization-
based inference. Let Er· denote conditional expecta-
tions given r·. To begin, consider a small example with
n = 2, (r01, r11) = (4,4) and (r02, r12) = (2,6) so the
shift parameter τ ∗ is 6 − 4 = 4 − 2 = 2, but additivity
fails. Then the Wilcoxon test will give the wrong level,
because, unlike the additive case, (Z1,Z2) is not inde-
pendent of the residuals (r1 − τ ∗Z1, r2 − τ ∗Z2). [For
example, if Z1 = Z2 = 1, the vector of observed resid-
uals (r1 −τ ∗Z1, r2 −τ ∗Z2) is (4−2,6−2)= (2,4), so
the unconditional randomization probability that Z1 =
Z2 = 1 is π2, but the conditional probability given
(r1 − τ ∗Z1, r2 − τ ∗Z2) = (2,4) is 1, since Z1 = 1,
Z2 = 0 implies (r1−τ ∗Z1, r2−τ ∗Z2)= (2,6),Z1 = 0,
Z2 = 1 implies (r1 − τ ∗Z1, r2 − τ ∗Z2) = (4,4) and
Z1 =Z2 = 0 implies (r1 − τ ∗Z1, r2 − τ ∗Z2)= (4,2).]

Nonetheless, even though exact inference fails, fol-
lowing Neyman (1935), under the shift model with
d taking values in R1,D(τ ∗) has mean zero, variance
n−1∑

j Er·[Dj(τ
∗)2] − n−1∑

j {Er·[Dj(τ
∗)]}2 and is

asymptotically normal. These results follow from the
fact that D(τ ∗) is the sum of independent random
variables and, under the shift model, the values of∑

j Er·[Dj(τ
∗)2] and of

∑
j Er·[Dj(τ

∗)] = 0 do not
depend on whether the additive effect submodel r1j −
r0j = τ ∗ holds, because these statistics are invariant
to permutations of the (rj − τ ∗Zj ) within each level
of z; however

∑
j {Er·[Dj(τ

∗)]}2 is 0 if and only if
the additive effect submodel holds. It follows that large
sample 95% confidence intervals for the true shift pa-
rameter τ ∗ calculated under the additivity assumption
will be conservative (i.e., cover at a rate greater than
95%) if additivity fails and will cover at the nominal
rate if additivity holds. Thus, under the shift model, it
is appropriate to assume additivity as Rosenbaum did
since large sample inference for τ ∗ assuming additiv-
ity is appropriately conservative and additivity cannot
be rejected.

Suppose now the superpopulation follows a shift
model with parameter τ ∗, that is, pr(R1 − τ ∗ < t) =
pr(R0 < t) for all t . Then, under our superpopula-
tion model, Z

∐
(Rj − Zjτ

∗) so f [Z|{(Rj − Zjτ
∗);

j = 1, . . . , n}] = ∏
j π

Zj (1 − π)1−Zj , justifying
Rosenbaum’s exact inference methods even when
additivity fails, but now for the superpopulation pa-
rameter τ ∗ under hypothetical resampling from the
superpopulation (Lehmann, 1975). However, this ap-
proach fails under resampling from the randomization
distribution, since Z �∐(Rj − Zjτ

∗)|R· when the addi-
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tivity submodel does not hold. In Sections 3.5 and 4,
we extend the results of this section to allow for both
measured and unmeasured confounders.

3. SUPERPOPULATION COVARIANCE ANALYSIS

In this section, we describe a superpopulation sen-
sitivity analysis model introduced in Robins (1997,
1998) and Robins, Scharfstein and Rotnitzky (2000,
Sections 8.1–8.5) based on a quantile–quantile func-
tion treatment effect model that includes the shift
model as a special case. In Section 4 we examine its
use in Rosenbaum’s observed study population sam-
pling model.

Parametrization and identification. Let F(t|·) =
pr[R < t|·] and Fz(t|·) = pr[Rz < t|·] be the con-
ditional cumulative distribution functions of the ob-
served outcome R and of potential outcome Rz given ·,
and assume that the Rz have continuous distribution
functions. Note Fz[t|Z = z,X = x] = F [t|Z = z,

X = x]. Let

h(t, x, z)= F−1
0
{
Fz[t|Z = z,X = x]∣∣Z = z,X = x

}
be the conditional quantile–quantile function mapping
quantiles of Fz[t|Z = z,X = x] into those of F0[t|
Z = z,X = x]. Let

hc(t, x, z)

= F−1
0

{
Fz(t|X = x,Z �= z)

∣∣X = x,Z �= z
}

be defined like h(t, x, z) except conditional on Z �= z

rather than Z = z. Note h(t, x,0)= hc(t, x,0)= t and
both functions are increasing in their first argument.
Further h(t, x, z)≡ t if and only if the null hypothesis

F(t|Z = z,X = x)= F0(t|Z = z,X = x)

for all z ∈ Z and x in the support of X

of no effect of treatment level z compared to no
treatment is true among those treated with level z.
Here, the triple equal sign indicates the equality of two
functions. Also h(t, x, z) ≡ hc(t, x, z) ≡ t implies the
null hypothesis

Fz(t|X = x)= F0(t|X = x)

(1)
holds for all z ∈ Z and x in the support of X

of no effect of treatment at any level of X. The
latter is the null hypothesis of interest as it says that
treatment Z will result in exactly the same conditional
response distributions. This motivates our desire to
model h(t, x, z). Note that were h(t, x, z) identified,

then F0(t|Z = z,X = x) would become identified
since, by h(t, x, z) a quantile–quantile function, R0
and

H ≡ h(R,X,Z)

have the same conditional distribution given Z = z,
X = x. If the nonidentifiable assumption that
R0 =H with probability 1 holds, we say we have par-
tial rank preservation. If both h(t, x, z) and hc(t, x, z)

were identified, Fz(t|X = x) would be identified for
all z and x, since it is easy to show that Rz and

Hz =RI (Z = z)+ I (Z �= z)h−1c(H,X, z)

have the same conditional distribution given X = x,
where h−1c(t, x, z) is the inverse of hc(t, x, z) with
respect to its first argument.

If the nonidentifiable assumption that Hz = Rz with
probability 1 holds for all z, we say we have full rank
preservation. If

h(t, x, z)= hc(t, x, z)(2)

are the same function, we say we have no treatment
interaction (in the sense that, conditional on X, the
quantile–quantile transformation required to map Rz

into a random variable with the same law as R0 is the
same among those with Z = z as among those with
Z �= z).

We can now better understand the additive and
shift models. With {0,1} the support of Z, the shift
model holds if there is no treatment interaction and
h(t, x, z) = t − τ ∗z for some τ ∗. The additive model
holds if the shift model holds and we have full rank
preservation. Under the partial ignorability assumption

R0
∐

Z|X,(3)

h(t, x, z) is identified. Under the stronger ignorability
assumption R·

∐
Z|X (as would hold in a randomized

trial), there is also no treatment interaction (but there
remains no data evidence as to whether partial or
full rank preservation holds). Thus when R·

∐
Z|X,

it would be more robust to try to nonparametrically
estimate h(t, x, z) = hc(t, x, z) from the data than to
assume a priori a shift model, much less an additive
model. In practice, due to the often high dimension
of X, nonparametric estimation of h(t, x, z) is not
feasible and instead we assume a parametric model.

DEFINITION. A structural distribution model
(SDM) specifies that h(t, x, z) = h(t, x, z, τ ∗), where
h(t, x, z, τ ) is a known function increasing in its first
argument and satisfying both h(t, x,0, τ ) = 0 and
h(t, x, z, τ ) ≡ t ⇔ τ = 0, so τ = 0 represents the null
hypothesis (1).
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With Z ∈ {0,1}, a superpopulation shift model is
equivalent to the SDM h(t, x, z, τ ) = t − τz. To be
robust, it would often be wise to choose a more
flexible model with τ of higher dimension that includes
interactions of Z with components of X. Below we
discuss estimation of τ . Before doing so, we consider
identifying assumptions for h(t, x, z) and hc(t, x, z)

when f [Z|X,R·] �= f [Z|X]. We will see that to
identify h(t, x, z), we need only impose assumptions
(which we will then vary in a sensitivity analysis) on
the nonidentifiable density f [Z|X,R0] and not on the
more complicated density f [Z|X,R·]. Consider the
model

f (z|x, r0;λ,γ ∗)
(4)

= v(z|x;λ) exp(γ ∗q(r0, x·z))∫
v(z|x;λ) exp(γ ∗q(r0, x·z)) dµ(z)

,

where v(z|x;λ) is a conditional density with carry-
ing measure µ(z) that is known except for the pa-
rameter λ, q(r0, x.z) is a known function that as
described below encodes the functional form of depen-
dence on hidden biases and γ ∗ is a known parameter
that encodes the magnitude of hidden biases (unmea-
sured confounding). We will vary γ ∗ in a sensitivity
analysis along with q(r0, x.z). Note the dependence
on r0 enters through an exponential tilt. In the absence
of hidden biases (i.e., γ ∗ = 0), f (z|x, r0;λ,γ ∗) is just
v(z|x;λ). For dichotomous Z, the model can be writ-
ten

logit pr(Z = 1|x, r0;λ,γ ∗)
= vdic(x;λ)+ γ ∗qdic(r0, x),

where

vdic(x;λ)= log{v(1|x;λ)/v(0|x;λ)}
and

qdic(r0, x)= q(r0, x,1)− q(r0, x,0).

Here is some motivation for model (4). Suppose
there are unmeasured variables U such that
R0

∐
Z|X,U , but R0

∐
Z|X is false because U �∐Z|X

and U �∐R0|X. We say that U is an unmeasured con-
founder (i.e., cause of hidden bias). In that case, even
under the causal null hypothesis (1), R and Z will
be dependent given X. The magnitude of potential
bias in estimation of h(t, x, z) due to not observing
U depends on U ’s conditional dependence with both
Z and R0. The degree of dependence of f [Z|X,R0] =∫
f [Z|U,X]f (U |X,R0) dU on R0 properly weights

the effect of these dependencies and is captured by
γ ∗ and q(r0, x, z) in model (4).

EXAMPLE. A simple example of qdic(r0, x) is r0
itself. In Section 4.1, we show that Rosenbaum’s
sensitivity analysis methodology corresponds to the
special case in which (i) qdic(r0, x) = I (r0 > c(x)) or
I (r0 < c(x)) and (ii) we vary c(x) over all possible
functions at each choice of γ ∗.

Robins, Scharfstein and Rotnitzky (2000, Theo-
rem 8.2) proved that when λ is an infinite-dimensional
parameter indexing all possible conditional densities
v(z|x;λ), model (4) (i) nonparametrically identifies the
quantile–quantile function h(t, x, z) and the density
v(z|x;λ), and yet (ii) places no restrictions on the joint
distribution of the observed data. Result (i) proves that
knowledge of the dependence of f [Z|X,R0] on R0
[through γ ∗ and q(r0, x, z)] would be sufficient to cor-
rect for bias in estimation of h(t, x, z) due to unmea-
sured confounders. Unfortunately, result (ii) implies
that, without additional assumptions, the data will not
help us learn about the magnitude γ ∗ and functional
form q(r0, x, z) of hidden biases, so our only choice
is to vary γ ∗ and q(r0, x, z) in a sensitivity analysis.
Further, result (ii) also implies that under model (4)
the data cannot help us learn about hc(t, x, z) so, un-
less we follow Rosenbaum and impose no treatment
interaction as a default choice, hc(t, x, z) too must be
varied in a sensitivity analysis if we wish to estimate
Fz(t|X = x) for z �= 0.

REMARK 1. If the quantile–quantile function
h(t, x, z) is known, then the conditional density
f (Z|X,R0) is identified; hence if we had strong prior
knowledge of the magnitude of the treatment effect
h(t, x, z), we could learn from the data about the de-
gree of dependence of treatment on hidden biases. See
Rosenbaum (1995, Chapter 5) for related discussion.

3.1 Estimation, Semiparametric Efficiency and
Double Robustness

We now turn to estimation of a SDM under two
models that restrict the dimension of λ in model (3).
The first model assumes that the true value λ∗ of λ is
known and that γ ∗ = 0, so f [Z|X,R0] = f [Z|X] =
f (Z|X;λ∗) is known by design, as would be true in
a randomized trial with randomization probabilities
possibly depending on X. The second model assumes
v(x|x;λ) is a given parametric model and λ ∈Rp is an
unknown parameter. In analyzing observational data,
this model would often be used when X is high dimen-
sional. In the model with λ finite dimensional, γ ∗ and q
may be identified, but only weakly. Therefore, we rec-
ommend they be treated as known rather than estimated
and then varied in a sensitivity analysis.
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The key to our estimation procedure is the iden-
tity f [Z|X,R0] = f [Z|X,H ] mentioned above. This
identity implies that under a SDM h(t, x, z, τ ),

f [z|X,R0] = f [z|X,H(τ ∗)], where H(τ) = h(R,X,

Z, τ ). Suppose first Z is dichotomous so logit pr(Z =
1|x, r0;λ,γ ∗)= vdic(x;λ)γ ∗qdic(r0, x) and λ is finite-
dimensional. Let τ̂ be the value of τ that makes the
maximum likelihood estimator of the “artificial para-
meter vector” θ equal to zero when maximizing the
logistic “likelihood”

∏
j Lj (λ, θ, τ ) over (λ, θ) with

τ and γ ∗ held fixed, where L(λ, θ, τ )==Z(1−=)1−Z
with = = expit(vdic(X;λ) + γ ∗qdic(H(τ ),X) +
θ ′ddic(H(τ ),X)), expit(x) = 1/(1 + e−x) and ddic is
a vector function of the dimension of τ chosen by
the investigator. In large samples, a 1 − α joint con-
fidence interval for τ ∗ is the set of τ for which the
score test of the hypothesis θ = 0 does not reject at
level α. [The score test “numerator” is D(τ) as de-
fined in Section 2.1 except with expit(vdic(X; λ̃) +
γ ∗qdic(H(τ ),X)) replacing π , where λ̃ = λ̃(τ ) maxi-
mizes

∏
j Lj (λ,0, τ ).] The choice of the function ddic

influences the efficiency of the estimate of τ̂ (and con-
fidence interval width), but not its consistency or as-
ymptotic normality. We discuss the optimal choice of d
below. Note we have put the term “likelihood” in
parentheses because the “likelihood” L(λ, θ, τ ) is not
related to the true likelihood function for τ . Rather, it is
an artificial likelihood which we use as a computational
“trick” to obtain τ̂ . In fact, τ̂ is a semiparametric non-
likelihood-based estimator. Having obtained an esti-
mate τ̂ of τ ∗, we immediately obtain a consistent as-
ymptotically normal (CAN) estimate of the distribution
function F0(t) of R0 from the empirical distribution
function of Hj(τ̂ ), j = 1, . . . , n. Under the assumption
of no treatment interaction, we obtain a CAN estimate
of Fz(t) from the empirical distribution of Hzj (τ̂ ) =
RjI (Zj = z)+ I (Zj �= z)h−1(Hj (τ̂ ),Xj , z, τ̂ ).

The true likelihood function for the data is the
product over the n study subjects of Ltrue(τ, λ, η) =
{∂H(τ)/∂R}f {H(τ)|X;η1}f (X;η2)f (Z|X,H(τ);λ),
where we have suppressed the dependence on the
known parameter γ ∗, ∂H(τ)/∂R is the Jacobian, and
η1 and η2 are infinite-dimensional parameters index-
ing all conditional laws of H(τ ∗) givenX and marginal
laws of X. The semiparametric variance bound (SVB)
for estimators of τ is the supremum of the Cramér–
Rao variance bounds for τ over all correctly specified
parametric submodels for the infinite-dimensional pa-
rameter η. Let S(τ,λ, η1) = s(H(τ ),X,Z, τ,λ, η1)=
∂ logLtrue(τ, λ, η)/∂τ be the score for τ . In Appen-
dix A, we prove that the asymptotic variance of the

estimator τ̂ = τ̂ (Ddic,opt) with Ddic,opt(τ, λ, η1) ≡
ddic,opt(H(τ ),X, τ,λ, η1) = s(H(τ ),X,1, τ, λ, η1) −
s(H(τ ),X,0, τ, λ, η1) attains the SVB. Since (λ, η1)

is unknown, we cannot use ddic,opt in the above algo-
rithm. Therefore, we estimate (λ, η1) from the data as
follows. First we obtain inefficient estimates λ̂(τ ) by
maximizing

∏
j Lj (λ,0, τ ) over λ. We then specify a

lower dimensional model submodel f (H(τ)|X;η1sub)

that depends on a finite- or infinite-dimensional para-
meter η1sub. Let η̃1sub(τ ) be an estimator of η1sub under
the submodel such as the maximizer of

∏
j f (Hj (τ )|

Xj ;η1sub) if η1sub is finite-dimensional. Then, under
model (4), the estimator τ̂opt that uses D̂dic,opt(τ ) =
Ddic,opt(τ, λ̂(τ ), η̃1sub(τ )) in the above algorithm is lo-
cally semiparametric efficient at the submodel
f (H(τ ∗)|X;η1sub). That is, under model (4), τ̂opt is
CAN whether or not the submodel f (H(τ ∗)|X;η1sub)

is correctly specified; if the submodel is correct,
τ̂opt attains the SVB for the model.

Further, it follows from Theorem 2 of Robins and
Rotnitzky (2001) that the estimator is a locally efficient
doubly robust estimator at partial ignorability (i.e.,
γ ∗ = 0). See also van der Laan and Yu (2001).
That is, when γ ∗ = 0, τ̂opt is doubly robust in the
sense that it is CAN if either (but not necessarily
both) the model logit pr(Z = 1|x, r0;λ)= vdic(x;λ) or
the model f (H(τ ∗)|X;η1sub) is correct. It is locally
efficient in the sense that when both models are correct,
it has the smallest asymptotic variance of any doubly
robust estimator. However, confidence intervals for
τ̂opt should be based on a bootstrap estimate of its
variance, since the aforementioned interval estimator
will not cover at its nominal rate when only model
f (H(τ ∗)|X;η1sub) is correct. It can be shown that no
doubly robust estimator exists when γ ∗ �= 0.

With nondichotomous Z, we proceed as above
except now ddic(H(τ ),X) is replaced by a function
D = d(H(τ ),X,Z),

L(λ, θ, τ)

= v(Z|X;λ) exp(γ ∗q(H(τ),X,Z)+θ ′d(H(τ),X,Z))∫
v(Z|X;λ) exp(γ ∗q(H(τ),X,Z)+θ ′d(H(τ),X,Z)) dµ(Z)

and Dopt(τ, λ, η1) = S(τ,λ, η1). Estimation in the
model with λ∗ known is as above except, of course,
λ∗ need not be estimated.

EXAMPLE. Suppose H(τ) = R − τZ, where
Z may not be dichotomous, and we choose the model
f [H(τ ∗)|X;η1sub] = f [H(τ ∗) − β ′X;µ,σ 2], where
f [ε;µ,σ 2] = σf0[(ε − µ)/σ ], f0 is a known density
such as N(0,1) or Cauchy and η1sub = (β ′,µ,σ 2)′.
Let s0(t) = ∂ logf0(t)/∂t , so s0(t) = −t for the
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N(0,1) distribution and s0(t) = −2t/(1 + t2) for the
Cauchy distribution. Let q̇ be the derivative of q

with respect to its first argument. Then S(τ,λ, η1) =
−Zσ−1s0(σ

−1{R − τZ − β ′X − µ}) − γ ∗{q̇(H(τ ),

X,Z)−E[q̇(H(τ ),X,Z)|H(τ),X;λ,γ ∗]}. It follows
that, in the normal case with γ ∗ = 0 and Z dichoto-
mous, d̂dic,opt(H(τ ),X) is minus the residual from the
ordinary least squares (OLS) regression of H(τ) on
(1,X′)′ divided by σ̂ (τ ). In contrast, in the Cauchy
case, ddic,opt(H(τ ),X) is a highly nonlinear function
of R − τZ − β̃(τ )′X − µ̃(τ ), and β̃(τ ) and µ̃(τ )

are not computed by OLS. To not have to decide
between choosing f0 to be N(0,1) or Cauchy, we
can follow Bickel (1982) and adapt to f0 without
asymptotic efficiency loss by letting f [ε;µ,σ 2] =
σf0[(ε − µ)/σ ] be a smooth, completely unknown
density (so η1sub is infinite-dimensional) and then
computing kernel density and density derivative esti-
mators of the ratio {∂f (ε;µ,σ 2)/∂ε}/f (ε;µ,σ 2) =
σ−1s0(σ

−1{R − τZ − β ′X − µ}) from the estimated
residuals ε̃(τ ) = R − τZ − β̃(τ )′X, where, β̃(τ ) is a
robust regression estimator of the coefficient of X from
a robust regression of the variable R − τZ on (1,X′)′.
3.2 An Alternative Sensitivity Analysis Model

The biggest challenge in conducting a sensitivity
analysis is to choose a parameterization that has an
interpretation that can be communicated to relevant
subject matter experts with sufficient clarity so they
can provide informed opinions. To use model (4),
a subject matter expert must be able to offer opinions
about the magnitude γ ∗ and the shape q(t, x, z) of the
dependence of f (z|x, r0) on the potential outcome r0.
When Z is dichotomous, the task can often be made
easier by rewriting model (4) using Bayes’ theorem as

f (r0|z= 1,X = x;λ,γ ∗)
= c(λ, γ ∗)f (r0|Z = 0,X = x)

· exp
(
vdic(x;λ)+ γ ∗qdic(r0, x)

)
,

where c(λ, γ ∗) is a normalizing constant and f (r0|
Z = 0,X = x) is completely unknown. Even then,
we suspect that many experts will have less difficulty
giving opinions about the quantile–quantile function
linking these two distributions than about the densities.
Hence, let

B(t, x, z)= F−1
0

[
F0
{
t|X = x,Z = 0

}∣∣X = x,Z = z
]

be the quantile–quantile function that quantifies how
the distribution of R0 among subjects with X = x and
Z = z differs from that among subjects with X = x and
Z = 0. Under partial ignorability, B(t, x, z)≡ t .

An alternative sensitivity analysis model regards
B(t, x, z) as known. A simple choice for B(t, x, z)

would be t − γ ∗z, with γ ∗ the parameter to be varied
in a sensitivity analysis. The model characterized by

B(t, x, z) is a known function(5)

is a nonparametric just identified model in the sense
that it places no restriction on the joint distribution of
the observables (R,X,Z), but identifies the function
h(r, x, z) and the law of R0 given X = x and Z = x.
Models (5) and (6) are identical at partial ignorability,
that is, when γ ∗ = 0 and B(t, x, z)= t .

Given a SDM, let L = B(H,X,Z) and L(τ) =
B(H(τ ),X,Z) with H and H(τ) as above. Note the
distribution of L|Z,X is F0(t|X,Z = 0) so L

∐
Z|X

and L(τ ∗)∐Z|X. It follows that if we impose a para-
metric model v(z|x;λ) for f (z|x), then, for a given
user-supplied vector function d , the estimator τ̂ and
the 1 − α confidence interval for τ ∗ described above
are CAN and cover at the nominal rate when we mod-
ify L(λ, θ, τ ) by eliminating the term containing γ ∗
and by replacing H(τ) by L(τ).

The true likelihood function for model (5) is the
product over the study subjects of Ltrue(τ, λ, η) =
{∂L(τ )/∂R}f {L(τ)|X;η1}f (X;η2}f (Z|X;λ), where
η1 and η2 are infinite-dimensional. We obtain a lo-
cally semiparametric efficient doubly robust estimator
τ̂opt using the above algorithm with L(τ) substituted
for H(τ). In model (5), (X,Z) are always ancillary
for τ . In contrast, in model (4), (X,Z) are ancillary
only when γ ∗ = 0 and thus R0

∐
Z|X. It follows from

the ancillarity of (X,Z) and Theorem 2 of Robins and
Rotnitzky (2001) that, in contrast to model (4), τ̂opt
is always doubly robust in model (5), even when
R0 �∐Z|X. From a statistical standpoint, this is an ad-
vantage of model (5) over (4).

3.3 Instrumental Variable Methods

Suppose, following Rosenbaum, we observe the
post-Z variable W with support W and potential out-
comes Wz before observing the outcome of interest
R with potential outcomes Rwz that depend on the
levels to which both w and z are set. Robins (1989)
considered inference under the randomization assump-
tion Z

∐{Rzw;w ∈ W , z ∈ Z}|X and the no direct
effect of Z assumption Rzw = Rw (which Angrist,
Imbens and Rubin, 1996, referred to as the exclusion
restriction). We now follow the approach of Robins,
Greenland and Hu (1999) and extend our sensitivity
analysis methodology to this data structure. The ran-
domization and exclusion restrictions are included as
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special cases. Specifically, define Fzw(t|X,Z,W) =
pr(Rzw < t|X,Z,W). Define the quantile–quantile
functions h1(t,X,Z,W) = F−1

Z0 {Fzw(t|X,Z,W)|X,
Z,W } and h0(t,X,Z) = F−1

00 {Fz0(t|X,Z)|X,Z} and
let H1 = h1(R,X,Z,W) and H = h0(H1,X,Z). It di-
rectly follows from these definitions that H and R00
have the same distribution given (X,Z). A structural
nested distribution model (SNDM) (h0(t,X,Z; τ0),

h1(t,X,Z,W ; τ1)) is a pair of SDM for (h0, h1)

(Robins, 1997). Each SDM function is identically
equal to t if and only if its parameter is zero. Let τ ∗ =
(τ ∗

0 , τ
∗
1 ) denote the truth. Let H(τ) = h0(H1(τ1),X,

Z, τ0), where H1(τ1) = h1(R,X,Z,W, τ1). The no
direct effect of Z(i.e., exclusion restriction) implies
that τ ∗

0 = 0, equivalently h0(t,X,Z) ≡ t , or equiv-
alently F00(t|X,Z) = FZ0(t|X,Z). The hypothesis
Rzw =Rz0 for all w and z of no direct effect of W on R
implies τ ∗

1 = 0 or, equivalently, FZW(t|X,Z,W) =
FZ0(t|X,Z,W).

We shall estimate τ ∗ using generalizations of our
sensitivity analysis models (4) and (5). The generaliza-
tion of model (5) redefines B(t,X,Z) as F−1

00 {F00(t|
X,Z)|X,Z = 0}. The generalization of model (4) sim-
ply replaces R0 by R00 in (4). Thus both models im-
pose assumptions about the conditional dependence
between Z and R00 given X. Neither makes any as-
sumptions about the dependence between W and RZ0
given (Z,X). In this sense, both models are firmly in
the tradition of standard instrumental variable methods
based on the randomization assumption: assumptions
about the association of Z with the potential outcomes
are used to draw inferences about the effect of the treat-
ment W on the response R.

The randomization assumption implies the partial
randomization assumption R00

∐
Z|X which is equiv-

alent to B(t,X,Z)≡ t in the extended model (5) and to
γ ∗ = 0 in extended model (4). If we impose a paramet-
ric model v(z|x;λ), then, given user-supplied vector
functions ddic or d , the estimator τ̂ and the 1 −α confi-
dence interval for τ ∗ described above under models (4)
and (5), respectively, remain CAN and still cover at
the nominal rate under the extended models. Robins,
Scharfstein and Rotnitzky (2000) describe additional
nonidentifiable assumptions, analogous to the assump-
tions concerning hc(t, x, z) mentioned above, that are
sufficient to identify Fzw(t|X).

The likelihood function Ltrue(τ, λ, η) of extended
models (4) and (5) has an additional term, f (W |H(τ),

X,Z;η3) and f (W |L(τ),X,Z;η3), respectively,
with η3 an unrestricted infinite-dimensional parameter.
The optimal function Dopt(τ, λ, η1, η3) is E[S(τ,λ,

η1, η3)|H(τ),X,Z] in extended model (4) and
E[S(τ,λ, η1, η3)|L(τ),X,Z] in extended model (5),
where S(τ,λ, η1, η3) = ∂ log Ltrue(τ, λ, η)/∂τ . In ex-
tended model (4), D̂opt(τ ) = Dopt(τ, λ̂(τ ), η̃1sub(τ ),

η̃3sub(τ )), where λ̂(τ ) is calculated as above and
η̃1sub(τ ) and η̃3sub(τ ) maximize

∏
j f [Hj(τ )|Xj ;

η1sub]f [Wj |Hj(τ ),X,Z;η3sub] when η1sub and η3sub
index finite-dimensional parametric submodels. For
extended model (5), the procedure is identical but with
Lj(τ ) substituted for Hj(τ ). In both extended mod-
els (4) and (5), τ̂opt is locally semiparametric efficient
at the submodels indexed by η1sub and η3sub. In ex-
tended model (5), τ̂opt is also doubly robust in the sense
that it is CAN if either the model v(Z|X;λ) is correct
or both of the parametric submodels indexed by η1sub
and η3sub are correct. In extended model (4), τ̂opt is
doubly robust only when γ ∗ = 0. Newey (1990) was
the first to derive the SVB for model (5) and its ex-
tension and model (4) and its extension when γ ∗ = 0.
Robins (1997, 1998) gave the SVB in model (4) with
γ ∗ �= 0.

3.4 Matched Studies

Following Rosenbaum, consider a pair matched
study with dichotomous Z, and n/2 subject pairs. We
let the first component X1j of Xj have the value k if
subject j is in the kth pair and we take vdic(X;λ) =∑n/2

k=1 λ1kI (X1 = k) + v(X;λ2), where λ is an un-
known parameter and v(X;λ2) is a known function
that adjusts for variables that were not matched on.
Then inference proceeds exactly as above except we
now use the conditional logistic likelihood that con-
ditions on the n/2-dimensional vector recording the
number of treated subjects Nk in each pair k as
in Robins, Blevins, Ritter and Wulfsohn (1992) and
Rosenbaum (1988). For example, for model (4), this
likelihood is

∏n/2
k=1 Lk(λ, θ, τ ), where

Lk(λ, θ, τ )

=
(

exp(M1k(λ,θ,τ))
Z1k exp(M2k(λ,θ,τ))

1−Z1k

exp(M1k(λ,θ,τ))+exp(M2k(λ,θ,τ))

)I (Nk=1)
,

and, for example, M1k(λ, θ, τ ) = v(X1k;λ2) +
γ ∗qdic(H1k(τ ),X1k)+θddic(H1k(τ ),X1k) and we have
used 1k and 2k to denote the subjects in pair k. Thus,∏n/2
k=1 Lk(λ, θ, τ ) is the likelihood for

∑n/2
k=1 I (Nk = 1)

independent Bernoulli random variables Z1k with suc-
cess probabilities

exp(M1k(λ, θ, τ ))

exp(M1k(λ, θ, τ ))+ exp(M2k(λ, θ, τ ))
.
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3.5 Exact Superpopulation Inference

In models (4) and (5) and their extensions, small
sample exact tests of the hypothesis that τ is the
true value of the superpopulation parameter τ ∗ when
(1) Z is dichotomous and (2) vdic(X;λ) = λ′vdic(X)

is linear in λ and includes an intercept can be ob-
tained as above except now we use exact tests of the
hypothesis θ = 0 based on exact logistic regression
as in Rosenbaum’s Section 3.1. That is, as in Rosen-
baum’s Section 3.1, we condition on the sufficient sta-
tistic Z′vdic(X), where vdic(X) is the n×p matrix with
rows vdic(Xj ).

4. OBSERVED STUDY POPULATION INFERENCE
REVISITED

In this section, we show that the superpopulation
methodology reviewed in Section 3 above can, with
minor modification, be used for observed study pop-
ulation inference as considered by Rosenbaum. Sup-
pose Z is dichotomous, data on W are not obtained,
there are no hidden biases and we again wish to es-
timate effects in the observed study population so the
counterfactuals r· and covariates x are fixed constants.
We assume f (Z|r·,x) is

∏
j πj (Zj ), where πj(1) =

expit{vdic(xj ;λ)} with vdic(xj ;λ) known and λ an un-
known finite-dimensional parameter so hidden bias is
absent. Let F̂z(t|x) be the empirical distribution of
the rzj among subjects with xj equal to x. Rede-
fine h(t, x, z) = F̂−1

0 {F̂z[t|x]} and let h(t, x, z, τ ) be
a parametric SDM. The true parameter value τ ∗ =
τ ∗(r·,x) is a function of (r·,x) of the observed study.
Then, arguing exactly as in Section 2.1, given a cor-
rectly specified SDM model, the 95% interval estima-
tors for τ ∗ described above for model (4) will have
coverage strictly greater than 0.95 under f (Z|r·,x) in
large samples unless rank preservation holds [i.e., by
definition, h(r1j , xj ,1) = r0j for all j ], in which case
the limiting coverage rate is exactly 0.95. Note if, as
often will be the case, no two subjects j have the same
value of x, then rank preservation trivially holds, be-
cause F̂z(t|xj ) is a point mass at rzj . If we have rank
preservation we can examine effects of hidden bias by
assuming πj (1) = expit(vdic(xj ;λ)+ γ ∗qdic(r0j , xj ))

and varying (γ ∗, qdic(·, ·)) in a sensitivity analysis. Un-
der this model, the above 95% interval estimators for
τ ∗ under model (4) will again cover under f (Z|r·,x)
at their nominal rate in large samples. Rosenbaum as-
sumed rank preservation with h(t, x, z, τ )= t − τz.

The issue of what function ddic to choose to construct
interval and point estimators τ̂ = τ̂ (ddic) for τ ∗(r·,x)

remains. A reasonable approach is to entertain the
working hypothesis that (r·j , xj ), j = 1, . . . , n, are
n i.i.d. realizations from a density F satisfying rank
preservation h(r1j , xj ,1) = r0j on a set with
F -probability 1. Then var[n1/2(τ̂ (ddic) − τ ∗)|R· = r·,
X = x] will, on a set with Fn-probability 1, converge
to the unconditional variance of n1/2(τ̂ (ddic) − τ ∗)
since E[τ̂ (ddic) − τ ∗|R· = r·,X = x] = 0 on a set of
Fn-probability 1. Here Fn is the n-fold product law
derived from F . It follows that if we make the further
working hypothesis that R0|X under F is in a given
parametric or semiparametric model f (r0|x;η1sub),
then one should use the locally efficient estimator
τ̂opt = τ̂ (d̂dic,opt) to try to minimize the variance and
confidence interval length for large n under f (Z|r·,x).
This methodology for covariance adjustment based on
semiparametric efficiency theory, in contrast to the
more ad hoc approach of Rosenbaum, provides for ac-
tive adaptation to, rather than simply robust protection
against, skew or heavy-tailed empirical distributions
for R0.

When data on W are available, we suppose h1(rzwj ,

xj , z,wzj , z)= rz0j and h0(rz0j , xj , z)= r00j for all j
and we have a correctly specified SNDM (h0(t,

x, z; τ0), h1(t, x, z,w; τ1)) for (h0, h1). Note that
Rosenbaum chose τ ∗

0 = 0 and h1(t, x, z,w; τ ∗
1 ) =

t − τ ∗
1w. Then our above confidence intervals for

the observed study parameter τ ∗(r··,x,w·) = τ ∗ =
(τ ∗

0 , τ
∗
1 ) under extended model (4) will cover at their

nominal rate in large samples under f (Z|r··,x,w·) =∏
j πj (Zj ) with πj (1) = expit(vdic(xj ;λ) + γ ∗ ·

qdic(r00j , xj )), where r·· = {rzwj } and w· = {wzj }.
Furthermore, d̂dic,opt computed as in Section 3.3 should
be used to attempt to minimize confidence interval
length for large n.

4.1 Relationship to Rosenbaum’s Methodology

As in Rosenbaum’s Section 3, suppose Z is dichoto-
mous, data on W are unavailable and we have an addi-
tive model h(rzj , xj , z) = rzj − τ ∗z, but we allow for
hidden bias. In this setting, Rosenbaum (1988) consid-
ered the model

logit
{

pr[Z = 1|xj , uj ]}= vdic(xj , λ)+ γ ∗uj ,
(6)

uj ∈ (0,1),

where λ is an unknown vector parameter, the uj are
unmeasured covariates and γ ∗ is the parameter to be
varied in a sensitivity analysis. Rosenbaum uses this
model to set confidence intervals (τlower, τupper) for τ ∗
using the following pseudo-algorithm. Given γ ∗, let
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τlower be the largest value of τ such that a given exact
or large sample α/2 test of the null hypothesis τ ∗ < τ

rejects for all choices of {uj }. Let τupper be the smallest
value of τ such that an α/2 test of the hypothesis
τ ∗ > τ rejects for all choices of {uj }. Rosenbaum’s
interval (τlower, τupper) is the same interval that would
be computed under my model (4) if we replace the
phrases “rejects for all choices of {uj }” with “rejects
for all functions qdic(r0, x) both of the form I (r0 >

c(x)) and of the form I (r0 < c(x)), where c(x) is
an arbitrary function.” When X is low-dimensional
and discrete and vdic(xj , λ) is a saturated model,
Rosenbaum has developed tractable algorithms that
compute τlower and τupper in many important cases. It
would be of interest to know if Rosenbaum has ideas
as to how to compute τlower and τupper when X is high-
dimensional.

5. SENSITIVITY ANALYSIS—IS IT
SCIENTIFICALLY USEFUL?

Rosenbaum’s model (6) and my analogous model (4)
will be scientifically useful only if experts can provide
a plausible and logically coherent range for the value
of the sensitivity parameter eγ

∗ = *∗. I now argue this
may be difficult without intensive training. Suppose a
covariate X is known to be strongly associated with
the outcome R among the untreated (Z = 0). If X is
also correlated with treatment Z, then studies in which
data on X are available (and can thus be adjusted for)
will generally suffer from less hidden bias than studies
in which data on X have not been collected. Naively,
one would therefore expect that the availability of
data on X should narrow the range of γ ∗ considered
plausible. To the surprise of most statisticians and
to nearly all subject matter experts, this may not be
so, because the meaning of the conditional odds ratio
parameter eγ

∗ = *∗ in (4) and (6) depends on the
covariates recorded in X. It follows that eγ

∗ = *∗ is
a “paradoxical” measure of hidden bias.

To prove this claim, we shall consider an extreme
example of a very large study (so sampling vari-
ability can be ignored) in which the additive model
r1j − r0j = τ ∗ holds and X is the only measured co-
variate. Suppose the empirical distribution of the data
(rj , xj , zj ), j = 1, . . . , n, is as follows: (i) X is uni-
formly distributed on {1,2, . . . ,100}, (ii) X and Z are
independent, and (iii) given X = x and Z = z, R is
uniformly distributed on (x−1

100 ,
x

100) for both z= 0 and
z = 1 so τ ∗ will be estimated to be 0 were one to
assume no hidden bias (*∗ = 1). Suppose an expert

gives (1/100,100) as his or her plausible range for the
parameter eγ

∗ = *∗ in model (6) with vdic(xj , λ) =∑100
k=1 λkI (xj = k) saturated. Then in Appendix B, we

show that (τlower, τupper) = (−0.00409,0.00409), the
limits corresponding to *∗ equaling 100 and *∗ =
1/100. Suppose, however, that for confidentiality rea-
sons, the expert and the data analyst (i) were not al-
lowed access to the individual data on X, so Rosen-
baum’s model

logit pr{Z = 1|uj } = λ0 + γ ∗uj , uj ∈ (0,1),(7)

with λ0 an unknown constant must be used in the
analysis, but (ii) were told that X and Z were inde-
pendent and were given both the empirical marginal
law of X and empirical conditional law of R given
X = x and Z = 0. Because, when X and Z are inde-
pendent, X is intuitively not a confounder and, there-
fore, the degree of hidden bias should generally be
the same regardless of whether data on X have been
obtained, an untutored expert might suppose he or
she should give the same range of (1/100,100) for
eγ

∗ = *∗ regardless of whether data on X are avail-
able. However, in Appendix B, we show that the choice
(1/100,100) in model (6) when data on X are avail-
able plus the information available to the expert im-
plies the range (1/1.03,1.03) for *∗ in model (7) with-
out data on X. The use of this range for eγ

∗ = *∗
in model (7) again results in the confidence interval
(−0.00409,0.00409) for τ ∗. In contrast, use of the in-
coherent choice (1/100,100) in model (7) results in
the logically incoherent, misleadingly wide interval of
(−0.5,0.5).

Since for logistical reasons the covariates recorded
in X vary widely among the various studies of a given
treatment–response association, the above example
makes it clear that to effectively summarize overall
uncertainty or to apply results from one study to
help choose a plausible range for another study, we
must either abandon Rosenbaum’s model (6) and my
analogous (4), or we must provide careful guidance
and education as to the X-dependent meaning of γ ∗.
One might hope that model (4) could be saved by using
a different model for pr(Z = 1|X,R0) other than the
logistic. Based on a related discussion in Section 7.2 of
Scharfstein, Rotnitzky and Robins (1999), I doubt that
this hope can be fulfilled.

We are still left with the question of whether there
exist sensitivity analysis models that are consistent
with the naive intuition that data on additional covari-
ates X should not lead to a larger plausible range for
the sensitivity parameter. In fact, the alternative sensi-
tivity analysis model of Section 3.2 is such a model
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(although it requires that we adopt the superpopula-
tion point of view, as the model will often be undefined
or vacuous if we treat counterfactuals r· and covari-
ates x as fixed). For example, if we take B(t, x, z) =
t − γ ∗z (so γ ∗ =E[R0|Z = 1,X = x] −E[R0|Z = 0,
X = x]), then in our example with X independent
of Z, a plausible range (a, b) for γ ∗ when data on X

are available logically entails, as intuition would sug-
gest, the same range when data on X are unavailable.
However, we have a problem peculiar to the academy:
the model B(t, x, z) = t − γ ∗z is trivial in the sense
that its implications are so self-evident that a paper
on the topic would not satisfy the difficulty level re-
quired of a freshman college course much less that
expected of a Journal of the American Statistical As-
sociation or Biometrika paper. (Although it is possi-
ble to hide this triviality behind some fancy math as
in Section 3.2 above.) For example, if one obtains a
point estimate τ̂ and interval estimate (τlower, τupper)

for an additive effect parameter τ ∗ in the absence of
hidden bias (γ ∗ = 0), then, for any other value γ ∗ ex-
amined in the sensitivity analysis, we obtain τ̂ − γ ∗
and (τlower − γ ∗, τupper − γ ∗). However, precisely be-
cause of its transparent interpretation, I believe that it
is often easier for subject matter experts to give their
opinions about the plausible magnitude γ ∗ of the dif-
ference in the conditional means of R0 than to give
opinions about the difficult issues of whether the un-
measured confounders uj are continuous or discrete,
single or multidimensional, and the conditional asso-
ciations of such confounders with treatment and/or
outcome. Furthermore, in longitudinal studies with
time-varying treatments, there remains a role for so-
phisticated mathematical analysis as it is a nontriv-
ial exercise to propagate over time an expert’s ranges
for the treatment–covariate-time specific differences in
counterfactual means to quantify overall uncertainty.
See Robins (1999) and Robins, Greenland and Hu
(1999).

APPENDIX A: EFFICIENT ESTIMATION

In the extended model (4) the nuisance tangent
space (NTS) for the finite-dimensional parameters
(τ, λ) is the set of all scores for η and equals
{a1(H,X) + a2(X) + a3(W,H,X,Z);E[a1(H,X)|
X] = E[a2(X)] = E[a3(W,H,X,Z)|H,X,Z] = 0}.
Thus projection of any M = m(W,H,X,Z) on the
NTS is {M − E[M|H,X,Z]} + {E[M|H,X] −
E[M|X]} + {E[M|X] − E[M]}. By definition the
joint efficient score for (τ, λ) is the residual from

the projection of the scores M = (Sτ , Sλ) for (τ, λ)

on NTS, which is (E[Sτ |H,X,Z] − E[Sτ |H,X], Sλ)
since Sλ is orthogonal to NTS. Thus the efficient score
for τ alone is Sτ, eff = E[Sτ |H,X,Z] −E[Sτ |H,X] −
E{(E[Sτ |H,X,Z] − E[Sτ |H,X])S′

λ}{E[SλS′
λ]}−1Sλ,

which we write as Sτ, eff(τ
∗) to indicate it depends

on the true value of τ ∗. Now a Taylor expansion of
the estimating function for τ̂ (dopt) around λ shows
τ̂ (dopt) is asymptotically equivalent to an estimator
solving 0 = ∑

j Sτ, eff, j (τ ). But an estimator solv-
ing the efficient score equation has the efficient vari-
ance. The results for the other models are a special
case.

APPENDIX B

Consider first the case where data on X are avail-
able and eγ

∗ = *∗ ∈ (1/100,100). We shall need the
fact that g(c) = ∫ 1

0 r0*
I(r0>c) dr0/

∫ 1
0 *I(r0>c) dr0 is

maximized at cmax = cmax(*) = (* − *1/2)/(* − 1)
and that g(cmax) = cmax. The empirical means E[R0|
X = x,Z = 0] and E[R1|X = x,Z = 1] equal (x −
1/2)/100 by the conditional uniformity of R given
X = x and Z = z. Now from the sensitivity analy-
sis model (6) with data on X and uniformity of
the conditional law of R0 given X = x and Z = 0,

E[R0|X = x,Z = 1]

=
∫ x/100
(x−1)/100 r0 exp[γ ∗I (r0 > c(x))]dr0∫ x/100
(x−1)/100 exp[γ ∗I (r0 > c(x))]dr0

,

which attains the maximum of (x − 1 + 0.909)/100 =
(x − 1 + cmax(100))/100 at *∗ = eγ

∗ = 100 and
qdic(r0, x) = I (r0 > (x − 1 + cmax(100))/100). Sim-
ilarly, E[R0|X = x,Z = 1] attains its minimum of
(x − 0.909)/100 = (x − cmax(100))/100 at *∗ =
1/100, qdic(r0, x) = I (r0 < (x − cmax(100))/100).
Since, under additivity, τ ∗ = E[R1|X = x,Z = 1] −
E[R0|X = x,Z = 1], we have that (τlower, τupper) =
(−0.00409,0.00409).

Consider now the case with data on X missing.
From the information available to the expert, he or she
knows that R0 is uniformly distributed given Z = 0
on (0,1) and that E[R0|Z1 = 1] − E[R0|Z = 0] at-
tains its maximum of (0.909 − 0.5)/100 = 0.00409
at *∗ = eγ

∗ = 100 and qdic(r0, x) = I (r0 > (x −
1 + cmax(100))/100) under model (6). Therefore, he
or she can conclude that the maximum value of
E[R0|Z = 1] is 0.5 + 0.00409. A similar calcula-
tion gives the minimum 0.5 − 0.00409. Since, un-
der additivity, τ ∗ = E[R1|Z = 1] − E[R0|Z = 1] and
E[R1|Z = 1] = 1/2 from the data, he or she concludes
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that (τlower, τupper)= (−0.00409,0.00409)without us-
ing model (7). Suppose, on the other hand, he or she
used model (7) to evaluate E[R0|Z = 1]. To be con-
sistent with the maximum value of 0.5 + 0.00409 ob-
tained based on model (6), he or she must use the
value of *∗ in model (7) that solves 0.5 + 0.00409 =
supc(

∫ 1
0 r0*

∗I (r0>c) dr0/
∫ 1

0 *
∗I (r0>c) dr0) = (*∗ −

*∗1/2)/(*∗ − 1), which is *∗ = 1.032. A similar cal-
culation for the minimum gives the interval (1/1.032,
1.032) for the parameter *∗ of model (7). Technically
model (7) and model (6) are incompatible; therefore,
we simply computed the value of *∗ in model (7) that
would reproduce the limits on E[R0|Z = 1] calculated
under model (6).

Rejoinder
Paul R. Rosenbaum

I would like to thank Joshua Angrist, Guido Im-
bens, Jennifer Hill and Jamie Robins for their insight-
ful and gracious comments. Over the past decade,
Angrist and Imbens have illuminated the concept of
instrumental variables through improved, less clut-
tered, more general theory (Imbens and Angrist, 1994;
Angrist and Imbens, 1995; Angrist, Imbens and Ru-
bin, 1996). Hill has clarified broken randomized exper-
iments, which mix elements of experiments and obser-
vational studies (Barnard, Du, Hill and Rubin, 1998).
Robins has developed an attractive approach to studies
with time-dependent treatments (Robins, Blevins, Rit-
ter and Wulfson, 1992; Robins, 1999).

1. DISCONTINUITY

Angrist and Imbens raise the interesting issue of
group randomized trials and their parallels in obser-
vational studies, suggesting that the Card and Krueger
(1994) study is an example. In a group randomized
trial, experimental units come in clusters and whole
clusters are randomly allocated to treatment or con-
trol. I agree with Angrist and Imbens that observational
studies resembling such experiments form an interest-
ing, common and relatively unexplored topic; however,
I would view Card and Krueger’s study as having a
stronger relationship with discontinuity designs.

Campbell and Stanley (1963) discussed the “regres-
sion-discontinuity design,” in which there is a cutpoint
for an observed covariate, say L, which is used to
assign treatments in a deterministic manner: units with
low scores, L ≤ c, receive treatment; those with high
scores, L > c, receive the control. If one believed that
bias due to L was continuous as a function of L, then
in this design it is possible to estimate the effect of
the treatment at the cutpoint L = c, because there is
only a small bias when comparing treated units just

below the cutpoint to controls just above it. In other
words, the premise is that bias due to L is continuous
in L, whereas treatment assignment is discontinuous
in L, so a discontinuity in the response surface at L= c

provides evidence about the treatment effect.
More recently, discontinuity designs have taken var-

ied forms, sometimes linked to the use of instrumen-
tal variables, for instance, the Wald estimator. See An-
grist and Krueger (1991), Angrist and Lavy (1999),
Black (1999) and Sullivan and Flannagan (2002) for
four clever applications, Angrist and Krueger (1999,
2001) for general discussion, and Hahn, Todd and Van
der Klaauw (2001) for associated theory. In particular,
Black (1999) considered discontinuities defined by ge-
ographic boundaries.

Card and Krueger compared employment in New
Jersey and Pennsylvania at fast food restaurants such
as Burger King before and after New Jersey increased
its minimum wage. Their fine study is most compelling
for nearby restaurants in similar neighborhoods on op-
posite sides of the Delaware River, which defines the
border between New Jersey and Pennsylvania. The
economies along the Delaware are entwined. Cherry
Hill, New Jersey, is a suburb of Philadelphia similar
to several Pennsylvania suburbs of Philadelphia. Mor-
risville, Pennsylvania, is a suburb of Trenton, New Jer-
sey, similar to several New Jersey suburbs of Tren-
ton. Lambertville, New Jersey, is similar to nearby
New Hope, Pennsylvania. In contrast, parts of southern
New Jersey might be compared to appropriate parts of
Delaware, while northern New Jersey might be com-
pared to appropriate adjacent parts of New York state.
Parts of New Jersey may have no useful controls in ad-
jacent states and might be excluded, for instance, At-
lantic City or Hoboken. As in Campbell and Stanley’s
discontinuity design, the most compelling comparisons
are at the policy discontinuity along the state perimeter
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when comparable units exist on opposite sides of that
perimeter.

Although response surface discontinuities along state
perimeters may provide evidence about effects of state
policies, more than one policy may change at the bor-
der. For example, New Jersey and Pennsylvania may
have different minimum wages, but they also have dif-
ferent income taxes. How can one isolate the effects of
a single policy? Because Card and Krueger examined
employment before and after the wage increase in New
Jersey, stable differences in other economic policies
do not provide immediately compelling explanations
of changes in employment (cf. Rosenbaum, 2001a).
Examination of employment changes among certain
businesses employing few or no employees directly af-
fected by the minimum wage provides a second op-
portunity to isolate the minimum wage—those busi-
nesses should not be greatly affected—and Card and
Krueger performed some analyses of this kind. Com-
parisons along boundaries with several adjacent states
resemble the use of multiple control groups (Rosen-
baum, 2002a, Chapter 8); for example, income taxes
differ in Pennsylvania and New York, thereby helping
to separate income taxes from effects of changing the
minimum wage.

2. INFINITE POPULATIONS

The relationship between randomization inference
and infinite population models can be formalized in
various ways, some yielding mild divergences, as in
Robins’ discussion, others yielding harmony. A har-
monious formalization was given by Lehmann (1986,
Section 5.10) building upon Lehmann and Stein (1949)
and Fraser (1954). Lehmann considered a stratified
sample from a stratified, infinite, continuous popula-
tion, in which the treated distribution in each stratum
is shifted by τ when compared to the control distrib-
ution. Lehmann (1986, Theorem 5.10.6) then showed
that the only distribution-free tests of a hypothesis
about τ are permutation or randomization tests. The
beautiful proof uses the complete sufficiency of the or-
der statistics: conditioning on the observed responses
but not their treatment assignments (i.e., conditioning
on the order statistics) eliminates the unknown distri-
bution functions as nuisance parameters. This quickly
yields most powerful permutation tests by way of the
Neyman–Pearson lemma. In the case of binary re-
sponses, Cox and Snell (1989, page 149) presented
Fisher’s exact randomization test in harmony with a

logit model in which a nuisance parameter is elimi-
nated by conditioning; see also Lehmann (1986, Sec-
tion 4.5).

In his discussion of superpopulations, Robins pre-
sumes that the correct standard error of an estimate
for an infinite population is an unconditional standard
error, but as just noted, in Lehmann (1986) and Cox
and Snell (1989), the distributions used for inference
with infinite populations are the conditional distribu-
tions, the conditioning being needed to eliminate nui-
sance parameters. In the nonparametric and logit mod-
els just described, the infinite population model and the
randomization inference agree exactly with each other,
yielding exactly the same inference, and this is slightly
at odds with the discussion Robins presents.

3. ADDITIVE EFFECTS FOR INDIVIDUALS AND
LOCATION SHIFTS FOR DISTRIBUTIONS:

STANDARD THEORY

In the discussion, unease about additive treatment
effects arises here and there. Unease is unwarranted,
I believe, because certain concerns disappear upon
close inspection and others submit to commonplace
solutions, such as fitting interaction effects. In the
current section, I discuss a simple case in conventional
terms, and in Section 4 of this reply I discuss the
general case in the terms of Section 3 of the paper.

As reviewed in Section 2 of my paper, causal effects
are comparisons, such as rTj − rCj , of two potentially
observable responses which are not jointly observable
(Neyman, 1923; Rubin, 1974): we observe Rj , Zj and
xj , j = 1, . . . , n, but not (rTj , rCj ). This structure is
the basis for some of the most celebrated claims in
statistics—for example, that randomized experiments
produce unbiased estimates of average causal effects—
and yet, it is a peculiar structure, because one ends
up talking about certain joint distributions, but one
observes only certain marginal distributions derived
from them. Is it reasonable to use a model of additive
effects rTj − rCj = τ given that (rTj , rCj ) is not jointly
observed?

There seem to me to be three issues that need to be
distinguished. First, the observable distributions may
be perfectly compatible with additivity, but behind the
scenes the effect is not additive. Second, there may
be visible evidence in observable distributions that the
treatment effect is not additive. Third, new data may
become available, so that we may be moved from
the first situation to the second. Each of these issues
can be dealt with in a straightforward manner, provid-
ing they are distinguished. In this section, assume the
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simplest situation, namely a large randomized trial—
that is, large n—with a coarse, discrete covariate xj
and with treatments assigned completely at random,
Pr(Zj = 1) = Pr(Zj = 1|rTj , rCj ,xj ) = 1

2 , indepen-
dently for different subjects j , as one could easily do
using a table of random numbers; a more general case
is considered in Section 4. Because n is large, state-
ments about distributions are correct for theoretical dis-
tributions and nearly so for empirical distributions, the
two tending toward agreement as n→ ∞.

First, if one observes Rj , Zj and xj in such a sim-
ple randomized trial, then additivity implies that at
any value of xj , the distribution of observed responses
among treated subjects is shifted by τ from the dis-
tribution of responses among control subjects, that is,
the two distributions have the same shape and disper-
sions but different locations, although the shapes and
dispersions may vary with xj . These are, by the way,
the same conditions that apply to the distributions in
Lehmann (1986, Theorem 5.10.6) mentioned in Sec-
tion 2 of this rejoinder. In this case, the randomization
inference for an additive treatment effect rTj −rCj = τ ,
which refers to the unobservable joint distribution, is
exactly the same as the randomization inference for
Lehmann’s constant shift model, which refers only
to observable distributions; moreover, the latter is the
only nonparametric inference for this problem. One
could, then, interpret randomization inferences about
the additive effect τ as inferences about the constant
shift model, so that the unobservable joint distribution
plays no role. That is, if behind the scenes, the unob-
servable joint distribution is nonadditive in just such a
way as to produce a constant shift for the observable
marginal distributions, as in one of Robins’s examples,
then the randomization inference remains correct as a
description of the visible constant shift. So far, no prob-
lem.

Second, one may observe in the data that the addi-
tive shift model is incorrect. In this case, one would,
of course, fit a different model. For example, there
might be interaction: the magnitude of the shift might
be seen to vary with xj . Suppose, for example, the
magnitude of the shift was a function of the first co-
ordinate of xj , say xj1, which is a binary variable,
so rTj − rCj = τ1 if xj1 = 1 and rTj − rCj = τ0 if
xj1 = 0. Then the situation described in the previous
paragraph simply occurs twice, for xj1 = 1 and for
xj1 = 0, and no fundamentally new problems arise:
the option of interpreting the parameters (τ1, τ0) of the
unobservable joint distribution in terms of observable
distributions is still available. Still, no problem. [To

fill in a few technical details, the adjusted responses
Rj − Zj {τ1 xj1 + (1 − xj1)τ0} equal the potential re-
sponses under control rCj . A hypothesis about (τ1, τ0)

could be tested by computing adjusted responses un-
der the null hypothesis, regressing these on the remain-
ing coordinates of xj to obtain residuals, calculating
the two independent Wilcoxon rank sum statistics sep-
arately for xj1 = 1 and for xj1 = 0, and combining
these two statistics into a single test with 2 degrees of
freedom. The rank sums are independent in this simple
case, because under the null hypothesis they are func-
tions of the fixed rCj ’s and the independent Zj ’s.]

There is one place where the model of an additive
effect for the unobserved joint distribution says more
than the constant shift model for the observable distri-
butions. The additive effect model rTj −rCj = τ makes
a prediction about what we would see if we mea-
sured additional covariates: it says the constant shift
model would continue to describe observable distribu-
tions once the additional covariates were incorporated.
If we obtain additional covariates and that prediction
turns out to be true, then we are back in the first situa-
tion above. If the prediction turns out to be false, then
we are in the second situation above. In either case, the
needed tools are available, and there is no problem.

This process of elucidating a theory with intrinsi-
cally unobservable features by tracing their observ-
able consequences is called ontological elimination by
Sklar (2000), who discussed it in general terms.

The next section considers the matter in general
terms.

4. ADDITIVE EFFECTS FOR INDIVIDUALS AND
LOCATION SHIFTS FOR DISTRIBUTIONS:

EXTENSION TO COVARIANCE ADJUSTMENT
IN STUDIES FREE OF HIDDEN BIAS

The conventional ideas in the previous section ex-
tend easily to the situation discussed in the main paper.
Here, I briefly sketch what is involved, then indicate
why I prefer the framework in the paper.

Consider the model

rTj = xTj ζ + τ + εTj ,(1)

rCj = xTj ζ + εCj ,

log
Pr(Zj = 1)

Pr(Zj = 0)
= log

πj

1 − πj
= xTj λ,(2)

where the xj ’s are fixed, distinct people j are mutually
independent, and the bivariate error vectors (εTj , εCj )
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all have the same bivariate exchangeable distribu-
tion and are independent of treatment assignment Zj .
In this case, the treatment effect, rTj − rCj = τ +
εTj − εCj is not constant, but is symmetrically distrib-
uted about τ . In an experiment, randomization ensures
treatment assignment Zj is independent of (εTj , εCj ),
whereas in an observational study this is an alternative
expression of the (often implausible) assumption that
the only biases are due to the observed covariates xj .
From (1), the observed responses Rj equal

Rj = xTj ζ + τZj +Ej,

where Ej = ZjεTj + (1 − Zj )εCj is independent of
Zj because (εTj , εCj ) is exchangeable and indepen-
dent of Zj . Therefore, the adjusted responses Rj −
τZj = xTj ζ + Ej = aj are independent of the Zj , so
Pr(Z|a)= Pr(Z) is determined from (2).

To test H0 : τ = τ0, assume the null hypothesis for
the purpose of testing it, compute the adjusted re-
sponsesRj −τ0Zj which, therefore, equal aj , and con-
sider the conditional distribution of treatment assign-
ments Pr(Z|a). The situation now is identical to the
situation in Section 3 of the main paper, with aj in
place of rCj , and the methods discussed there may be
used without change. The important point here is that
replacing an additive effect by an effect rTj − rCj =
τ + εTj − εCj that is symmetrically distributed about τ
did not require changes in the procedures.

To me, the model given by (1) and (2) is less satis-
factory than the model in Section 3 of the main paper,
even though they both justify the same statistical pro-
cedures. The reason is that random assignment of treat-
ments does not, by itself, justify the model (1), but ran-
domization does justify use of the procedures in Sec-
tion 3 of the paper. In the nice terminology of Angrist
and Imbens, Section 3 of my paper is agnostic about
the covariance adjustment of the responses—it is a fit,
not a model—whereas the derivation of the same pro-
cedures from (1) and (2) depends upon the model be-
ing true. To put this another way, the model (1) blurs
the distinction between randomized experiments and
observational studies—they both seem to require be-
lieving a model. In contrast, the formulation in Sec-
tion 3 of the paper sharpens the distinction, as random-
ization creates what is needed for inference in experi-
ments and an important assumption is needed for infer-
ence in observational studies. The distinction between
experiments and observational studies is important to
practice and should not be blurred in theory.

5. NONADDITIVITY AND REDUCED SENSITIVITY
TO HIDDEN BIAS

Nonadditivity is related to sensitivity to hidden bias.
Other things being equal, larger treatment effects tend
to be less sensitive to hidden bias than smaller effects.
When the treatment effect is not additive, there may
be greater sensitivity to hidden bias where the effect is
small and reduced sensitivity where the effect is large.
Sensitivity analyses that permit investigation of this
issue are given in Rosenbaum (1999a, 2001b, 2002a,
Chapter 5, 2002b).

6. THE POSITIVE ASPECT OF THE NEGATIVE
LOGIC OF CONFIDENCE INTERVALS

Because confidence intervals are built from hypoth-
esis tests (Lehmann, 1986, Section 3.5), they share the
same negative logic: they tell us what is not plausible.
A confidence interval summarizes the rejection of cer-
tain hypotheses—the information is in these rejections.
The points inside the confidence interval live on with-
out endorsement simply as hypotheses not yet rejected.
The positive aspect of the negative logic is this: just as
one does not have to believe a null hypothesis to learn
something by testing it, so too, one does not have to be-
lieve a parametric model to learn something from the
parameters excluded from a confidence interval. I want
to illustrate what I mean in a simple case, and then
claim that a confidence interval for an additive treat-
ment effect is informative when an additive effect is
interesting, whether or not one is certain the effect is
additive. This positive aspect is also related to the issue
raised by Angrist and Imbens concerning interpretation
of short or empty confidence intervals with instrumen-
tal variables when the exclusion restriction is violated.

Imagine a random quantity X with distribution F

contained in some set F of distributions. The set
F contains a subset C of distributions indexed by a
real, scalar parameter, Fθ , θ ∈ R—that is, C = {Fθ :
θ ∈ R} ⊂ F —so one might metaphorically imagine Fθ
as tracing a parameterized curve through F , although
this metaphor plays no formal role here. Perhaps F =
Fθ for some θ , perhaps not; that is, the true F may lie
on the curve or it may fall elsewhere in F . There is a
test of size α which uses X to test any null hypothesis
H0 :F = Fθ , yielding a significance level p(θ); so if it
should happen to be true that F = Fθ , then Pr{p(θ) ≤
α} = α. The real line divides into two subsets, the
“outside” O = {θ ∈ R :p(θ) ≤ α} and the “inside”
I = R − O. Whether or not F ∈ C—whether or not
the parameterized model is correct—the distributions
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outside the confidence set {Fθ : θ ∈ O} are not plausible
and that is informative. The inside I is not particularly
interesting: quite often, for each θ ∈ I inside the
confidence set, there are many other distributions F̃ ∈
F − C outside the parameterized family that are very
similar to Fθ , so failure to reject Fθ does not convince
us that F is in {Fθ : θ ∈ I}.

(If our test worked throughout F with size α,
then F itself could be divided into outside Õ and
an inside Ĩ 1 − α confidence set, and our para-
metric model provides a first step in understand-
ing these two sets of distributions, because {Fθ :
θ ∈ O} ⊆ Õ and {Fθ : θ ∈ I} ⊆ Ĩ. Alternatively, some-
times, attributable effects based on pivots permit one-
dimensional descriptions of high dimensional confi-
dence sets; see Rosenbaum, 2001b, 2002b.)

In the context of covariance adjustment, suppose
one is not certain that the treatment effect is additive,
but the model of an additive treatment effect τ is
sufficiently plausible to be interesting. Then the outside
O of the confidence set for τ is informative: it tells us
that certain specific additive effects are not plausible
and that is news. In parallel, with an instrumental
variable, if a confidence interval for β is understood
as a statement about the values of β that are not
plausible, then an empty confidence interval entails
no change in perspective: it says that all values of β
are not plausible, so the entire parametric family of
distributions defined by β is implausible.

7. PARADOXICAL?

Robins writes: “Rosenbaum’s approach to sensitiv-
ity analysis, although logically flawless and mathemat-
ically elegant, may be scientifically useless.” As the
reader might anticipate, I enthusiastically agree with
part of this. Robins also says he believes that methods
of sensitivity analysis he himself has proposed are sci-
entifically useless for the same reasons.

Robins says that a measure of hidden bias is “para-
doxical . . . if its magnitude can increase as we decrease
the amount of hidden bias by measuring some of the
unmeasured confounders.” I disagree. If this were ac-
cepted as the definition of paradoxical behavior of a
statistical quantity, then regression coefficients of all
kinds—linear, logit, proportional hazards—would be
paradoxical, which they are not. The magnitude and
interpretation of a regression coefficient depends upon
which other variables are in the model; the magnitude
can increase or decrease as variables are added to the
model. This is correct, not paradoxical, behavior for a

regression coefficient. For example, if one were fitting
a logit model to predict lung cancer, the coefficient of
“cigarettes smoked” would presumably increase when
the variable “age” is added to the model: although
smoking is responsible for most lung cancer, the can-
cer tends to occur later in life, and is uncommon among
young heavy smokers. Smoking is more important as a
predictor of lung cancer at a fixed age, say age 60, than
it is ignoring age. That is common sense, not paradox.
Regression coefficients are a part of a model and they
cannot be understood without reference to the other
parts of the model. The sensitivity parameter in my dis-
cussion, γ = log(*), can be viewed as the coefficient
of an unobserved covariate in a logit regression of treat-
ment assignment on observed covariates and an unob-
served covariate; see Rosenbaum (2002a, Section 4.2).
The parameter γ = log(*) is no more or less paradox-
ical than any other regression coefficient.

Robins also writes: “Rosenbaum’s model (6) and my
analogous model (4) will be scientifically useful only
if experts can provide a plausible and logically co-
herent range for the value of the sensitivity parame-
ter eγ = *.” Here, Robins and I disagree about what
a sensitivity analysis says and how it is used. To my
mind, a sensitivity analysis simply indicates the mag-
nitude of hidden bias, measured by *, that would need
to be present to alter the qualitative conclusions of the
study. The sensitivity analysis is a fact of the matter,
something one calculates from the data at hand, and it
does not rest on opinions, expert or otherwise. It is sim-
ply a fact that Hammond’s (1964) study of the effects
of heavy smoking on lung cancer is much less sensi-
tive to hidden bias than Jick et al.’s (1973) study of the
effects of coffee on myocardial infarction. The smok-
ing study becomes sensitive at * = 6, while the coffee
study becomes sensitive at * = 1.3; see Rosenbaum
(2002a, Chapter 4) for details. This does not mean that
the coffee study is biased nor does it mean that coffee
does not cause myocardial infarction; it simply means
that an unobserved covariate weakly related to coffee
consumption could explain the observed association in
that study. It is useful to know that the smoking study
is vastly less sensitive to bias than the coffee study,
even though we do not know how much bias is actually
present in either study. Bad luck could explain a result
significant at level 0.1 or a result significant at 0.0001,
but much more bad luck would be required to explain
the latter result. In parallel, hidden bias could explain a
result sensitive at * = 1.3 or a result sensitive at * = 6,
but much more hidden bias would be required to ex-
plain the latter result.
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