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THE p-HARMONIC BOUNDARY FOR
QUASI-ISOMETRIC GRAPHS AND MANIFOLDS

MICHAEL J. PULS

ABSTRACT. Let p be a real number greater than one. Sup-
pose that a graph G of bounded degree is quasi-isometric with
a Riemannian manifold M with certain properties. Under
these conditions we will show that the p-harmonic boundary
of G is homeomorphic to the p-harmonic boundary of M . We
will also prove that there is a bijection between the p-harmonic
functions on G and the p-harmonic functions on M .

1. Introduction. Let (X, dX) and (Y, dY ) be metric spaces. A
map φ:X → Y is called a quasi-isometry if it satisfies the following two
conditions:

(1) There exist constants a ≥ 1, b ≥ 0, such that, for x1, x2 ∈ X ,

1

a
dX(x1, x2)− b ≤ dY (φ(x1), φ(x2)) ≤ adX(x1, x2) + b.

(2) There exists a positive constant c such that, for each y ∈ Y , there
exists an x ∈ X that satisfies dY (φ(x), y) < c.

Let G be a graph, and let x be a vertex of G. The set of neighbors of x
will be denoted by Nx and deg (x) will denote the number of neighbors
of x. We shall say that G is of bounded degree if there exists a positive
integer k such that deg (x) ≤ k for every vertex x of G. A path in G is a
sequence of vertices x1, x2, . . . , xn where xi+1 ∈ Nxi for 1 ≤ i ≤ n− 1.
A graph G is connected if any two given vertices of G are joined by
a path. All graphs considered in this paper will be countably infinite,
connected and of bounded degree with no self-loops. Two vertices x
and y in G are connected by an edge if and only if y ∈ Nx. Assign
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length one to each edge of G; then G is a metric space with respect
to the shortest path metric. Let dG(·, ·) denote this metric. So if x
and y are vertices in G, then dG(x, y) is the length of the shortest path
joining x and y. We will drop the subscript G from dG(·, ·) when it is
clear with which graph G we are working. If A is a set of vertices of G,
then #A will denote the cardinality of A.

Let M be a complete, connected and non-compact, smooth Rieman-
nian manifold of dimension n ≥ 2. Using the Riemannian distance,
which we will denote by dM (·, ·), M is also a metric space. We will use
dx for the Riemannian volume element. For x ∈ M,Br(x) will denote
the metric ball centered at x of radius r; and Vol (S) will be the volume
of a measurable set S ⊆ M . In addition to the conditions in the first
sentence of this paragraph, all manifolds considered in this paper will
also have the following properties:

(V) There are positive increasing functions V0(r) and V1(r) on (0,∞)
that satisfy

V0(r) ≤ V ol(Br(x)) ≤ V1(r)

for all x ∈ M .

(P) For r > 0, there exists a real number Cr such that, for any y ∈ M
and any smooth function f on Br(y),∫

Br(y)

|f(x)− f | dx ≤ Cr

∫
Br(y)

|∇f(x)| dx,

where f = (Vol (Br(y)))
−1

∫
Br(y)

f(x) dx.

These properties are satisfied by any complete manifold M where the
Ricci curvature of M is uniformly bounded from below by −(n−1)K2,
where K > 0, and the injective radius of M is positive.

Let p be a real number greater than one. In Section 2 we will define
the p-harmonic boundary for both graphs and manifolds. It was shown
in [6, Theorem 2.7] that if G and H are quasi-isometric graphs, then
their p-harmonic boundaries are homeomorphic. On the other hand, [5,
Theorem 2] says that if M and N are quasi-isometric manifolds, then
their p-harmonic boundaries are homeomorphic. A reasonable question
to ask is the following: if a graphG of bounded degree is quasi-isometric
with a complete Riemannian manifold M , how are their p-harmonic
boundaries related? Reinterpreting Theorem 2 of [4] into our setting,
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it was shown that if G is quasi-isometric with M , then the p-harmonic
boundary of G is empty if and only if the p-harmonic boundary of M
is empty. Theorem 1.1 of [2] says that if there is a quasi-isometry from
G to M then the p-harmonic boundary of G contains one element if
and only if the p-harmonic boundary of M contains one element. In
this paper we extend these results by proving

Theorem 1.1. Let G be a graph of bounded degree, and let M be
a complete Riemannian manifold with dimension at least two and that
has properties (V) and (P). If G and M are quasi-isometric, then their
p-harmonic boundaries are homeomorphic.

In Section 2 we will also define what it means for a function to be
p-harmonic on G and M . Our other main result for this paper is:

Theorem 1.2. Let G be a graph of bounded degree, and let M be
a complete Riemannian manifold with dimension at least two and that
has properties (V) and (P). If G and M are quasi-isometric, then there
is a bijection between the bounded p-harmonic functions on G and the
bounded p-harmonic functions on M .

This paper is organized as follows: In Section 2 we give some prelim-
inaries concerning the p-harmonic boundary and p-harmonic functions.
In Section 3 we define κ-nets and give some results concerning κ-nets
that we will need. We prove our main results in Section 4.

2. Preliminaries. Let 1 < p ∈ R. In this section we will define
the p-harmonic boundary and p-harmonic functions. Furthermore, we
will state some properties of these concepts that will be needed later in
the paper. We will also set some notation to be used in this paper and
give some facts that will be needed concerning estimates on volumes of
metric balls.

We begin by defining certain function spaces that will be used in our
definitions. For more detailed explanations about these function spaces
and about the p-harmonic boundary, see [6, Section 1] for graphs and,
for Riemannian manifolds, see [5, Section 1] or [7, Chapter III.1].

LetM be a complete Riemannian manifold. Denote byDp(M) the set
of continuous real-valued functions onM for which∇f ∈ Lp(M), where
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∇f is the distributional gradient of f . Set BDp(M) equal to the set of
bounded functions in Dp(M). Under the usual operations of function
addition, pointwise multiplication of functions and scalar multiplication
BDp(M) is a commutative algebra. Furthermore, BDp(M) is a Banach
algebra with respect to the following norm

‖f‖BDp = ‖∇f‖p + ‖f‖∞
where ‖ · ‖∞ denotes the sup-norm and ‖ · ‖p is the Lp-norm. Let
Cc(M) be the set of continuous functions on M with compact support.
Denote by B(Cc(M)Dp

) the closure of Cc(M) in BDp(M) with respect

to the following topology: A sequence (fn) in Cc(M) converges to
f ∈ BDp(M) if supK |fn − f | → 0 as n → ∞ for each compact subset
K in M , (fn) is uniformly bounded on M and

lim
n→∞

∫
M

|∇(fn − f)(x)|p dx −→ 0.

We now proceed to define analogous function spaces for a graph G
of bounded degree. Let V be the vertex set of G, and let x ∈ V . For
a real-valued function f on V we define the pth power of the gradient
and the p-Dirichlet sum by

|Df(x)|p =
∑
y∈Nx

|f(y)− f(x)|p,

Ip(f, V ) =
∑
x∈V

|Df(x)|p.

In this setting Dp(G) will be the set of functions f for which Ip(f, V ) <
∞. Under the following norm Dp(G) is a reflexive Banach space

‖f‖Dp = (Ip(f, V ) + |f(o)|p)1/p ,
where o is a fixed vertex of G. Let BDp(G) be the set of bounded
functions in Dp(G). It is also the case that BDp(G) is a commutative
algebra under the operations of function addition, pointwise multipli-
cation and scalar multiplication. With respect to the following norm
BDp(G) is a Banach algebra

‖f‖BDp = (Ip(f, V ))
1/p

+ ‖f‖∞,
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where ‖ · ‖∞ is the usual sup-norm. The set Cc(G) will consist of all
functions on V with compact support. Denote by B(Cc(G)Dp

) the

closure of Cc(G) in BDp(G) with respect to the Dp-norm.

In what follows X will either be M or G. A character on BDp(X)
is a nonzero homomorphism from BDp(X) into the complex num-
bers. Denote by Sp(BDp(X)) the set of characters on BDp(X).
With respect to the weak ∗-topology, Sp(BDp(X)) is a compact Haus-
dorff space. The space Sp(BDp(X)) is known as the spectrum of
BDp(X). Let C(Sp(BDp(X))) denote the set of continuous functions

on Sp(BDp(X)). For each f ∈ BDp(X), a continuous function f̂ can

be defined on Sp(BDp(X)) by f̂(τ) = τ(f). Each x ∈ X defines an
element in Sp(BDp(X)) via evaluation by x; that is, if f ∈ BDp(X),
then x(f) = f(x). It turns out that, under this identification, X is
an open dense subset of Sp(BDp(X)). The compact Hausdorff space
Sp(BDp(X)) \X is known as the p-Royden boundary of X , which we

will denote by Rp(X). Now, B(Cc(X)Dp
) is closed in BDp(X) with re-

spect to the BDp-norm. The p-harmonic boundary ofX is the following
subset of the p-Royden boundary

∂p(X): = {τ ∈ Rp(X) | f̂(τ) = 0 for all f ∈ B(Cc(X)Dp
)}.

It can be shown that ∂p(X) = ∅ if and only if 1 ∈ Cc(X)Dp
, where 1

is the constant function that always takes on the value one on X . In
this case it follows from [4, Theorem 2] that ∂p(G) = ∂p(M) because

X is p-parabolic if and only if 1 ∈ Cc(X)Dp
. For the rest of this paper,

it will be assumed that X is not p-parabolic. From now on we will
implicitly assume the following

Lemma 2.1. Let x ∈ ∂p(X), and let (xn) be a sequence in X that
converges to x. Then dX(o, xn) → ∞ as n → ∞, where o is a fixed
point in X.

Proof. Suppose that there exists a real number M such that
dX(o, xn) ≤ M for all n ∈ N. Define a function χM ∈ Cc(X) by
χM (y) = 1 if dX(o, y) ≤ M and χM (y) = 0 if dX(o, y) > M . Then
χ̂M (x) = limn→∞ χM (xn) = 1, a contradiction. Thus dX(o, xn) → ∞
as n → ∞.
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Now suppose X = M , and let W 1,p(M) be the set of functions
f ∈ Lp(M) for which ∇f ∈ Lp(M). If h is a continuous function
in W 1,p

loc (M) that is a weak solution of

−div(|∇h|p−2∇h) = 0,

then we shall say that h is p-harmonic. On the other hand, if it is the
case X = G, then h is defined to be p-harmonic if∑

y∈Nx

|h(y)− h(x)|p−2(h(y)− h(x)) = 0 for all x ∈ V.

In the case 1 < p < 2 we make the convention that |h(y) −
h(x)|p−2(h(y)− h(x)) = 0 if h(y)− h(x) = 0.

Let BHDp(X) be the set that consists of all bounded p-harmonic
functions on X that are contained in Dp(X). We now state some
properties of p-harmonic functions and the p-harmonic boundary that
will be needed in the sequel. For proofs of these and other properties,
see [6, Section 4] for graphs and [5, Section 2] for manifolds.

Theorem 2.2 (p-Royden decomposition). Let f ∈ BDp(X). Then

there exists a unique u ∈ B(Cc(X)Dp
) and a unique h ∈ BHDp(X)

such that f = u+ h.

Using the p-Royden decomposition, the following characterization of
functions in BDp(X) that vanish on ∂p(X) can be obtained.

Theorem 2.3. Let f ∈ BDp(X). Then f ∈ B(Cc(X)Dp
) if and only

if f̂(τ) = 0 for all τ ∈ ∂p(X).

Observe that it follows immediately from the theorem that if h ∈
BHDp(X) is the p-harmonic function in the p-Royden decomposition
of f ∈ BDp(X), then f(τ) = h(τ) for all τ ∈ ∂p(X). Furthermore, the
following is also a consequence of the previous theorem

Corollary 2.4. A function in BHDp(X) is uniquely determined by
its values on ∂p(X).
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Note that if ∂p(X) contains only one element, then BHDp(X) con-
sists precisely of the constant functions on X .

3. κ-nets. For the proofs of our main results we will need to use
κ-nets. In this section we will explain what a κ-net is and give some of
its properties that will be useful for our needs.

A net is a countable set Γ with a family {Ng}g∈Γ of finite subsets Ng

of Γ such that, for all g, h ∈ Γ, g ∈ Nh if and only if h ∈ Ng. For g ∈ Γ,
each element of Ng is called a neighbor of g. It is possible to think of a
net as a countable graph with vertex set Γ by connecting vertices g and
h in Γ by an edge if h ∈ Ng. Thus the definitions given in Section 1 for
properties of a graph, such as a path, carry over to a net.

Let M be a complete Riemannian manifold. We shall say that a
subset Γ of M is κ-separated for κ > 0 if dM (g, h) ≥ κ whenever g
and h are distinct points of Γ. Now assume that Γ is a maximal κ-
separated subset of M . By setting Ng = {h ∈ Γ | 0 < dM (g, h) ≤ 3κ}
for each g ∈ Γ, we have a net structure on Γ. We define Γ to be a
κ-net if Γ is a maximal κ-separated subset of M with the net structure
given above. It is easy to see that a κ-net in M is connected due to
our standing assumption that M is connected. If Γ is a κ-net, then it
is also a countable, connected graph. Thus, Γ is a metric space with
respect to the shortest path metric. A couple of facts about κ-nets that
we will need later are:

(1) Let Γ be a κ-net in M . Then, for a given r > 0, there exists a
constant Cr such that #(Γ ∩Br(x)) ≤ Cr for all x ∈ M .

(2) Let Γ be a κ-net in M . Then the inclusion map ι: Γ → M is a
quasi-isometry.

The first fact can be proved by using the argument from [3, Lemma 2.3]
since Vol (BR(x)) ≤ [V1(R)/V0(r)]Vol (Br(x)), where 0 < r < R < ∞.
This fact shows that Γ is a graph of bounded degree and that, for
each x ∈ M , there exist at most Cr elements g in Γ for which Br(g)
contains x. The second fact is [3, Lemma 2.6], where it was assumed
that the Ricci curvature was bounded from below; it was also proven
in [1, Lemma 2.13] without any curvature assumptions on M .

Let κ be a small positive number, and let Γ be a κ-net in a complete
Riemannian manifold M . Let 1 < p ∈ R. The rest of this section is
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devoted to describing how to map functions from BDp(Γ) to BDp(M),
and vice versa. For each g ∈ Γ, pick a smooth function ηg ∈ Cc(M)
such that 0 ≤ ηg ≤ 1, ηg = 1 on Bκ(g), ηg = 0 outside of B(3κ)/2(g),
and that |∇ηg| ≤ c, where c is a constant that does not depend on g.
For x ∈ M define

ξg(x) =
ηg(x)∑
h∈Γ ηh(x)

.

Now |∇ξg| is uniformly bounded. Indeed,

|∇ξg | ≤ |∇ηg|
(∑

h∈Γ

ηh

)−1

+ ηg
∑
h∈Γ

|∇ηh|
(∑

h∈Γ

ηh

)−2

≤ |∇ηg|+
∑
h∈Γ

|∇ηh|

≤ (k + 2)c,

where k is a constant that satisfies #Ng ≤ k for all g ∈ Γ. Let
f : Γ → R. Define a smooth function f :M → R by

(3.1) f(x) =
∑
g∈Γ

f̄(g)ξg(x),

where x ∈ M . We are now ready to state and prove

Proposition 3.1. If f ∈ BDp(Γ), then f ∈ BDp(M).

Proof. Let g ∈ Γ, and suppose x ∈ Bκ(g). Now

∇f(x) =
∑

h∈Ng∪{g}
f(h)∇ξh(x)

=
∑
h∈Ng

(f̄(h)− f(g))∇ξh(x).

The last equality is due to
∑

h∈Ng∪{g} f(g)ξh(x) = f(g) and
∑

h∈Ng∪{g}
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∇ξh(x) = 0. We now obtain

|∇f(x)|p ≤
( ∑

h∈Ng

|(f(h)− f(g))∇ξh(x)|
)p

≤
(( ∑

h∈Ng

|f(h)− f(g)|p
)1/p

×
( ∑

h∈Ng

|∇ξh(x)|q
)1/q)p

≤ |Df(g)|p(ck1/q)p,

where (1/q)+(1/p) = 1 and k is a constant with #Ng ≤ k for all g ∈ Γ.
It now follows that∫

M

|∇f(x)|pdx ≤
∑
g∈Γ

∫
Bκ(g)

|∇f(x)|pdx ≤ (ck1/q)pV1(κ)
∑
g∈Γ

|Df(g)|p.

Hence, f ∈ BDp(M).

Corollary 3.2. If f ∈ B(Cc(Γ)Dp
), then f ∈ B(Cc(M)Dp

).

Proof. By the proposition, f ∈ BDp(M). Now let (fn) be a
sequence in Cc(Γ) that converges to f . For each n, fn ∈ Cc(M) because
fn ∈ Cc(Γ). We will now show that f ∈ B(Cc(M)Dp

). By using the
argument from the above proposition, we see that∫

M

|∇(fn − f)(x)|pdx ≤ CIp(fn − f,Γ),

where C is a constant. Consequently,
∫
M ‖∇(fn − f)(x)‖pdx → 0 as

n → ∞. Let K be a compact subset in M . Set ΓK = {g ∈ Γ |
dM (g,K) < (3κ)/2}. Now #ΓK is finite because K is compact. Let
x ∈ K, and let ε > 0. Since ξg(x) = 0 if g /∈ ΓK , we obtain

|fn(x) − f(x)| ≤
∑
g∈ΓK

|fn(g)− f(g)|.
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For h ∈ Dp(Γ) and g ∈ Γ, there exists a constant Cg depending
upon g such that |h(g)| ≤ Cg‖h‖Dp . Thus, (fn) → f pointwise.
Hence, for each g ∈ ΓK , there exists a number N(g) such that, for
n > N(g), |fn(g) − f(g)| < ε/(#ΓK). Set N = maxg∈ΓK{N(g)}. So,
for n > N , |fn(x) − f(x)| < ε for all x ∈ K. Thus supK |fn − f | → 0
as n → ∞ for each compact subset K in M . By making slight
modifications to the proof of Theorem 1G from [7, page 153], it follows
that f ∈ B(Cc(M)Dp

).

Let f ∈ BDp(M). Define a function f∗: Γ → R by

(3.2) f∗(g) =
1

Vol (B4κ(g))

∫
B4κ(g)

f dx.

We will now show f∗ ∈ BDp(Γ).

Proposition 3.3. Let f ∈ BDp(M). Then f∗ ∈ BDp(Γ).

Proof. Let g ∈ Γ. By Hölder’s inequality and property (P), we get
the following

V1(4κ)
p−1

∫
B4κ(g)

|∇f(x)|pdx ≥ Vol (B4κ(g))
p−1

∫
B4κ(g)

|∇f(x)|pdx

≥
(∫

B4κ(g)

|∇f(x)| dx
)p

≥ Cp

(∫
B4κ(g)

|f(x)− f∗(g)| dx
)p

,

where C is a constant. Let h ∈ Ng. Then dM (g, h) ≤ 3κ. Consequently
both B4κ(g) and B4κ(h) are both contained in B7κ(g). Letting β =
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C−pV1(4κ)
p−1, for convenience we now obtain

2β

∫
B7κ(g)

|∇f(x)|pdx ≥ β

(∫
B4κ(g)

|∇f(x)|pdx+

∫
B4κ(h)

|∇f(x)|pdx
)

≥
(∫

B4κ(g)

|f(x)− f∗(g)| dx
)p

+

(∫
B4κ(h)

|f(x)− f∗(h)| dx
)p

≥ 1

2p−1

(∫
B4κ(g)

|f(x) − f∗(g)|dx

+

∫
B4κ(h)

|f(x)− f∗(h)| dx
)p

≥ 1

2p−1

(∫
B4κ(g)∩B4κ(h)

|f∗(g)− f∗(h)| dx
)p

≥ 1

2p−1
V0(κ)

p (|f∗(g)− f∗(h)|p) .

The last inequality follows from Bκ(g) ⊆ B4κ(g) ∩ B4κ(h), and three
inequalities up is Jensen’s inequality. Due to Γ having bounded degree,
there exists a constant C1 that does not depend upon f or g for which

C1

∫
B7κ(g)

|∇f(x)|pdx ≥
∑
h∈Ng

|f∗(g)− f∗(h)|p.

Furthermore, we saw earlier that if x ∈ M , then there exist at most
C7κ balls B7κ(g) that contain x, where C7κ is a constant that does not
depend upon f or g. Hence,

C7κ

∫
M

|∇f(x)|pdx ≥
∑
g∈Γ

∫
B7κ(g)

|∇f(x)|pdx.

Summing up, we obtain

C2

∫
M

|∇f(x)|pdx ≥ Ip(f
∗,Γ),

where C2 is a suitable constant. Therefore, f∗ ∈ BDp(Γ).
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Corollary 3.4. If f ∈ B(Cc(M)Dp
), then f∗ ∈ B(Cc(Γ)Dp

).

Proof. Let f ∈ B(Cc(M)Dp
); then f∗ ∈ BDp(Γ) by the proposition.

We will now show that f∗ is also an element of B(Cc(Γ)Dp
). Let (fn)

be a sequence in Cc(M) that converges to f . For each n, f∗
n ∈ Cc(Γ)

since fn has compact support and Γ is κ-separated. Arguing as in the
proposition, it can be shown that there exists a constant C such that

Ip(f
∗
n − f∗,Γ) ≤ C

∫
M

|∇(fn − f)(x)|pdx.

Thus Ip(f
∗
n − f∗,Γ) → 0 as n → ∞. Let o be a fixed vertex of Γ, and

let ε > 0. A calculation shows that

|f∗
n(o)− f∗(o)| ≤ 1

V0(4κ)

∫
B4κ(o)

|(fn − f)(x)| dx.

Now |fn(x)−f(x)| < ε for large n and all x ∈ B4κ(o) due to the closure
of B4κ(o) being compact in M . Hence, |f∗

n(o)−f∗(o)|p → 0 as n → ∞.
Therefore, f∗ ∈ B(Cc(Γ)Dp

).

4. Proofs of Theorems 1.1 and 1.2. Let G be a graph of bounded
degree, and let M be a Riemannian manifold. Let Γ be a maximal κ-
separated net in M , where κ is a small positive number. Recall that
Γ can also be considered as graph of bounded degree with vertex set
Γ. Assume for now that ∂p(Γ) is homeomorphic to ∂p(M). We saw
in Section 3 that the embedding ι: Γ → M is a quasi-isometry, so the
graph G is quasi-isometric with Γ because the composition of quasi-
isometries is a quasi-isometry. It follows from Theorem 2.7 of [6] that
∂p(G) is homeomorphic to ∂p(M), as desired. In order to complete the
proof of Theorem 1.1 we need to show that ∂p(M) is homeomorphic to
∂p(Γ), which we now proceed to do.

We begin with two crucial lemmas.

Lemma 4.1. Let (yn) be a sequence in M with dM (o, yn) → ∞ as
n → ∞, where o is a fixed point in M . For each n ∈ N, let xn ∈ Γ
that satisfies dM (xn, yn) < κ. Let 1 < p ∈ R. If f ∈ BDp(M), then
|f∗(xn)− f(yn)| → 0 as n → ∞, where f∗ is defined by (3.2).
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Proof. For each n ∈ N we have that

|f∗(xn)− f(yn)| =
∣∣∣∣ 1

Vol (B4κ(xn))

∫
B4κ(xn)

f(x) dx− f(yn)

∣∣∣∣
=

∣∣∣∣ 1

Vol (B4κ(xn))

∫
B4κ(xn)

(f(x)− f(yn)) dx

∣∣∣∣
≤ 1

Vol (B4κ(xn))

∫
B4κ(xn)

|f(x)− f(yn)| dx

≤
(

1

Vol (B4κ(xn))

∫
B4κ(xn)

|f(x)− f(yn)|pdx
)1/p

.

Let rx = dM (yn, x), and let γx: [0,∞) → M be a geodesic parame-
terized by arclength that satisfies γx(0) = yn and γx(rx) = x. By
independence of path

∫ rx

0

∇f(γx(t)) · γ′
x(t) dt = f(x)− f(yn).

For notational convenience, set β = 1/(Vol (B4κ(xn))). Consequently,

(
β

∫
B4κ(xn)

|f(x)− f(yn)|pdx
)1/p

≤
(
β

∫
B4κ(xn)

(∫ 5κ

0

|∇f(γx(t))| dt
)p

dx

)1/p

≤
∫ 5κ

0

(
β

∫
B4κ(xn)

|∇f(γx(t))|pdx
)1/p

dt

≤ 5κβ1/p

(∫
B5κ(yn)

|∇f(x)|pdx
)1/p

.

The second to last inequality is Minkowski’s integral inequality. By con-
dition (V) we have a constant V0(5κ) such that V0(5κ) ≤ Vol (B5κ(x))
for all x ∈ M . Hence,

|f∗(xn)− f(yn)| ≤ 5κV0(5κ)
−1/p

(∫
B5κ(yn)

|∇f(x)|pdx
)1/p

.
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Now
∫
B5κ(yn)

|∇f(x)|pdx → 0 as dM (0, yn) → ∞ because f ∈ BDp(M).

Therefore, |f∗(xn)− f(yn)| → 0 as n → ∞.

Lemma 4.2. Let f ∈ BDp(Γ), and let f ∈ BDp(M) be defined by
(3.1). Let x ∈ ∂p(Γ), and let (xn) be a sequence in Γ that converges to
x. Then |f(xn)− f(xn)| → 0 as n → ∞.

Proof. Let n ∈ N, and let Γxn = {g ∈ Γ | g ∈ B(3κ)/2(xn)}. Now,

|f(xn)− f(xn)| =
∣∣∣∣∑
g∈Γ

(f(g)− f(xn))ξg(xn)

∣∣∣∣
≤

(∑
g∈Γ

|f(g)− f(xn)|pξg(xn)

)1/p

≤
( ∑

g∈Γxn

|f(g)− f(xn)|p
)1/p

.

The last inequality follows from ξg(xn) = 0 if g /∈ Γxn . If g ∈ Γxn\{xn},
then g ∈ Nxn , so it follows that

∑
g∈Γxn

|f(g) − f(xn)|p → 0 as

dΓ(o, xn) → 0 due to f ∈ BDp(Γ). Hence, |f(xn) − f(xn)| → 0 as
n → ∞.

We will now proceed to define a function Φ: ∂p(Γ) → ∂p(M). Let
x ∈ ∂p(Γ), and let (xn) be a sequence in Γ that converges to x. Since
Sp(BDp(M)) is a compact Hausdorff space we may assume, by passing
to a subsequence if necessary, that the sequence (xn) converges to a
unique element y ∈ Sp(BDp(M)). Define Φ(x) = y. We now prove
that Φ is well-defined and y ∈ ∂p(M).

Proposition 4.3. The map Φ is well defined from ∂p(Γ) to ∂p(M).

Proof. Let x and y be as above. We first show that Φ is well-defined.
Let (xn) and (x′

n) be sequences in Γ such that both (xn) and (x′
n)

converge to x. Suppose that (xn) → y1 and (x′
n) → y2 in Sp(BDp(M))

and further assume that y1 �= y2. Let f ∈ BDp(M) that satisfies
f(y1) = 0 and f(y2) = 1. Define f∗ as in (3.2). Setting yn = xn in
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Lemma 4.1 we obtain limn→∞ f∗(xn) = 0 and limn→∞ f∗(x′
n) = 1.

But f∗ ∈ BDp(Γ) which means

lim
n→∞ f∗(xn) = f∗(x) = lim

n→∞ f∗(x′
n),

a contradiction. Thus, Φ is well defined.

We will now show that Φ(x) = y ∈ ∂p(M). Suppose y /∈ ∂p(M),

then there exists an f ∈ B(Cc(M)Dp
) such that f(y) �= 0. Assume

f(y) > 0 and define f∗ as in (3.2). Since f∗ ∈ B(Cc(Γ)Dp
) it must be

the case limn→∞ f∗(xn) = f∗(x) = 0. However, Lemma 4.1 says that
limn→∞ f∗(xn) = f(y) > 0, a contradiction. Thus, y ∈ ∂p(M).

We now show that Φ is a bijection.

Proposition 4.4. The map Φ is a bijection.

Proof. We will begin by showing that Φ is one-to-one. Let x1, x2 ∈
∂p(Γ) satisfy Φ(x1) = Φ(x2). Assume x1 �= x2. Then there exists
an f ∈ BDp(Γ) with f(x1) = 1 and f(x2) = 0. Let (xn) and
(x′

n) be sequences in Γ such that (xn) → x1 and (x′
n) → x2. Using

f define a function f ∈ BDp(M) by (3.1). By Lemma 4.2 we see
that limn→∞ f(xn) = 1 and limn→∞ f(x′

n) = 0. This contradicts the
assumption

lim
n→∞(xn) = Φ(x1) = Φ(x2) = lim

n→∞(x′
n).

Thus, Φ is one-to-one.

We will now show that Φ is onto. Let y ∈ ∂p(M), and let (yn) be a
sequence in M with (yn) → y. For each n ∈ N, choose xn ∈ Γ that
satisfies d(xn, yn) < κ. We claim that (xn) → y in Sp(BDp(M)). To
see the claim, let f ∈ BDp(M) and define f∗ ∈ BDp(Γ) by (3.2). By
Lemma 4.1 both |f(xn) − f∗(xn)| → 0 and |f∗(xn) − f(yn)| → 0 as
n → ∞. Hence,

|f(xn)− f(yn)| −→ 0 as n → ∞
for all f ∈ BDp(M). Thus limn→∞(xn) = limn→∞(yn) = y, and the
claim is proved.
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By passing to a subsequence if need be, we assume that the sequence
(xn) converges to an unique element x in the compact Hausdorff
space Sp(BDp(Γ)). To finish the proof, we need to show x ∈ ∂p(Γ).

Suppose x /∈ ∂p(Γ), then f(x) �= 0 for some f ∈ B(Cc(Γ)Dp
). Using

f define a function f ∈ B(Cc(M)Dp
) via (3.1). By Lemma 4.2,

limn→∞ f(xn) = limn→∞ f(xn), which implies f(y) �= 0, contradicting
y ∈ ∂p(M) and f ∈ B(Cc(M)Dp

). Thus, x ∈ ∂p(Γ) and Φ(x) = y,
which shows that Φ is onto.

To finish the proof that the bijection Φ is a homeomorphism we only
need to show that Φ is continuous, since both ∂p(Γ) and ∂p(M) are
compact Hausdorff spaces. Let U be an open subset of ∂p(M), and
let x ∈ Φ−1(U). Fix ε that satisfies 0 < ε < 1. Let (xn) be a
sequence in Γ for which (xn) → x and let y = Φ(x) ∈ U . By [5,
Proposition 1] there exists a subset Ω of M such that y ∈ Ω, where
the closure is in Sp(BDp(M)), and Ω ∩ ∂p(M) ⊆ U . It was shown
in the proof of this proposition that Ω = {m | h(m) > ε}, where
h ∈ BHDp(M), 0 ≤ h ≤ 1, h(y) = 1 and h = 0 on ∂p(M) \ U .
Using this, h a function h∗ ∈ BDp(Γ) can be defined by (3.2). Let
V = {z ∈ ∂p(Γ) | h∗(z) > ε/2}. The set V is open due to h∗ being
continuous. Moreover, it follows from Lemma 4.1 that x ∈ V . Now let
z ∈ V , and suppose Φ(z) /∈ U . Consequently, h(zn) → 0 where (zn) is
a sequence in Γ that converges to z. It follows from Lemma 4.1 that
h∗(zn) < ε/2 for large n, contradicting z ∈ V . Thus V ⊆ Φ−1(U) and
the continuity of Φ is established. Therefore, Φ: ∂p(Γ) → ∂p(M) is a
homeomorphism and Theorem 1.1 is proved.

The proof of Theorem 1.2 pretty much follows the same path as the
proof of Theorem 1.1. Let G be a graph of bounded degree, and let M
be a complete Riemannian manifold. Let Γ be a maximal κ-separated
net inM , where κ is a small positive constant. The graph with bounded
degree Γ is quasi-isometric with G so by the theorem [6, Theorem 2.8]
there is a bijection between BHDp(G) and BHDp(Γ). To complete the
proof of the theorem, we must establish a bijection between BHDp(Γ)
and BHDp(M), which we will now proceed to do.

Let h ∈ BHDp(Γ). Define a function h ∈ BDp(M) by (3.1). Denote
by π(h) the unique element of BHDp(M) given by the Royden’s
decomposition of h. Define Ψ:BHDp(Γ) → BHDp(M) by Ψ(h) =
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π(h). We will now show that Ψ is one-to-one. Let x ∈ ∂p(Γ),
and let (xn) be a sequence in Γ that converges to x. Let Φ be the
homeomorphism from ∂p(Γ) to ∂p(M) given earlier in this section.
Since Ψ(h)(Φ(x)) = h(Φ(x)) for all x ∈ ∂p(Γ), it follows that

(4.1) |Ψ(h)(xn)− h(xn)| −→ 0 as n → ∞.

Combining this with Lemma 4.2 we obtain |Ψ(h)(xn) − h(xn)| → 0
as n → ∞. Thus Ψ(h)(Φ(x)) = h(x). Let h1, h2 ∈ BHDp(Γ), and
assume Ψ(h1) = Ψ(h2). Then h1(x) = h2(x) for all x ∈ ∂p(Γ). Hence
Ψ is one-to-one because a p-harmonic function on Γ is determined by
its values on ∂p(Γ).

All that is left to do is show that Ψ is onto. Let u ∈ BHDp(M) and
define u∗ ∈ BDp(Γ) by (3.2). Denote by h the element in BHDp(Γ)
given by the Royden decomposition or u∗. Let y ∈ ∂p(M), and let
x ∈ ∂p(Γ) such that Φ(x) = y. Pick a sequence (xn) in Γ for which
(xn) → x. Now Ψ(h)(y) = π(h)(y) = h(y) since y ∈ ∂p(M). By (4.1)
and Lemma 4.2 we see that

(4.2) |π(h)(xn)− h(xn)| −→ 0 as n → ∞.

(4.3) |u∗(xn)− u(xn)| −→ 0 as n → ∞.

It is also true that

(4.4) |h(xn)− u∗(xn)| −→ 0 as n → ∞,

due to u∗ = h on ∂p(Γ). Combining (4.3) and (4.4) with (4.2) we obtain

(4.5) |u(xn)− π(h)(xn)| −→ 0 as n → ∞.

Thus, u(y) = Ψ(h)(y) for all y ∈ ∂p(M). Hence, Ψ(h) = u by [5,
Lemma 1]. The proof of Theorem 1.2 is finished.

Acknowledgments. I would like to thank the referee for some useful
remarks concerning this paper.
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