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ABSTRACT

Multisets (sets with repeated elements) are of interest in mathematics,

physics, philosophy, logic, linguistics and computer science. The

development of multiset theory is surveyed from its earliest beginnings

to its most recent applications in mathematics, logic and computational

mathematics.

INTRODUCTORY REMARKS

A multiset (or multiple membership set) is a collection of objects

(called elements) in which elements are allowed to repeat. The multiset
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[a,a,a,b,с,с] is said to contain the element a three times, the

element b once, and the element с twice. The order of elements in a

multiset is ignored, so that the multiset above is the same as

[c,b,a,a,c,a] and [b,a,c,a,c,a]. Ve denote this multiset by

[a,b,c]g ^ g (although [c,a,bJ2 о -. et cetera are equally correct).

Some authors denote this multiset by ja , b , с L |з-а, 1-b, 2-с i or

[(3)a, (l)b, (2)c]. The number of times an element occurs in a multiset

is called its multiplicity. The cardinality of a multiset is the sum of

the multiplicities of its elements. Thus [a,b,c]o -• « bas cardinality

"six" - it contains a total of 6 elements. The multiset [a,b,c]o -,
 0

0,1,Z

is said to contain 3 distinct elements (namely, a, b and c), and

repeated elements are sometimes called indistinçuishables.

D. Knuth has observed, "Although multisets appear frequently in

mathematics, they often must be treated rather clumsily because there is

currently [1981] no standard way to treat sets with repeated elements.

Several mathematicians have voiced their belief that the lack of

adequate terminology and notation for this common concept has been a

definite handicap to the development of mathematics." ([28], p. 636).

Expanding on Knuth's remark, Meyer and McRobbie have suggested that the

lack of adequate terminology and notation for multisets has also been a

definite handicap to the development of logic and philosophy ( [34],

p. 107).

The word "multiset" was first suggested by N.6. de Bruijn in

private correspondence with Knuth ([28], p. 636, [23], p. 170 and [21],

p. 541) and is now the accepted name for this concept, replacing "bag",

"heap", "bunch", "sample", "occurrence set", "weighted set" and

"fireset" - finitely repeated element set. N.6. de Bruijn's interest in
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multisets grew out of his investigations into the combinatorial

properties of the set of divisors of a number - a number or any of its

divisors is expressible as a multiset of prime factors (see, for

example, [1], p. 27 and [28], p. 464).

The title of this paper uses the phrase "the development of" to

imply a survey of the literature on multisets which extends through time

and across disciplines. This account is certainly not a history of the

subject, but it is more than simply an annotated bibliography.

Annotated bibliographies are, for the most part, dull and boring, and it

is most certainly too soon to write a comprehensive history of

multisets. However, the already large amount of material on multisets

scattered throughout the literature suggests that the time is right to

consolidate the subject (as much as that is possible) into a single

survey that permits access to the literature from a single source.

The development of multiset theory is, in fact, one small part of

the remarkable proliferation of non-classical set theories over the last

thirty years. These theories include Boolean- and Heyting-valued set

theory, Zadeh's fuzzy set theory, Vopënka's alternative (or semi-) set

theory, Church's set theory with a universal set, intuitionistiс and

constructive set theory, quantum set theory, da Costa's paraconsistent

set theory, and most recently, Pawlak's rough set theory, Tarski's set

theory without variables, and Aczel's non-wellfounded set theory (or,

what Barwise calls hyperset theory). In all cases (including multiset

theory), either for purely aesthetic reasons or for hard-nosed practical

application, classical set theory was found to be inadequate in some

particular way. None of these theories realistically aspires to replace

classical set theory, but only to supplement it or generalize it in some
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respect. Classical Cantorian set theory as developed over the last one

hundred years, and as formalized in its most popular form in

Zermelo-Fraenkel set theory, is still our best candidate for a secure

foundation for mathematics. Category theory is now a strong alternative

candidate. It may very well come to pass that 'epsilons' are replaced

by 'arrows', but that time is not yet here.

All of this recent activity in non-classical set theories may point

the way to some very primitive theory of structure (a pre-set theory)

from which all set theories, both classical and non-classical, can be

derived. Ve now discuss one small part of this activity, the

development of multiset theory. The division of this subject into

"mathematics and logic" and "computational mathematics" is somewhat

arbitrary and artificial, and will no doubt offend some readers.

MATHEMATICS AND LOGIC

In his Grundlagen of 1883, Cantor defines a set as "... any

multiplicity which can be thought of as one ... any totality of definite

elements which can be bound up into a whole by means of a law."

(Jourdain's translation, [11], p. 54). In 1895, the first sentence of

his Beiträge further refines the definition of set to "... any

collection into a whole M of definite and separate objects m of our

intuition or our thought. These objects are called the 'elements' of

M." (Jourdain's translation, [11], p. 85). The last definition is

considered the standard definition of a classical (Cantorian) set. The

phrase "... definite and separate objects ..." is a clear restriction on
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possible elements of M. Over the years, mathematicians and

philosophers have quibbled about the exact meaning and translation of

this phrase: for example, "... definite, distinguishable objects ..."

(Vilder [50], p. 55), "... definite, well-distinguished objects ..."

(Kamke [27], p. 1) and "... definite, distinct objects ..." (Fraenkel

[19], p. 9). One unavoidable consequence of Cantor's definition is that

an element may not occur more than once in a classical set. Whether one

agrees or disagrees with the reasonableness of excluding repeated

elements (see, for example, Singh [43], pp. 74-75 who disagrees), it is

nevertheless a consequence of Cantor's definition. More precisely, the

classical Cantorian notion of a set simply does not take account of

repeated elements. Thus Kamke states, "... the same element shall not

be allowed to appear more than once. The number complex 1, 2, ls 2, 3,

consequently, becomes a set only after deleting the repeated elements."

([27], p. 1). Fraenkel concludes that "... an object may belong, or not

belong, to a set but cannot 'more than belong', for instance belong

repeatedly ..." ([19], p. 10). Multisets are, therefore, non-Cantorian

'sets'. The classical axiom of extensionality forbids multiple

occurrences of elements: the multisets [a,b]2 3 and [a,b]10 7 are

forced equal to the set {a,b} since every element of one is also an

element of the other two. Repetitions are simply ignored.

Despite official banishment from the kingdom (alias Cantor's

paradise), multiset-like structures have arisen quite naturally in

mathematics (and many other disciplines) since ancient times. There is

a long tradition in mathematics of treating numbers as collections of

units. As Hallett observes, "The most primitive idea of assessing the

size of a collection of objects is to count through them replacing each
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object by a tally mark ... for example a vertical stroke | ... There

seems no doubt that this tally mark conception is actually the origin of

our notion of number ... it is directly reflected in the ancient

Babylonian (c. 2000 ВС) and Egyptian (3500-1700 ВС) symbolism for

natural numbers ... And one finds much the same with the Greeks. "

([24], p. 132). Thus, the number "seven", for example, has come to be

identified with a collection of tally marks like MIMII- (For
 a

complete and detailed history of numbers, see Ifrah [26].) Hence, the

very origin of numbers involves the use of collections of repeated

units, or multisets of "ones".

There have been philosophical objections to such notions of number

(most notably Leibniz, Frege and Wittgenstein) which can best be

summarized as follows: the number (or plurality) of objects arises from

their diversity (or their differences). Thus, without diversity, there

is no plurality. In spite of these objections, such notions of number

have a long tradition in mathematics and continue to this day. For
о

example, the equation x - 2x + 1 is said to have two factors ((x-1)

and (x-1)) and two roots (1 and 1).

Cantor himself makes use of the ancient notion of number in his

first (1895) definition of the cardinality of a set. He defined the

=
cardinality M of a set M to be the result of replacing each element

m in M by a "unit" ([11], p. 86). Thus M is a collection of

"units" - a record or tally of the exact number of elements in M (one

"unit" for each element). Cantor insisted that collections like M are

sets themselves even though the repetition of "units" contradicts his

restriction (in the same 1895 paper) on elementhood - repeated "units"



are certainly not distinct. For a detailed discussion of Cantor's

"strange theory of ones", see Hallett [24], Sections 3.2 and 3.3, pp.

128-142.

In the final remark of his 1888 treatise [16] on number, Dedekind

introduces the notion of a multiset. He observes that an image point in

the range of a function can be said to occur with a multiplicity equal

to the number of pre-images in the domain of the function that are

mapped to it. He states, "In this way we reach the notion, very useful

in many cases, of systems [sets] in which every element is endowed with

a certain frequency-number which indicates how often it is to be

reckoned as element of the system." ([16], p. 114). Although Dedekind

does not explore this notion further, he does state that such deviations

from the original meaning of a technical term (in this case, the number

of elements in a system) occur frequently in mathematics.

In his lengthy introduction to the works of Cantor, Jourdain

discusses Veierstrass's definition of real numbers - "With Veierstrass,

a number was said to be "determined" if we know of what elements it is

composed and how many times each element occurs in it. Considering

numbers formed with the principal unit and an infinity of its aliquot

parts, Veierstrass called any aggregate whose elements and the number

(finite) of times each element occurs in it are known a (determined)

"number quantity" (Zahlengrösse). An aggregate consisting of a finite

number of elements was regarded as equal to the sum of its elements, and

two aggregates of a finite number of elements were regarded as equal

when the respective sums of their elements are equal." ([11], p. 18).

Jourdain notes that the number of distinct elements in a "numerical

quantity" need not be finite. Then, as Hallett observes, "...
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Veierstrass regarded real numbers as certain collections of rational

numbers in which finitely many repetitions are allowed. (One of these

collections defines a real number if the sum of any finite number of its

elements is less than some fixed rational bound ..." ([24], p. 134).

Therefore, Veierstrass defined real numbers as certain multisets of

rational numbers, thereby avoiding what both Jourdain and Cantor called

the "logical error" of taking limits ([11], pp. 16-18).

According to Hailperin ([23], p. 170), the first recognition that

multisets admit of mathematical treatment occurs in Whitney [49].

Whitney develops an algebra of characteristic functions of sets. He

argues that the algebra of characteristic functions is preferable to

(and more natural than) the algebra of sets because it more closely

resembles the ordinary arithmetic of numbers. He then investigates

"generalized sets" ("sets" whose characteristic functions may take any

integer value - positive, negative or zero) which "... are useful in

various mathematical theories." ([49], p. 405). He cites "chains in

analysis situs" as one example in which "each element is counted any

number of times." ([49], p. 412). Whitney investigates a variety of

normal forms of such characteristic functions and establishes criteria

which determine whether such functions represent "real" sets or

"generalized" sets.

In Appendix В (entitled Ars Combinatoria) of his classic [48], Weyl

explores the notion of multiple membership. His starting point is an

"aggregate" containing red, white and green balls - "Generally speaking,

in a given aggregate there may occur several individuals, or elements,

of the same kind (e.g. several white balls) or, as we shall also say,

the same entity (e.g. the entity white ball) may occur in several
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copies. One has to distinguish between quale and quid, between equal (=

of the same kind) and identical." ([48], p. 238). Veyl expresses this

"equality of kind" using equivalence relations. An aggregate is defined

as a set of elements and an equivalence relation on that set.

Equivalent elements are said to be "in the same state". If an aggregate

S contains n distinct elements, each of which may be in one of к

distinct states, then an individual state of S is given if for each

element of S it is known which state that element is in. An effective

state of S is given if for each state of S it is known how many

elements of S are in that state. Thus "... no artificial differences

between elements are introduced by their labels ... and merely the

intrinsic differences of state are made use of ..." ([48], p. 239).

This is precisely the concept of multiset. In Weyl's words, "Balls may

be white, red, or green; electrons may be in this or that position;

animals in a zoo may be mammals or fish or birds or reptiles; atoms in a

molecule may be H, He, Li, ... atoms." ([48], p. 239). Any two

individual states of S are connected with the same effective state of

S if and only if one may be carried into the other by a permutation of

the labels. Veyl applies these concepts to a variety of sciences. In

physics, for example, "Two individuals in the same 'complete state' [no

further refinement is possible] are indiscernible by any intrinsic

characters - although they may not be the same thing." ([48], p. 245).

A similar approach to multisets is taken in the first part of Monro

[35]. Monro contends that "... the intuitive concept of multiset in

fact contains two underlying ideas, and that these ideas should be

separated. One of the resulting concepts is more set-like than the

other, and the name 'multiset' has been appropriated for this concept;
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the other concept is more numeric in character and has been named

'multinumber'." ([35], p. 171).

Like Veyl [48], Monro defines a multiset to be a set with an

equivalence relation, where elements in the same equivalence class are

said to be elements of the same sort. Defining a morphism between

multisets as a function which respects sorts, Monro investigates the

category Mul of multisets and multiset morphisms. Concepts like

submultiset, union, intersection, complementation, and powerset arise

naturally out of general category theory. Mul is then compared to Set,

the category of ordinary sets.

However, Monro admits that the equivalence relation approach to

multisets "... may perhaps be seen as not doing justice to the intuitive

idea of multiset" (since objects in the underlying set are all distinct)

([35], p. 171). He introduces a second view "... arguably closer to the

intuitive conception of multiset." ([35], p. 175). A multinumber is

defined as a function from a collection of elements to the natural

numbers (the multiplicity of element x in f is f (*))•. The

partially-ordered algebra of all such multinumbers inherits much of its

structure from the natural numbers. Monro argues that the concepts

"multiset" and "multinumber" are indiscriminately mixed in the

literature and should be distinguished. He finds that although the

concept of "multiset" is more fundamental than that of "multinumber",

the latter may be the more useful of the two ([35], pp. 171, 176).

Rado [38] uses multisets as a device to investigate the properties

of families of sets. He observes, "The notion of a set takes no account

of multiple occurrence of any one of its members, and yet it is just

this kind of information which is frequently of importance. Ve need
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only think of the set of roots of a polynomial f(x) or the spectrum of

a linear operator." ([38], p. 135). Working within a set theory that

admits classes, Rado defines a multiset to be any cardinal-valued

function whose non-trivial domain (the collection of elements not mapped

to zero) is a set. The class of all multisets is called the cardinal

module since it "... possesses a rich structure which most resembles

that of a module over the semigroup of all cardinals" ([38], p. 135). A

multiset f represents a family of sets a = O O j c j J
u s t

 *
n c a s e

f(x.) equals the number of times x, occurs in a (that is,

f(x) = |{i 6 I|x. = x}| for all x). Hence the multiset "... embodies

everything concerning the structure of the family a except for the

notation for the indices of the members of the family." ([38], p. 137).

The class of all sets is embedded into the cardinal module by

identifying sets with their characteristic functions. Rado also makes

use of signed multisets, functions which may take negative cardinal

values ([38], Section 2.3, pp. 139-140).

Lake [30] was inspired by a lecture entitled "Multisets and

multicardinals" given by Rado to the London Mathematical Society on

October 17, 1974. In that lecture, Rado mentioned that there was no

axiomatization for multisets. Lake proposes a system of axioms similar

to von Neumann's 1925 axiomatization of set theory in which the notion

of function (rather than set membership) is taken as primitive. For a

variety of reasons, von Neumann's system was eclipsed by the

Zermelo-Fraenkel membership-primitive axioms for classical sets. Lake

admits "... it might be thought desirable to have an axiomatization

which does not go via functions. Such an axiomatization ... could be

conveniently written out using x б у (formally a three-i>lace
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predicate) to stand for 'x belongs to y precisely z times'."

([30], p. 325). This is the approach taken in Blizard [5].

In attempting to 'make sense' of Boole's algebra of logic,

Hailperin [23] finds that "... correct interpretations or models are

obtained if we consider, not classes, but multisets as the entities over

which the variables range." ([23], pp. 3, 136). He adds "Ve are, to be

sure, not attributing the idea of a calculus of multisets to Boole, only

using it to explain his partially interpreted system." ([23], p. 170).

He defines a multiset as "... a collection in which more than one

example of an object can occur (indistinguishable balls of various kinds

in an urn, roots of an equation with multiplicities counted, etc.)."

([23], pp. 3-4, 136). In the first edition (1976) of [23], Hailperin

used the word "heap" for this concept, hot realizing that "multiset" was

the currently accepted name for this notion ([23], p. 170). In order to

interpret Boole's unrestricted subtraction, Hailperin introduces signed

multisets - multisets in which elements may occur a negative number of

times ([23], pp. 4, 139). He notes, "Vhile the notion of a signed

multiset is not as intuitively simple as that of an unsigned multiset, a

brief reflection on the history of the difficulties which were

experienced until negative numbers were in good standing, should help

one overcome resistance to the acceptance of signed multisets as a

meaningful notion." ([23], p. 139), The interpretation of Boole's

system using multiset algebras is discussed in detail in Chapter 2 (pp.

235-172) of [23].

In their [34], Meyer and McRobbie find that "... multisets have the

right degree of abstraction needed for a number of logical purposes and

in particular the right degree of abstraction needed in the study of
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relevant implication." ([34], p. 107). In some theories of relevant

implication, it matters how often a premiss is repeated in the course of

an argument. Hence, Meyer and McRobbie make use of multisets -

collections of premisses - and develop their own algebra of multisets

for this purpose. Ve note, in this regard, that in multiple-conclusion

logic, arrays of formulae rather than sets of formulae are sometimes

needed, in order to take account of the multiplicity of premisses and

conclusions in rules of inference (Shoesmith and Smiley [42], pp. 66-69,

113-114, 164, 211, 224).

In passing from a set to its cardinal number, Cantor invoked two

levels of abstraction: first, ignore the order of elements, and second,

ignore the nature of elements. Similarly, Meyer and McRobbie note that

in passing from a sequence to a set, one first ignores the order of

elements, obtaining a multiset. One then ignores the repetition of

elements, obtaining a set ([34], diagram p. 125). Thus, "The level of

abstraction that leads to multisets is halfway between that which leads

to sequences. which give rise to ordinal numbers, and that which leads

to sets, which give rise to cardinal numbers." They conclude, "It is

surprising (to us) that multisets have not already attracted more

logical, mathematical and philosophical interest." ([34], p. 125).

Commenting on the use of undefined multiset operations in

Dershowitz and Manna [17], Hickman suggests that "... writers who wish

to use multisets might present the reader with some fundamental

definitions, or at least warn him that any analogy between multiset

operations and set operations cannot be pushed too far." ([25], p. 212).

He then demonstrates that there are significant differences between sets

and multisets. For multisets, the classical axiom of extensionality
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fails and the Schröder-Bernstein Theorem and the Cantor Powerset Theorem

do not hold in general. Hickman also shows that the relative complement

operation on multisets is not 'well-behaved' and that under certain

conditions, de Morgan's laws fail. He concludes, "... if multisets are

to play a role in mathematics, then their properties should not be taken

lightly." ([25], p. 216).

In his 1925 paper "The Foundations of Mathematics", Ramsey [39]

criticizes Russell and Vhitehead's Principia Mathematica for defining

'identity' in such a way as to make indistinguishable things identical.

In Principia, 'identity' means numerical identity; that is, identity in

the sense of counting as one, not as two. Therefore, two things are

identical if they have all their elementary properties in common ([39],

p. 181). This definition, according to Ramsey, "... makes it

self-contradictory for two things to have all their elementary

properties in common. Yet this is really perfectly possible ... Hence,

since this is logically possible, it is essential to have a symbolism

which allows us to consider this possibility and does not exclude it by

definition." ([39], p. 182). Ramsey concludes "... the treatment of

identity in Principia Mathematica is a misrepresentation of mathematics

..." ([39], p. 183).

In this regard, we note an observation by Fraenkel, Bar-Hillel and

Levy - "... the direct way to say, in the language of set theory ...,

that a set z has exactly one member is to say that there is a member

x of z such that every member y of z is equal to x; if equality

is not intended to be necessarily identity, then such a set z can

contain two or more members equal to one another." ([20], p. 30).
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Vith reference to Ramsey's remarks, Parker-Rhodes observes that

"... no one has made any systematic attempt to open up the territory

which lies behind these ideas ..." and "... there exists no branch of

mathematics, in which a third parity-relation, besides equality and

inequality, is admitted ..." ([36], p. xiii). In [36], Parker-Rhodes

demonstrates that such a mathematical system is feasible and has useful

applications. Indistinguishables behave as identicals when elements of

different classes, but they behave as a plurality (they each contribute

to cardinality) when they are elements of the same class ([36], p. 7).

By such a definition, repeated elements in a multiset are

indistinguishables. Parker-Rhodes develops a theory of sorts

(collections of indistinguishables) that resembles multiset theory in

some respects. However, sort theory (but not multiset theory) is a

radical departure from classical mathematics because of its triparitous

nature - objects may be identical, distinct or twins. The logical

notation of sort theory is explained ([36], Chapter II, pp. 18-38) and

the basic axioms and definitions of sort theory are introduced ([36],

Chapter IV, pp. 56-74). The theory is then applied to fundamental

problems in physics in Part II of [36]. In private correspondence,

Parker-Rhodes indicated that he felt there was a one-to-one

correspondence between sorts and multisets with the same structure, and

that there was "a greater degree of constructiveness" on the multiset

side. However, he also felt that it is noi possible to develop multiset

theory in a strictly "biparitous" mathematics.

In his treatment of the infinite arithmetic of well-ordered

cardinals, Levy [31] introduces multisets as a conceptual aid. He

observes that when one applies a mathematical operation (like addition,
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multiplication, ...) to a collection of objects, one requires a

collection in which elements are allowed to occur more than once ([31],

pp. 100-101). He defines multiple-membership sets as functions whose

domains are sets and whose values are non-zero cardinals. However, he

notes "In spite of the theoretical advantage of dealing with

multiple-membership sets we shall only keep them in mind and not deal

with them directly." ([31], p. 101). Levy chooses to formally represent

multisets using indexed families: "... whenever we speak about an

indexed family we have in mind the corresponding multiple-membership set

..." ([31], p. 101). This approach is used to introduce addition,

multiplication and exponentiation of cardinals ([31], pp. 102-111).

Corcoran [15] introduces multisets in an application of his main

result on categoricity: any atom-complete set of sentences which

includes induction is categorical (all models of the set of sentences

are isomorphic) ([15], pp. 195 (footnote 9), 199-201). Let u be the

set of all multisets with elements belonging to {a,b} (the set of all

functions from {a,b} into W). The empty multiset is denoted by 0.

Two "successor functions" S
e
 and S, are defined on u such that S

increases the multiplicity of element a by 1 and S^ increases the

multiplicity of element b by 1. For example, S
a
[a,b]

2
 j = S ^ M g =

[a,b]g у Corcoran then shows that a simple set of axioms (the

universal closures of S x Ф 0 Л S,x Ф 0, (Sx = S y -+ x = y) Л

(SjjX = S^y -* x = y), SgSjjX = S, S x and S x Ф S.x, together with an

induction formula) implies an atom-complete set of sentences including

induction, which is categorical by the main theorem ([15], p. 201). For

Corcoran's definitions of "induction" and "atom-completeness", see [15]

pp. 195, 198.
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Anderson [1] investigates properties of collections of subsets of a

finite set and generalizations of these properties to collections of

multisubsets of a finite multiset. This area of combinatorics is

sometimes called "extremal set theory" ([47], p. 516). Of principal

interest are the sizes, numbers and properties of chains (collections of

pairwise ç comparable subsets) and antichains (collections of pairwise Ç

incomparable subsets) in the subset (or multisubset) lattice. For

example, the unique maximum-sized antichain of subsets of an n-element

set (where n is even) consists of all subsets of size n/2. Subsets

of |х
1
,х„,...,х

п
1 can be identified with divisors of a square-free

number m = p^p« • • • p (a product of distinct primes). This

correspondence between a subset lattice and the set of divisors of a

k
1
 k

2
 к

number, when extended to arbitrary numbers m = p
1
 р„ ••• p , leads

naturally to the corresponding multiset lattice ([1], p. 18). One then

investigates properties of chains and antichains of divisors (ordered by

|) of arbitrary numbers. Most notable in this regard is a series of

papers by Clements (most recently [13] and [14], described fully in [1],

Chapters 4, 9, 10) in which the multiset lattice of divisors of a number

is generalized to that of an abstract multiset. Clements takes

collections of billiard balls (in which there are k
i
 balls of colour

i) as his conceptual prototype of a multiset ([13], p. 153) similar to

Veyl's [48] "aggregates" of red, white and green balls.

Also in combinatorics, we should take note of the papers by Bender

([2] and [3]) in which partitions of multisets are investigated and

characterized. A partition of a multiset M is a collection of

multisets (called blocks) whose multiset union (union with repetitions
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counted) is M. There are four ways to count the number of partitions

into a certain number of blocks (with or without repeated blocks and

with or without repeated elements within blocks). For this purpose,

multisets are classified into types: a multiset M is of type

m = (m.,,nu,...) if exactly m. distinct elements of M appear exactly

i times in M. For example, [a,b,c,c] is of type (2,1). As Bender

observes, "A multiset of type m can be thought of as a set S of

cardinality У m- and a map u from S to the positive integers such

that |u
- 1
(i)| = m

i
." ([2], p. 301).

Blizard [5] defines a first-order theory MST for multisets (in

which elements belong any finite number of times) where the atomic

formula x £n y represents the multiple membership (n times) of

element x in multiset y. The theory MST is a generalization of

classical ZFC set theory: MST contains an exact copy ZFC of ZFC; MST

is a conservative extension of ZFC'; and MST is consistent relative to

ZFC. Similar Zermelo-Fraenkel-like theories have been defined for

multisets with negative-integer multiplicities in [7], with non-negative

real multiplicities restricted to [0,1] Ç R in [6], and with arbitrary

cardinal-number multiplicities in [8]. All of these theories contain an

exact copy of ZFC and are relatively consistent l.

There are two possible approaches to the formalization of multiset

theory. The first is to develop first-order theories using the

classical predicate calculus (with or without equality) as in [5] and

[30]. The second is to tamper with the underlying logic. Two

approaches of the second kind are now surveyed.

Attempts to rescue Frege's set theory (set theory with

extensionality and unrestricted comprehension using first-order
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predicate calculus) from inconsistency have either imposed restrictions

on the comprehension axiom, or weakened the underlying logic without

restricting comprehension. The second approach based on logics

developed by Curry, Meredith, Abbott, Thiele, et cetera, have led to

weakened first-order logic called BCK-linear logic (see [9] for

details). Using this weaker logic, Bunder [9] develops an elementary

theory of multisets which is shown to be consistent. By representing

population samples as multisets, possible applications of the theory to

statistics are suggested. Bunder's set theory deals with finite

multisets in which elements occur finitely often. The consistency proof

relies inherently on this finiteness.

In Skolem [44] (Chapter 18), the possibility of set theory based on

many-valued logic is discussed briefly. He states, "... it seems to be

possible to obtain a consistent set theory with an unrestricted axiom of

comprehension if all rational numbers > 0 and < 1 are allowed as

truth values." ([44], p. 69). Skolem was able to prove that a

rudimentary set theory, where the axiom of comprehension

3yVx (x 6 y <—» Ф(х))

is restricted to Ф(х) built up from atomic membership formulae and

logical connectives Л, V and —| only (no quantifiers), is

consistent ([44], p. 69). He concludes, "... research concerning set

theories based on many-valued logic must be continued before we can say

whether it is really promising or not." ([44], p. 70). It seems

reasonable to expect that a set theory based on unvalued logic (in

which the atomic formula x e у can have a truth value n 6 ш) can be
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shown to be equivalent to multiset theory [5] based on classical logic

(in which the atomic formula x e n y can have only two truth values).

COMPUTATIONAL MATHEMATICS

The most frequently cited discussion of multisets has been Knuth

[28]. It would appear that most individuals in computational

mathematics first learned about multisets from Knuth's book. Knuth

introduces multisets into algorithms that compute values of x where

x is a real quantity and n is a large positive integer. His

construction requires that collections respect the repetition of

elements ([28], pp. 441-466). He develops a simple algebra of

multisets, and introduces the representation of positive integers as

finite multisets of prime factors. He also develops the natural

correspondence between a monic polynomial over the complex numbers and

the unique multiset containing its roots. He shows that generating

functions with nonnegative integer coefficients correspond one-to-one

with multisets of nonnegative integers ([28], pp. 464, 636-367). He

adds, "Other common applications of multisets are zeros and poles of

meromorphic functions, invariants of matrices in canonical form,

invariants of finite Abelian groups, etc.; multisets can be useful in

combinatorial counting arguments and in the development of measure

theory. The terminal strings of a noncircular context-free grammar form

a multiset that is a set if and only if the grammar is unambiguous."

([28], p. 636). Knuth's definition of a multiset has become the

standard definition: a multiset is a mathematical entity that is like a
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set, but it is allowed to contain repeated elements; an object may be an

element of a multiset several times, and its multiplicity of occurrences

is relevant ([28], p. 454).

On the other hand, very few people seem to be aware of the fact

that multisets play a significant role in Knuth [29]. Here he explores

permutations of multisets ([29], pp. 22-34) including a wealth of

historical references on the subject. Multisets and permutations of

multisets are then applied in a variety of search and sort procedures

(see [29], p. 717 for page numbers).

Ve also note in passing the use of multisets in Reingold,

Nievergelt and Deo [40] for their discussion of combinatorial algorithms

(see [40] Section 2.4, "Sets and Multisets", p. 57).

In his [18], Eilenberg's objective is to give the theory of

automata and formal languages a coherent mathematical presentation. A

novel feature of [18] is its treatment of multiplicity - "Vhen one has a

set A defined by some explicit device (e.g., automaton, machine,

grammar, or system of equations), the verification that an element a

is in A involves a procedure which may be called a 'computation'.

Vhen for a given a two (or more) such essentially different

computations exist, it is natural to assign to a a 'multiplicity'

which is the number of ways by which the given algorithm leads to the

conclusion 'a 6 A'." ([18], p. xv). In Chapter VI of [18], a general

theory of multiplicity is developed and applied to automata (numerous

other applications are given later in the book). The "behaviour" of an

automaton is a collection of words, each of which has a "computation"

(or "proof") associated with it. If the number of computations

associated with a given word is n, then that word is said to belong to
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the behaviour with multiplicity n. Therefore, the behaviour | ̂  of

an automaton Я is defined as a function from the collection of words

(a free monoid over a finite alphabet ^) to the natural numbers IN

([18], p. 120). The general algebraic device used for this purpose is

called a K-subset (a multiset when К = W) which is defined as a

function from a set X to a semiring K. Examples of semirings with

addition and multiplication are: the trivial {0,1}, the non-negative

integers (with or without the adjunct element x ) , the non-negative

rationale, and the non-negative reals (with or without the adjunct

element ш) [18], pp. 123-124, 188. A K-subset A (a multiset of words

over a finite alphabet) is recognizable if there exists an automaton <A

such that | u¿| = A. Extensions of these concepts to the cases К = I

(the ring of all integers) and К = F (a field) are discussed as well

([18], pp. 158, 204, 207, 427).

A fuzzy set can be defined as a function from a classical set into

the real unit interval (0, 1] Ç R, whereas a multiset is often

formulated as a function from a set into the positive natural numbers.

Goguen [21] proposes a category-theoretic foundation for fuzzy set

theory. As a by-product of this approach, he investigates the

properties of "semiring sets" (functions from a set into a semiring as

in Eilenberg [18]) with applications to the special case of multisets

([21], pp. 538-541). The usefulness of multisets in both combinatorics

and the theory of formal languages is discussed ([21], pp. 541-543).

Hanna and Valdinger [32] claim that mathematical logic plays the

same fundamental role for computer science as does the calculus for

physics and traditional engineering. After introducing the basics of
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propositional and predicate logic, they present a series of first-order

theories with induction for some of the most important structures in

computer science: non-negative integers, strings, trees, lists, sets,

multisets ('bags') and tuples. Chapter 11 of [32] (pp. 505-527) is

dedicated entirely to a theory of multisets. The language employs a

primitive binary function symbol ® (the intended interpretation of the

term u © x is "the multiset that results from the insertion of the

atom u into the multiset x"). The induction principle ([32], p. 507)

takes the form

[р(ф) Л VuVx(/>(x) - p(vßx))] - Vx p(x)

for all sentences p of the language. The theory is limited to only

finite collections of atoms. The different theories for sets, multisets

and tuples are then combined into one theory by using a single unary

predicate symbol atom and introducing three unary function symbols that

map tuples into multisets, multisets into sets, and tuples into sets

([32], pp. 539-544).

Considerable use of multisets is also required in the formalization

of Petri net theory. Net theory was introduced by С A . Petri in 1962 to

fill the need for a theory of asynchronous machine models. It is now a

well established branch of theoretical computer science which models

procedures, organizations and devices which involve regulated flows, in

particular information flows. For example, in Peterson [37] the very

definition of a Petri net requires the use of multisets ('bags') ([37],

pp. 7-8) and an elementary theory of multisets is developed for this

purpose ([37], pp. 237-240). Reisig [41] uses multisets to define



relation nets in which "... several individuals of some sort do not have

to be distinguished" noting that "One should not be forced to

distinguish individuals if one doesn't wish to. This would lead to

overspecification." ([41], p. 126). As in Whitney [49], multisets are

defined as generalized characteristic functions; that is, as

integer-valued functions which allow for some elements to belong

"negatively often." ([41], p. 126). Reisig also defines and makes use

of multirelations - a multiset whose domain is the cartesian product of

a set of sorts ([41], pp. 126-131).

Dershowitz and Manna [17] use multisets to prove the termination of

certain programs. Given a well-founded set (a set ordered in such a way

as to admit no infinite descending sequences of elements), one can

induce a well-founded ordering onto the collection of all finite

multisets whose elements belong to the set. The value of this

construction is that "... the multiset ordering ... permits the use of

relatively simple and intuitive termination functions in otherwise

difficult termination proofs." ([17], p. 188). Multiset operations like

union, relative complement and subset are used without definition ([17],

p. 189).

Martin [33] defines a multiset on a set S as "... an unordered

sequence of elements of S" ([33], p. 37). The primary concern of that

paper is the construction and classification of various well-founded

partial orderings of ^ S ) , the set of all finite multisets on S.

Martin is able to classify such orderings using the notion of a cone in

К . Vith this geometric interpretation, two new multiset orderings

arise and interesting results about existing orderings are demonstrated.



Thistlewaite, McRobbie and Meyer [45] extend the results of Meyer

and McRobbie [34] into the realm of automated theorem proving. The

authors claim that [45] "... is the first sustained computational

investigation of such [relevant] logics." Throughout [45] substantial

use is made of multisets of formulas (within various Gentzen-style

formulations of relevant logic). Most of the definitions involving

multisets are taken from [34], although various alternative

representations of multisets are needed ([45], pp. 113-115) for

implementation using a theorem-proving program called KRIFKE.

Bundy [10] makes some use of multisets ('bags') in his quest for

automated mathematicians. In particular, multisets of numbers are used

to illustrate the definition- and conjecture-formation programs of Lenat

([10],* Chapter 13, pp. 225-240). The diagrammatic representation of the

quartet - set, list, bag, and oset (an ordered list with no multiple

elements) ([10], pp. 233-234) - is equivalent to that in Meyer and

McRobbie - set, sequence, multiset and ordinal set ([34], p. 125).

In [22], Grzymala-Busse generalizes the notion of rough set

(introduced in 1981 by Pawlak) to the concept of rough multiset (see

[22], pp. 325-327 for details). Rough multisets are used to simplify

the formalization of an information system (or data matrix, similar to a

database) by using an information multisystem (which resembles a

relational database) ([22], pp. 328-332).

Yager [51] develops an elementary algebra of multisets ('crisp

bags') and suggests possible applications to relational databases. He

then defines a rather curious object called a fuzzy bag: to each

element x in a fuzzy bag A is associated a multiset containing

elements a (real numbers in the unit interval [0,1] Ç R) with
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multiplicities n (non-negative integers). The number n indicates

the number of times the element x appears with membership grade a

in the fuzzy bag A ([51], p. 33). Yager introduces an elementary

algebra of fuzzy bags, and notes that classical sets are special cases

of multisets, as are Zadeh fuzzy sets special cases of fuzzy bags ([51],

p. 35). In [52], multisets are used in an attempt to define a

meaningful notion of the cardinality of a fuzzy set.

Although the axiom system developed in Chapin [12] is intended to

formalize fuzzy sets (introduced by Zadeh) and boolean-lattice-valued

sets (developed by Brown) (see [12], pp. 619-623 for details), it is

formulated in such a general way that it is also worth noting in

relation to multisets. Chapin develops a formal theory of set-valued

sets using the classical Zermelo-Fraenkel axioms as a guide. He states,

"A theory having all of the objects involved of some uniform kind would

seem profitable." ([12], p. 621). He, therefore, uses a single-sorted

first-order language in which the intended interpretation of the atomic

formula e(x,y,z) is "x is an element of у with degree of membership

at least z" ([12], p. 624). Chapin does seem to have multisets in mind

as a possible interpretation since he argues, "The necessity of both

axioms, rather than just one or the other becomes apparent if the

degrees are imagined to correspond to the natural numbers with their

natural ordering." and "Again, if one imagines the degrees as natural

numbers with their usual ordering, this becomes clear." ([12], pp. 627,

630). Unfortunately, Chapin's system does not succeed in its stated

purpose - to formalize the naive set theories of Zadeh and Brown. For a

detailed discussion of the problems associated with Chapin's proposed



axiom system and for a comparison with other systems see Blizard [4] pp.

173-176, Blizard [6] p. 95 and Veidner [46] pp. 61-62.

CONCLUDING REMARKS

Given the variety of motivations for investigating multisets, it is

surprising that the concept itself (collections of repeated elements)

has remained so clearly intact. The basic idea that runs through all of

the literature surveyed (with the possible exception of [36]) is that

collections like [a,a,c,b,b,a] are either interesting in themselves,

or useful in some specific circumstance. In most applications, it is

preferable to work directly with such collections rather than with their

formal equivalents (functions, permutations of sequences, collections of

equivalence classes, families of sets, et cetera). Indeed, as Knuth

points out, "... this formal equivalence is of little or no practical

value for creative mathematical reasoning." ([28], p. 636).

It is probably fair to say that [2]-[9], [13]-[14], [25], [30],

[35] and [49] approach multisets (or multiset-like objects) purely as

mathematical objects (with little or no view to possible application),

whereas [1], [10], [12], [15]-[18], [21]-[23], [28]-[29], [31]-[34],

[36]-[38], [40]-[41], [45], [48] and [51]-[52] investigate multisets

(bags, heaps, et cetera) with a very specific application in mind. In

most applications, only finite multisets (which contain a finite number

of distinct elements) with finite multiplicities (in which elements

repeat a finite number of times) are needed. More theoretical

approaches allow for an infinite number of distinct elements, while



others also permit infinite multiplicities of elements ( [8], [18], [25],

[30]-[31] and [38]). Certain investigations have dared to venture into

the dark realm of negative multiplicities ([7], [18], [23], [38], [41]

and [49]).

It should be emphasized that multisets and fuzzy sets are

conceptually quite different: elements of multisets belong at least

once, whereas elements of fuzzy sets belong at most once. However,

multisets do arise in [12], [21], [46] and [51] as a side interest

within fuzzy set theory (in [22], within rough set theory), whereas [6]

and [30] make use of multiset theory to axiomatize fuzzy sets and [52]

makes use of multisets to define the cardinality of fuzzy sets.

Multisets are thought of primarily as functions in [18], [21],

[25], [30]-[31], the second part of [35], [38], [41] and [49]. An

equivalence relation approach to multisets is taken in the first part of

[35] and throughout [48]. Category theory is used throughout [35] and

in parts of [18], [21] and [30]. Formal axiom systems for multisets are

proposed in [5], [30] and [32], and somewhat indirectly in [9], [12],

[21], [36] and [46]. The indistinguishability of repeated elements in a

multiset-like structure is the main theme of [36], but it is also hinted

at (the blurring of distinctions using permutations) in [23] p. 136 and

[48] p. 240.

The overall flavour of [15], [23] and [34] is philosophical; of

[5], [25] and [38] is set-theoretical; of [18], [21] and [35] is

category-theoretical; of [l]-[3], [13]-[14] and [48] is combinatorial;

and of [10], [17]-[18], [21]-[22], [28]-[29], [32]-[33], [37],

[40]-[41], [45], [51] and [52] is computational. For the most part,

multisets are formulated either against a classical set-theoretic
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background, or within the classical first-order predicate calculus. The

exceptions are [9] which uses BCK-linear logic, [36] which uses

triparitous logic, and [44] which suggests the possible use of

many-valued logic. Ve have noted that multisets of formulae have proven

useful in relevance logic ([34] and [45]) and multiple-conclusion logic

([42]). Applications of multiset-like structures in physics are given

in [36] and [48].

NOTES

1 My personal interest in multisets grew out of an earlier preoccupation

with set annihilation. During the period 1970-72, I had read several
*

popular accounts of matter-antimatter duality. Translating this

phenomenon into set-theoretic language, I considered the situation in

which to every classical set A+ there exists a unique anti-set A~

such that joining the two together (in some generalized union) results

in the empty set 0. It was not until 1982 that I hit upon the idea

of raising the membership epsilon £ to a power n (as in the atomic

formula x e11 y). I am told that Quine made use of a similar notation

for a different purpose. The use of this new notation led naturally

to multisets (where n e W) and then to "shadow sets" (where n e I)

with which set annihilation finds simple expression as x H-J x~ = 0

in [7].
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