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SUBDIRECT PRODUCTS OF M∗-GROUPS

COY L. MAY AND JAY ZIMMERMAN

ABSTRACT. A compact bordered Klein surface X of genus
g ≥ 2 has at most 12(g − 1) automorphisms. A bordered
surface for which the bound is attained is said to have maximal
symmetry, and its full automorphism group is called an M∗-
group. For M∗-groups G and H, we construct a subdirect
product L of G and H that is an M∗-group. We show that
there is a normal subgroup of G whose index is the same as the
index of L in the direct product G×H. This general result is
specialized to give results about the index of the subdirect
product L in the direct product G × H for M∗-groups G
and H. Then we give a number of sufficient conditions for
L to equal G × H and to conclude that the direct product
is an M∗-group. For example, let G be an M∗-group that
acts on a bordered Klein surface X. The elements of G that
fix a boundary component of X form a dihedral subgroup of
order 2q. The number q is called an action index of G. If G
and H have relatively prime action indices and one of them is
perfect, then the direct product of G and H is an M∗-group.

1. Introduction. A compact bordered Klein surface X of genus
g ≥ 2 has at most 12(g − 1) automorphisms [10]. A bordered surface
for which the bound is attained is said to have maximal symmetry [8].
The full automorphism group of a surface with maximal symmetry is
called an M∗-group [11].

There are infinitely manyM∗-groups, and some important groups are
known to be M∗-groups. For example, all large alternating groups and
all large symmetric groups are M∗-groups [3], as well as most of the
groups PSL (2, q) [19]. In addition, there are constructions that give
extensions of abelian groups by a particular M∗-group G; here see [8,
Section 4]. These constructions do not produce a presentation of the
extension, however. On the other hand, there is a construction that
forms an M∗-group, with complete presentation, from a 2-generator
group that admits an action of D6, the smallest M∗-group [14].
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Here we consider a natural way to construct a larger M∗-group from
two M∗-groups. Our approach uses the concept of a subdirect product
[17]. The basic construction is quite general, with applications possible
to several different types of groups. The applications we have in mind
are to M∗-groups, however, and we begin with some observations
about M∗-groups and the bordered surfaces on which they act. We
subsequently describe the construction in the most general way.

Now let G and H be M∗-groups. Then the construction gives a
subgroup L of the direct product G×H that is a subdirect product of
G and H , and it is easy to see that the “new” group L is an M∗-group.
The construction yields a method to compute |L| if there are complete
presentations for the M∗-groups G and H . In general, however, |L| is
not immediately apparent. We focus on cases in which the subdirect
product L has small index in G × H and there is a condition that
allows the easy determination of |L|. We consider two conditions, one
involving genus actions of the M∗-groups and one involving abelian
quotient groups. First we obtain some results about subdirect products
of M∗-groups, including a characterization of the M∗-groups that are
subdirect products of two smaller M∗-groups.

Finally we consider direct products of M∗-groups. We obtain neces-
sary conditions for an M∗-group to be the direct product of two M∗-
groups. In addition to an easy algebraic necessary condition, there is a
necessary condition involving the genus actions of the M∗-groups; one
of the two groups must act on a non-orientable surface. We obtain some
general sufficient conditions for the direct product of twoM∗-groups G
and H to be an M∗-group. These conditions can be used to show that
if G is a solvable M∗-group and H is a perfect M∗-group, then G×H
is also an M∗-group. Further, if G and H are non-isomorphic simple
M∗-groups, then G×H is an M∗-group.

2. M∗-groups. A finite group G is an M∗-group [11] if it is
generated by three distinct non-trivial elements t, u, v which satisfy
the relations

(1) t2 = u2 = v2 = (tu)2 = (tv)3 = 1.

The fundamental result about M∗-groups is the following; see [8, 11].

Theorem A. The finite group G is an M∗-group with partial pre-
sentation (1) such that o(uv) = q if and only if G is the automorphism
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group of a bordered Klein surface X with maximal symmetry and k
boundary components, where

|G| = 2qk.

The connection between the order of uv and the associated action of
the M∗-group G on a bordered surface was established in [8]. We will
say that the group G acts on X with index q. We will call q the index
of the action or say that q is an action index. In the action of the M∗-
group G on X , each component of ∂X is fixed by a dihedral subgroup
of G of order 2q [8, Section 6]. Note that the index of an action of
an M∗-group determines the number of boundary components but not
the orientability of the surface on which G acts. Indeed, it is possible
for an M∗-group to act on two topologically different surfaces with the
same index. For an interesting example, see [20].

Theorem A was established using NEC groups. Let Δ be the NEC
group with signature (0;+; [ ]; {(2, 2, 2, 3)}). Group Δ is called the
extended quadrilateral group and denoted by Γ[2, 2, 2, 3]. The finite
group G is the automorphism group of a bordered Klein surface X with
maximal symmetry if and only if there is a homomorphism α : Δ → G
onto G such that ker (α) is a bordered surface group. Further, the
surface X = D/ker (α), where D is the open upper half-plane; X has
a non-empty boundary since ker (α) contains reflections (but no other
elements of finite order). For more details, see [11, pages 4 6].

An important alternative way to consider M∗-groups is as quotients
of the extended modular group Γ. Group Γ has generators t, u and v
and defining relations (1) [6, pages 85, 86]. It follows that a finite group
of order at least 12 is an M∗-group if and only if it is a homomorphic
image of Γ. Here we treatM∗-groups mainly as quotients of Γ. A good
source for background results on Γ is [9].

There is a useful criterion for determining the orientability of the
surface X on which an M∗-group acts. Let the M∗-group G have
standard generators t, u and v satisfying (1), and let G+ = 〈tu, uv〉.
Then we have the following basic result.

Proposition 1. Let the M∗-group G have a particular presentation
of form (1) with associated action on the bordered surface X. Then X
is orientable if and only if G+ has index two in G.
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For a proof see [2, page 100]. If the surface X is orientable, then
G+ is the subgroup of orientation-preserving automorphisms of X . If
X is non-orientable, then G+ = G. We will often use this algebraic
condition for the orientability of X .

The commutator subgroup G′ = 〈tv, tu · tv · tu〉 [8, page 278], and
G′ ⊆ G+. Further, the index [G+ : G′] is at most 2, since G+ = 〈G′, tu〉
and tu is an element of order 2. The commutator quotient group of an
M∗-group is always a quotient of Z2 × Z2 , and we have

G′ ⊆ G+ ⊆ G,

where each subgroup has index either 1 or 2 in the next larger group.
There are four possibilities, all of which can occur. However, using
Proposition 1, we can make the following observation.

Proposition 2. If an M∗-group G acts on an non-orientable surface
with maximal symmetry, then [G : G′] ≤ 2.

Proposition 2 may also be easily obtained using the orienting double.
Let X be a non-orientable bordered Klein surface of genus g with k
boundary components. Associated with X in a natural way is its
orienting double Xo [1, pages 37 41], an orientable bordered surface
of genus go = 2g − 1 with 2k boundary components. The surface Xo

has an anti-analytic involution σ : Xo → Xo such that Xo/σ = X . The
automorphism groups of X and Xo are intimately connected [1, page
79]:

A(X) ∼= {f ∈ A+(Xo) | fσ = f}.
Let G = A(X). Then A(Xo) contains a subgroup which is isomorphic
to Z2 ×G ∼= 〈σ〉 ×G.

In particular, suppose the M∗-group G acts on a non-orientable
surface with maximal symmetry, so that G = A(X). Then it follows
that Xo has maximal symmetry and Z2×G is also an M∗-group. Thus
Proposition 2 holds, since the commutator subgroup of Z2 × G has
index at most 4.

The M∗-groups are closely related to a family of abstract groups
introduced by Coxeter [5]. Let Gn,q,r be the group with generators A,
B and C and defining relations

An = Bq = Cr = (AB)2 = (BC)2 = (CA)2 = (ABC)2 = 1.
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If we set t = BC, u = CA, and v = BCA, then we obtain the
presentation

t2 = u2 = v2 = (tu)2 = (tv)n = (uv)q = (tuv)r = 1.

Thus, G is an M∗-group if and only if G is a quotient of the group
G3,q,r for some q and r. The complete table of the known finite groups
Gn,q,r is in [6, pages 139, 140], but also see the recent article [7].

The following basic construction first appeared in [13, Theorem 2].

Proposition 3. Suppose an M∗-group G acts on X with odd action
index q. Then the group Z2 ×G is an M∗-group that acts on a surface
Q(X) with index 2q. Further, the surface Q(X) is orientable if and
only if the surface X is orientable.

Proposition 3 has the following two easy algebraic consequences.
These two results also follow from the partial presentation (1) and
Proposition 1.

Proposition 4. If an M∗-group G has an odd action index, then
[G : G′] ≤ 2.

Proposition 5. If an M∗-group G acts on a non-orientable surface
with odd index, then G is perfect.

Proof. Let G act on the non-orientable surface X with odd index q.
Then Z2 × G acts on the non-orientable surface Y = Q(X), by
Proposition 3. But then the M∗-group Z2 × Z2 × G acts on Yo, and
hence we must have G = G′.

Corollary 1. If an M∗-group G is not perfect and G acts on a non-
orientable surface with maximal symmetry, then the index of the action
must be even.

There is a simple, but useful, way of obtaining a second action index
for an M∗-group.
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Proposition 6. Let G be an M∗-group with generators t, u and v
satisfying (1) and action index q = o(uv). If r = o(tuv), then r is also
the index of an action of G.

Proposition 6 was established in [12, page 24] by noting that t, u′ = tu
and v form another set of generators for theM∗-groupG. Proposition 6
has the following consequence.

Proposition 7. If an M∗-group G has odd action index q, then G
acts on a non-orientable surface with maximal symmetry (not neces-
sarily with index q).

Proof. By Proposition 6, G has a presentation in which o(tuv) = q
is odd. But then the involutions t, u and v are in G+, and the surface
on which G acts with this presentation must be non-orientable, by
Proposition 1.

For example, PGL(2, 7) ∼= G3,7,8 ∼= G3,8,7 [6, page 139] has action
indices 7 and 8. The action with index 8 is on a non-orientable surface
[13, page 385].

By also including the order of the group element tuv, we have more
information about the M∗-group. For example, we have the following
result.

Theorem 1. If an M∗-group G has a presentation in which both the
action index q = o(uv) and r = o(tuv) are odd, then G is perfect.

Proof. Since q is odd, (uv)−1 = (uv)q−1 is a power of (uv)2, and thus
uv is an element of G′. But since r is also odd, we have t · uv in G′ as
well. Now t ∈ G′ = 〈tv, tu · tv · tu〉 and clearly G = G′.

Corollary 2. If each action index of the M∗-group G is odd, then
G is perfect.

The converse of the corollary is false. The simple group PSL(2, 19),
as a quotient of G3,9,10 [6, page 140], has action indices 9 and 10.
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3. The general construction. Here we describe our general
construction, which uses the concept of a subdirect product [17].
Another good reference for the material on subdirect products is
the textbook [18]. The basic construction is quite general, with
applications possible to several different types of groups. The principal
applications we have in mind are to M∗-groups, however.

Definition 1. Let G and H be groups, and let pG and pH be
the canonical projections of the direct product G × H onto G and
H , respectively. A subdirect product of G and H is a subgroup L of
the direct product G×H such that pG(L) = G and pH(L) = H .

Suppose that Γ is a group. Let G and H be finite groups that are
images of Γ, say θ : Γ → G and φ : Γ → H , where both θ and φ are
onto. Define the map ψ : Γ → G × H by ψ(x) = (θ(x), φ(x)), and
let L be the image of Γ under ψ. Since θ and φ are onto G and H ,
respectively, it is clear that L is a subdirect product of G and H .

Definition 2. Let ψ : Γ → G×H be a homomorphism such that L =
Im(ψ) is a subdirect product of G and H . Then define epimorphisms
θ = pG ◦ ψ from Γ onto G and φ = pH ◦ ψ from Γ onto H . Define
subgroups τG(ψ) = θ(ker (φ)) and τH(ψ) = φ(ker (θ)).

Clearly, τG(ψ) × τH(ψ) ⊂ Im (ψ) ⊂ G × H . It is easy to see that
τG(ψ) is a normal subgroup of G, and τH(ψ) is a normal subgroup of
H .

Proposition 8. The group τG(ψ)×{1} is the intersection of groups
Im (ψ) and G×{1}. The group {1}×τH(ψ) is the intersection of Im (ψ)
and {1} ×H.

Proof. Suppose that w is a word in group Γ such that ψ(w) ∈ G×{1}.
Therefore, φ(w) = 1 and w ∈ ker (φ). So θ(w) ∈ τG(ψ). The other
containment is clear.

Theorem 2. Let L = Im (ψ) be a subdirect product of G and H.
Then |G/τG(ψ)| = [G×H : L] = |H/τH(ψ)|.
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Proof. Suppose that {g1, . . . , gt} is a complete set of coset repre-
sentatives of τG(ψ) in G. We will show that {(g1, 1), . . . , (gt, 1)} is a
complete set of coset representatives of L in G×H .

Suppose that (g, h) ∈ (G × H) − L. Since φ is onto H , there is an
element u of Γ such that φ(u) = h. Therefore, (θ(u), h) ∈ L = Im (ψ).
There exists an x ∈ G such that g = xθ(u) and x = gjz, for some j
and some element z ∈ τG(ψ). Now we have

(g, h) = (x, 1)(θ(u), h) = (gj , 1)(z, 1)(θ(u), h) ∈ (gj , 1)L.

Now suppose that (gr, 1) ∈ (gs, 1)L. So (grg
−1
s , 1) ∈ L ∩ (G × {1})

and grg
−1
s ∈ τG(ψ) by Proposition 8. It follows that r = s and so

{(g1, 1), . . . , (gt, 1)} is a complete set of coset representatives of L in
G×H . The same argument with group H finishes the proof.

Corollary 3. G/τG(ψ) ∼= H/τH(ψ) ∼= Γ/(ker (θ) · ker (φ)). In
addition, if n = |G| andm = |H |, then [G×H : L] divides the gcd (n,m)
and hence |L| is a multiple of lcm (n,m).

The following corollaries are worth noting. If one of the groups is a
simple group, then there are only two possibilities.

Corollary 4. Suppose that θ : Γ → G and φ : Γ → H are
maps onto groups G and H respectively. Define ψ : Γ → G × H as
ψ(x) = (θ(x), φ(x)). If H is a simple group, then either ψ is onto
G×H or H is a quotient of G.

Proof. If H is a simple group, then τH(ψ) is either trivial or all of H .
If τH(ψ) = H , then Im (ψ) = G×H . If τH(ψ) = 1, then

H = H/τH(ψ) ∼= G/τG(ψ)

by Corollary 3.

Corollary 5. Suppose that θ : Γ → G and φ : Γ → H are
maps onto groups G and H, respectively. Define ψ : Γ → G × H
as ψ(x) = (θ(x), φ(x)). If no non-trivial quotient of G is isomorphic to
any quotient of H, then ψ is onto G×H.
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4. Applications to M∗-groups. In this section we apply the
general construction to M∗-groups. Let G be an M∗-group with
generators t, u and v satisfying the partial presentation (1), and let Γ be
the extended modular group. Then there is a natural homomorphism
θ : Γ → G from Γ onto G. To obtain the action of G on a bordered
surface, let Δ be the extended quadrilateral group Γ[2, 2, 2, 3]. The
NEC group Δ has presentation

t1
2 = u1

2 = j2 = v1
2 = (t1u1)

2 = (u1j)
2 = (jv1)

2 = (t1v1)
3 = 1.

Then there is a natural homormorphism λ from Δ onto Γ defined by
λ(j) = 1, λ(t1) = t, λ(u1) = u, λ(v1) = v. Then α = θ ◦ λ maps Δ
onto G and ker (α) is a bordered surface group. Then G acts on the
bordered surface X = D/ker (α) with action index q = o(uv).

Let H be a second M∗-group with generators a, b and c satisfying
the partial presentation (1), where a, b and c correspond to t, u and v,
respectively. Then there is a homomorphism φ : Γ → H from Γ onto
H . Then β = φ◦λ maps Δ onto H and H acts on the bordered surface
Y = D/ker (β) with action index r = o(bc).

Now let L be the subgroup of the direct product G×H generated by
(t, a), (u, b) and (v, c). Then L is clearly a subdirect product of G and
H . The group L is Im (ψ), in the notation of Section 3. We record the
following.

Proposition 9. The subdirect product L = Im (ψ) is an M∗-group
that acts on a bordered surface W with index lcm (q, r). If either X or
Y is orientable, then W is orientable.

Proof. The natural generators T = (t, a), U = (u, b) and V = (v, c)
clearly satisfy (1) with o(UV ) = lcm (q, r). Hence, L is an M∗-group.

Let γ = ψ◦λ so that L acts on the surfaceW = D/ker (γ) with index
lcm (q, r). But

α = θ ◦ λ = pG ◦ ψ ◦ λ = pG ◦ γ.
Thus ker (γ) ⊂ ker (α) and ker (α)/ker (γ) ∼= ker (pG). Then the

quotient groupG = L/ker (pG) acts on the quotient surfaceW/ker (pG).
Now we have

W/ker (pG) = (D/ker (γ))/(ker (α)/ker (γ)) = D/ker (α) = X,



1570 COY L. MAY AND JAY ZIMMERMAN

and the surface W is a full covering of X . In the same way, of course,
W is a full covering of Y . If either X or Y is orientable, then it follows
that the covering W is orientable as well [13, page 375].

If both surfaces X and Y are non-orientable, than the surfaceW may
be orientable or not, as we shall see in the next section.

While this construction always produces an M∗-group, the order of
the “new” M∗-group is not immediately apparent. However, Theo-
rem 2 gives a method to compute |L| if there are complete presen-
tations for the M∗-groups G and H . Suppose that G ∼= 〈t, u, v |
t2, u2, v2, (tu)2, (tv)3,S〉, where S is a set of additional relators needed
to define the finite group G. Then the subgroup τH(ψ) is the normal
closure in H of φ(S). In fact, it is interesting that all that is needed to
find |L| is a presentation for one of the two, say G, together with a way
to calculate the image of the relators of G under the homomorphism
φ : Γ → H .

For example, let G = G3,6,6 be the M∗-group of order 108 [6, page
139], and let H = S4 = G3,3,4 be the second M∗-group. Group G has
presentation (1) with the added relators (uv)6, (tuv)6. The normal
closure in H of 〈(uv)6, (tuv)6〉 = 〈(tuv)2〉 has order 4 so that the
index |H/τH(ψ)| = 6. Thus, the construction yields the M∗-group
L = Im (ψ), which has order 432 by Theorem 2.

If one of theM∗-groups, say H , is perfect, then any quotient group of
H is perfect and hence is either trivial or non-solvable. If this quotient
is trivial, then the subdirect product is the direct product; we return
to this case in the next section. Otherwise, this quotient involves a
non-abelian simple group, and the index of L in the direct product is
relatively large.

Here we are primarily interested in cases in which the subdirect
product L has small index in G × H and there is a condition that
allows the easy determination of |L|. We consider two conditions, one
involving the action indices and one involving abelian quotient groups.

Theorem 3. Let G and H be M∗-groups with action indices q and
r, respectively. If q and r are relatively prime, then G+ ⊆ τG(ψ) and
consequently G/τG(ψ) is trivial or isomorphic to Z2. Let d = gcd (q, r).
If 2 ≤ d ≤ 5, then G/τG(ψ) is isomorphic to a quotient of the abstract
group [3, d]. These groups are [3, 2] ∼= D6, [3, 3] ∼= S4, [3, 4] ∼= Z2 × S4,
and [3, 5] ∼= Z2 ×A5.
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Proof. We continue to use the notation that G is an M∗-group with
generators t, u and v, while H has generators a, b and c. Then the
subdirect product L = Im (ψ) is generated by T = (t, a), U = (u, b)
and V = (v, c).

Suppose 1 ≤ d ≤ 5. Then ((uv)d, 1) and (1, (bc)d) are in L. Now,
using Proposition 8, we see that G/τG(ψ) is an image of the group
with presentation (1) and added relation (uv)d = 1. For d > 1 these
relations define the well-known abstract group [3, d] [6, page 37]. Hence,
G/τG(ψ) is an image of [3, d].

Finally, suppose q and r are relatively prime, that is, d = 1. Define
N = ker (θ) · ker (φ). Then uv ∈ N and uN = vN . Thus, tuN = tvN ,
and since these elements have relatively prime orders, it follows that
tu ∈ N . Therefore, by the isomorphism of Corollary 3, G+ ⊆ τG(ψ).
Since [G : G+] ≤ 2, G/τG(ψ) must be an image of Z2.

Now we consider a natural condition involving abelian quotient
groups. The following result allows the determination of |L| in the
important case in which the M∗-groups G and H each have abelian-
ization isomorphic to Z2.

Theorem 4. Let G and H be M∗-groups with G/G′ ∼= H/H ′ ∼= Z2.
Let θ : Γ → G and φ : Γ → H be the epimorphisms of Γ onto G and
H, respectively, and construct the subdirect product L = Im (ψ). First,
ker (θ) ⊆ 〈x〉Γ′ and ker (φ) ⊆ 〈y〉Γ′, where x and y are in {t, u, tu}. If
x = y, then [G×H : L] ≥ 2. If x = y, then G/τG(ψ) is perfect.

Furthermore, suppose that, for any normal subgroups N of G and M
of H such that G/N ∼= H/M , the quotient group G/N is abelian. If
x = y, then [G×H : L] = 2, and if x = y, then L = G×H.

Proof. It is easy to see that Γ/Γ′ = {Γ′, tΓ′, uΓ′, tuΓ′}. Since

Z2
∼= G/G′ ∼=

(
Γ

ker (θ)

)/(
ker (θ)Γ′

ker (θ)

)
∼= Γ

ker (θ) · Γ′ ,

it follows that ker (θ) ⊆ 〈x〉Γ′ for x ∈ {t, u, tu}. Similarly, ker (φ) ⊆
〈y〉Γ′ for y ∈ {t, u, tu}. First assume x = y. Then (ker (θ) · ker (φ)) ⊆
〈x〉Γ′, and, by Corollary 3,

(2) [G×H : L] = [G : τG(ψ)] = [Γ : (ker (θ)·ker (φ))] ≥ [Γ : 〈x〉Γ′] = 2.
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Now assume x = y. Then (ker (θ) ·ker (φ))Γ′ = Γ. Write J = ker (θ) ·
ker (φ). Now we have Γ = JΓ′, and by Corollary 3, G/τG(ψ) ∼= Γ/J .
But it is easy to see that the quotient group Γ/J = JΓ′/J is perfect.
Thus, G/τG(ψ) is a perfect group.

Finally, if the only quotients of G and of H which are isomorphic
are abelian, then G/τG(ψ) ∼= H/τH(ψ) is an abelian group. Hence, if
x = y, then G/τG(ψ) is trivial and L = G × H . Also, if x = y, then
Γ/(ker (θ) · ker (φ)) is abelian and therefore, Γ′ ⊆ (ker (θ) · ker (φ)) and
[G×H : L] = 2.

In the case in which the only isomorphic quotients of G and H are
abelian, we develop a condition to determine whether [G×H : L] is 1 or
2. Suppose θ : Γ → G is the epimorphism of Γ onto G, so that G has a
particular presentation as an M∗-group. Consider the ordered triple of
positive integers ( o(θ(uv)), o(θ(tuv)), o(θ(t(uv)2)) ) = (h, k, l); we call
this ordered triple the signifier of the presentation of G. Of course, a
finite group may have several different presentations as an M∗-group
and, consequently, several different signifiers.

Since (uv)h = (tuv)k = (t(uv)2)l = 1 in G, (uv)h, (tuv)k and
(t(uv)2)l are all elements of ker (θ). The following observations are
easy to check. If h is odd, then the element (uv)h is in the coset tuΓ′,
and if h is even, it is an element of Γ′. Similarly, if k is odd, then the
element (tuv)k is in the coset uΓ′, and if k is even, it is an element of
Γ′. Finally, if l is odd, then (t(uv)2)l ∈ tΓ′, and if l is even, then this
element is in Γ′.

It follows that if a signifier of G has two or more odd components,
then G is a perfect group. This observation includes Theorem 1 as a
special case. Indeed, the notion of signifier extends the idea behind
Theorem 1 by considering the additional element t(uv)2.

If G/G′ ∼= Z2, then a signifier of G must have at most one odd
component. If G/G′ ∼= Z2 and a signifier has one odd component, then
K ⊆ 〈x〉Γ′, where x is u, tu or t, respectively, depending on whether
the odd component is the first, second or third component.

Now suppose G/G′ ∼= H/H ′ ∼= Z2 and the signifiers of both G and
H have one odd component. If the same component is odd, then
[G × H : L] ≥ 2. If a different component is odd, then the quotient
group G/τG(ψ) is perfect. One way to decide what happens is to take
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the dot product of the signifiers modulo 2. If the result is one, then
[G×H : L] ≥ 2, and if the result is zero, then G/τG(ψ) is perfect.

Suppose that, further, for any normal subgroups N of G and M of H
such that G/N ∼= H/M , then G/N is abelian. In this case, if the dot
product of the signifiers modulo 2 is one, then [G×H : L] = 2, and if
the result is zero, then L = G×H .

To illustrate the use of the signifier in applying Theorem 4, let
G = S4. Then a simple calculation shows that G has two possible
signifiers, (3, 4, 4) and (4, 3, 4). Let H = PGL(2, 7). Then H has three
possible signifiers, (8, 7, 6), (7, 8, 6) and (8, 8, 7). The only non-trivial
isomorphic quotient that these two groups have is Z2. Constructing
the subdirect product of S4 and PGL (2, 7) with signifiers (3, 4, 4)
and (8, 7, 6), respectively, yields the direct product S4 × PGL(2, 7).
Thus, S4 ×PGL(2, 7) is an M∗-group with action index 24; this group
also has action indices 8 and 21 (obtained with other choices of the
signifiers). On the other hand, a subdirect product of S4 and PGL(2, 7)
with signifiers (4, 3, 4) and (8, 7, 6), respectively, has index two in
S4 × PGL(2, 7). All of this can also be verified by direct computation.

Now we consider the cases in which the abelian quotients of G and
H are not both of order 2 or less. It is easy to see that the subdirect
product will not equal the direct product in these cases. The following
theorem gives some results about these cases.

Theorem 5. Let G and H be M∗-groups with |G/G′| ≥ 2 and
|H/H ′| = 4. Let θ : Γ → G and φ : Γ → H be the epimorphisms
of Γ onto G and H, respectively, and construct the subdirect product
L = Im (ψ). Then [G × H : L] ≥ 2. If |G/G′| = |H/H ′| = 4, then
[G×H : L] ≥ 4.

Furthermore, suppose that, for any normal subgroups N of G and
M of H such that G/N ∼= H/M , the quotient group G/N is abelian.
If |G/G′| = 2 and |H/H ′| = 4 then [G × H : L] = 2. If |G/G′| =
|H/H ′| = 4, then [G×H : L] = 4.

Proof. If |G/G′| = 4, then ker (θ) ⊆ Γ′ and if |H/H ′| = 4, then
ker (φ) ⊆ Γ′. If |G/G′| = 2, then ker (θ) ⊆ 〈x〉Γ′ for x ∈ {t, u, tu}.
Then [G×H : L] ≥ 2 by equation (2). If |G/G′| = 4 and |H/H ′| = 4,
then [G×H : L] = [Γ : (ker (θ) · ker (φ))] ≥ [Γ : Γ′] = 4.

Finally, suppose that, for any normal subgroups N of G and M of
H , if G/N ∼= H/M , then G/N is abelian. Since G/τG(ψ) ∼= H/τH(ψ)
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by Corollary 3, it follows that G′ ⊆ τG(ψ) ⊆ G and a similar equation
for H . The result follows.

For example, let G = PGL(2, 7), and let H be a solvable M∗-
group with |H/H ′| = 4. Numerous choices are possible for H ; for
any choice, though, any genus action of H is on an orientable surface,
by Proposition 2. Then the construction yields an M∗-group of order
168 · |H |, with the M∗-group acting on an orientable surface.

There is a characterization of the M∗-groups that are subdirect
products of two smaller M∗-groups.

Theorem 6. The M∗-group L is a subdirect product of two smaller
M∗-groups if and only if L has normal subgroups J1 and J2 such that
[L : J1] > 6, [L : J2] > 6 and J1 ∩ J2 = 1.

Proof. First suppose the M∗-group L has normal subgroups J1 and
J2 such that [L : J1] > 6, [L : J2] > 6 and J1 ∩J2 = 1. Then G = L/J1
and H = L/J2 are M∗-groups. Let α : L → G and β : L → H be
the canonical quotient mappings. Then the mapping γ : L → G ×H
defined by γ(x) = (α(x), β(x)) is an isomorphism of L onto a subdirect
product of G and H (γ is injective since J1 ∩ J2 = 1).

Now suppose that L, G and H are M∗-groups, with |L| > |G| and
|L| > |H |, such that L is a subdirect product of G and H . Then L
is a subgroup of the direct product G × H such that pG(L) = G and
pH(L) = H . Let δG and δH denote the restrictions of pG and pH , re-
spectively, to the group L. Then let J1 = ker (δG) and J2 = ker (δH).
Then J1 is normal in L and, since L/J1 is isomorphic to the M∗-group

G, [L : J1] > 6. In the same way, J2 is normal in L and [L : J2] > 6. It
is clear that J1 ∩J2 = 1, since J1 and J2 are subgroups of G×H .

A special case of Theorem 6 is worth mentioning, since it is easy to
check, with the software MAGMA, for example. The Fitting subgroup
Fit (G) of a group G is the maximal normal nilpotent subgroup of G.

Corollary 6. Let L be an M∗-group with |L| > 12 and Fitting
subgroup F = Fit (L). If |F | is divisible by two distinct primes, then L
is a subdirect product of two smaller M∗-groups.
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Proof. Suppose that p and q are distinct primes, each of which divides
|F |. Let P and Q be the Sylow p-subgroup of F and the Sylow q-
subgroup of F , respectively. Then P andQ are characteristic subgroups
of F and L, and P ∩Q = 1.

If |F | is divisible by a third prime (not p or q), then obviously
[L : P ] > 6 and [L : Q] > 6. Also, if [L : F ] ≥ 4, then, again,
easily, [L : P ] > 6 and [L : Q] > 6.

Suppose that |F | is divisible by exactly two primes and [L : F ] < 4.
Note that an M∗-group cannot have a quotient of order 3, and an M∗-
group is not nilpotent, since its Sylow 2-subgroup is not normal. Hence,
we must have [L : F ] = 2, with p = 2 and q = 3. Write |L| = 2i · 3j for
some i and j. Now |Q| = 3j and L/Q is a quotient of the M∗-group L.
Thus, i must be 2. Now L = 4 ·3j and |P | = 2. Since L/P is a quotient
of L, the only possibility is j = 1. Now L ∼= D6, the M

∗-group of order
12. With |L| > 12, then, this case cannot occur.

Now, by the theorem, L is a subdirect product of L/P and L/Q.

For example, L = S3 × S4, the M
∗-group of order 144 [11, page 7],

has Fitting subgroup F ∼= Z3 × (Z2)
2. The group L is a subdirect

product of the smaller M∗-groups S3 × S3 and Z2 × S4.

5. Direct products of M∗-groups. Now we consider necessary
and sufficient conditions for an M∗-group to be the direct product of
two smaller M∗-groups. First, there is an easy, algebraic necessary
condition.

Proposition 10. Let M = G×H be the direct product of G and H,
where |G| > 6 and |H | > 6. If M is an M∗-group, then G and H are
M∗-groups such that one of the following holds:

1) At least one of the groups G, H is perfect, or

2) [G : G′] = [H : H ′] = 2.

Proof. It is basic that a quotient of an M∗-group by a normal
subgroup of index larger than 6 is again an M∗-group [8, Theorem
6]. Thus G and H are M∗-groups. We know that M ′ = G′ ×H ′. If
neither G nor H is perfect, then condition (2) clearly must hold.
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There is also a necessary condition involving the actions of the factors
of the direct product.

Theorem 7. Let M = G × H be the direct product of G and H,
where |G| > 6 and |H | > 6. Suppose M is an M∗-group acting on W
with index s. Write X = W/H and Y = W/G. Let q be the index of
the action of the M∗-group G = M/H on X and r the index of the
action of the M∗-group H =M/G on Y . Then

1) s = lcm(q, r) and

2) at least one of the surfaces X, Y is non-orientable.

Proof. Let theM∗-groupM = G×H have the partial presentation (1)
with generators T , U and V . Then we may write T = (t, a), U = (u, b)
and V = (v, c), of course. What is important here is that the elements
t, u and v generate the M∗-group G in the natural presentation of the
quotient group G =M/H acting on X . In particular, the action index
q = o(uv). Further, a, b and c generate theM∗-groupH =M/G acting
on Y with index r = o(bc). Now, clearly, s = lcm (q, r).

To prove 2), suppose to the contrary that both X and Y are ori-
entable. Then we must have [G : G+] = 2 and [H : H+] = 2 so that
[M : G+ ×H+] = 4. However, M+ = 〈TU,UV 〉 is always a subgroup
of G+×H+, and [M :M+] is at most 2. Hence, X and Y cannot both
be orientable.

Thus, if the M∗-group M is the direct product of two M∗-groups G
and H , either G or H must act on a non-orientable surface. We assume
that it is H and then consider the orientability of the surface on which
M acts.

Theorem 8. Suppose the M∗-group M is the direct product of the
M∗-groups G and H. Let M act on the bordered surface W . Write
X = W/H and Y = W/G, and assume that the surface Y is non-
orientable. Then the following hold.

1) If X is orientable, then W is orientable.

2) Assume that X is non-orientable. If [G : G′] = [H : H ′] = 2, then
W is orientable; otherwise, W is non-orientable.
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Proof. First, 1) holds by Proposition 9.

Assume, then, that surface X is non-orientable. If [G : G′] =
[H : H ′] = 2, then M ′ = G′ × H ′ and [M : M ′] = 4. Now W is
orientable, by Proposition 2. If both M∗-groups G and H are perfect,
then M is also perfect and the surface W on which M acts is non-
orientable. Assume, finally, that one of the M∗-groups, say H , is
perfect, while in the other, [G : G′] = 2. Suppose to the contrary that
W is orientable. Then [M : M+] = 2. But M ′ = G′ × H ′ = G′ ×H
clearly has index 2 in M . Hence M ′ = M+, and now 1 × H ⊂ M+.
Since pG(M

+) = G+ always, here we would have [G : G+] = 2 and the
surface X would be orientable, contradicting our assumption. Hence
W must be non-orientable.

Next we consider sufficient conditions for the direct product of two
M∗-groups G and H to be anM∗-group. First we consider the greatest
common divisor of the action indices.

Theorem 9. Let H be an M∗-group acting on a non-orientable
surface with index r. Let G be another M∗-group with action index q.
If the action indices q and r are relatively prime, then the direct product
G×H is an M∗-group with action index qr.

Proof. We continue to use the notation of Proposition 9. Since H
acts on a non-orientable surface, H = H+ = 〈ab, bc〉. By Theorem 3,
H+ ⊆ τH(ψ) and therefore, by Theorem 2, the subdirect product L is
the direct product.

If the M∗-group H is perfect, then the only surfaces on which H acts
are non-orientable. In this case Theorems 3 and 8 yield the following.

Corollary 7. Let H be a perfect M∗-group with action index r. Let
G be another M∗-group acting on X with index q. If gcd (q, r) ≤ 4,
then the direct product M = G×H is an M∗-group with action index
lcm (q, r). Further, the surface W on which M acts is orientable if and
only if X is orientable.
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Proof. Let d = gcd (q, r). If 2 ≤ d ≤ 4, then H/τH(ψ) is isomorphic
to a quotient of the abstract group [3, d], by Theorem 3. But, in each
case, the group [3, d] is solvable, and the perfect group H has no non-
trivial solvable quotients. Hence, the subdirect product L is the direct
product. If q and r are relatively prime, this follows immediately from
Theorem 9, but it is also a consequence of Theorem 3. In any case, the
orientability of W is given by Theorem 8.

For example, let H = PSL (2, 23), the simple group of order 6072.
Then H is an M∗-group [19] with action indices 11 and 12; the indices
can be found using MAGMA. TheM∗-groupG = PGL(2, 7) has action
indices 7 and 8. Thus G ×H is an M∗-group, with action indices 24,
77, 84 and 88.

Corollary 8. Let H be a perfect M∗-group. If H has two action
indices q and r such that gcd (q, r) ≤ 4, then the direct product
M = H × H is an M∗-group with action index lcm (q, r). Further,
the surface W on which M acts is non-orientable.

Among the small projective special linear groups [19], we can take
H = PSL (2, 8) ∼= G3,7,9 [6, page 140], which has action indices 7 and
9. Hence, H ×H is an M∗-group that acts on a non-orientable surface
with index 63. Another possible choice is H = PSL (2, 13) ∼= G3,7,13 [6,
page 140].

In the case [G : G′] = [H : H ′] = 2, Theorems 8 and 9 yield the
following.

Corollary 9. Let H be an M∗-group with [H : H ′] = 2 acting on
the non-orientable surface Y with index r. Let G be another M∗-group
with [G : G′] = 2 acting on X with index q. If the action indices q
and r are relatively prime, then the direct product M = G × H is an
M∗-group with action index qr. Further, the surface W on which M
acts is orientable.

In particular Corollary 9 can be applied to any M∗-group H with
[H : H ′] = 2 that has two relatively prime action indices, as long as
one of the actions is on a non-orientable surface. For example, S4 × S4

and PGL (2, 7)× PGL(2, 7) are M∗-groups.
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The next sufficient condition is more general and depends on the
construction of Section 3; see Corollary 5.

Theorem 10. Let H be an M∗-group that acts on a non-orientable
surface with index r. Let G be another M∗-group with action index q.
If no non-trivial quotient of G is isomorphic to a quotient of H, then
the direct product G×H is an M∗-group with action index lcm (q, r).

We note two interesting special cases. The first, in particular,
provides a wealth of examples of relatively small order.

Corollary 10. Let G be a solvable M∗-group with action index q,
and let H be a perfect M∗-group with action index r. Then G ×H is
an M∗-group with action index lcm (q, r).

For example, let H = A5, the smallest simple M∗-group. The group
A5 has the unique action index r = 5 [13, Lemma 3]. The M∗-
group G = S4 acts on a sphere with four holes with index 3 and a
real projective plane with three holes with index 4. Thus we see that
S4 × A5 is an M∗-group. This group acts on an orientable bordered
surface with index 15 and a non-orientable one with index 20. Of
course, many similar examples are possible.

Corollary 11. Let G and H be non-isomorphic simple M∗-groups
with action indices q and r, respectively. Then G×H is an M∗-group
with action index lcm (q, r).

For some final examples, we use PSL (2, 19), which is an M∗-group
[19] with action indices 9 and 10. Then A5 × PSL (2, 19) is an M∗-
group with action indices 10 and 45. Also PSL (2, 19)× PSL (2, 23) is
an M∗-group with action indices 36, 60, 99 and 110.

6. Other applications. In connection with group actions on
surfaces of a fixed genus, there are many instances in which the groups
of maximum possible order have a particular partial presentation. In
this case the construction of Section 3 can be applied. There are, in fact,
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numerous possibilities. The surfaces could be Klein surfaces, with or
without boundary, as well as Riemann surfaces. In some instances, the
group actions could be restricted to actions that preserve orientation.

Best known, perhaps, are the classical Hurwitz groups that act on
Riemann surfaces. Each Hurwitz group acts on a group of 84(g − 1)
automorphisms on a Riemann surface of genus g ≥ 2 and has a partial
presentation x2 = y3 = (xy)7. See the survey article [4] for a nice
discussion of these groups. Indeed, it is pointed out in [4, Section 4]
that the subdirect product can be used to construct larger Hurwitz
groups.

Another possibility would be to consider 2-groups acting on bordered
Klein surfaces; here see the recent article [15]. A third possibility would
be to consider groups of odd order acting on Riemann surfaces; these
groups were considered in [16]. These are instances where the subdirect
product construction of Section 3 can be applied to construct a larger
group of the same type, at least. However, we do not claim here that
the construction will necessarily lead to interesting general results. We
conclude with some examples with groups of odd order.

In [21], Zomorrodian gave a p-group analog of the Hurwitz theorem.
He showed, among other things, that the largest 3-group acting on
a Riemann surface of a certain genus was an image of the Fuchsian
group Γ(3, 3, 9). It is easy to see that there are two images of Γ(3, 3, 9)
of order 81. These are groups 7 and 9 in the Magma Library of Small
Groups; we use the notation SG(n, k) to refer to group k of order n
in this MAGMA library. If G = SG(81, 7) and H = SG(81, 9), then
[G : τG(ψ)] = [H : τH(ψ)] = 27. It follows that the subdirect product
of G and H has index 27 in the direct product and so is of order 243.
It is isomorphic to SG(243, 3) and is a Γ(3, 3, 9) group. Similarly, if
G = SG(81, 7) and H = SG(243, 26), both Γ(3, 3, 9) groups, then
[G : τG(ψ)] = [H : τH(ψ)] = 27. It follows that the subdirect product
of G and H has index 27 in the direct product and so is of order 729. It
is isomorphic to SG(729, 40) and is a Γ(3, 3, 9) group. This procedure
is not too difficult and can be done with very large groups.

A final example is with Γ(3, 3, 9) groups that are not 3-groups. Let
G = 〈x, y | x3 = y3 = (xy)9 = [x, y]21 = (x ∗ y ∗ x)21 = [[x, y], [x, y]x] =
[[x, y], [x, y]y] = 1.〉. This is clearly a Γ(3, 3, 9) group and its order is
3969. Let H = 〈x, y | x3 = y3 = (xy)9 = [x, y]39 = (x ∗ y ∗ x)39 =
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[[x, y], [x, y]x] = [[x, y], [x, y]y] = 1.〉. This is clearly a Γ(3, 3, 9) group
and its order is 13689. Finally, [G : τG(T )] = [H : τH(S)] = 81 and so
the subdirect product is a Γ(3, 3, 9) group, and its order is 670761.
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