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DISTINGUISHED ORBITS OF REDUCTIVE GROUPS

M. JABLONSKI

ABSTRACT. We prove a generalization of a theorem of
Borel-Harish-Chandra on closed orbits of linear actions of
reductive groups. Consider a real reductive algebraic group G
acting linearly and rationally on a real vector space V . The
group G can be viewed as the real points of a complex
reductive group GC which acts on V C := V ⊗ C. In [2]
it was shown that GC · v ∩ V is a finite union of G-orbits;
moreover, GC · v is closed if and only if G · v is closed, see
[20]. We show that the same result holds not just for closed
orbits but for the so-called distinguished orbits. An orbit is
called distinguished if it contains a critical point of the norm
squared of the moment map on a projective space. Our main
result compares the complex and real settings to show that
G · v is distinguished if and only if GC · v is distinguished.

In addition, we show that, if an orbit is distinguished, then
under the negative gradient flow of the norm squared of the
moment map, the entire G-orbit collapses to a single K-orbit.
This result holds in both the complex and real settings.

We finish with applications to the study of left-invariant
geometry of Lie groups; of particular interest are left-invariant
Einstein and Ricci soliton metrics on solvable and nilpotent
Lie groups. Using the above theorems, we obtain a procedure
for recovering Ricci soliton metrics on nilpotent Lie groups.

1. Introduction. An analytic approach to finding closed orbits
in the complex setting was developed by Kempf and Ness [19] and
extended to the real setting by Richardson and Slodowy [20]. From
their perspective, the closed orbits are those that contain zeros of the so-
called moment map. However, one can consider more generally critical
points of this moment map on projective space. Work on the moment
map in the complex setting has been done by Ness [18] and Kirwan
[10]. Following those works, the real moment map was explored by
Marian [15] and Eberlein and Jablonski [3].

Consider a real linear reductive groupG acting linearly and rationally
on a real vector space V . There is a complex linear reductive group
GC such that G is a finite index subgroup of the real points of GC;
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moreover, GC acts on the complexification V C of V . The linear action
of G, respectively GC, extends to an action on real projective space
PV , respectively complex projective space CP(V C). For v ∈ V , we
call an orbit G · v, or G · [v], distinguished if the orbit G · [v] in real
projective space contains a critical point of |m‖2, the norm square of
the real moment map. Similarly, for v ∈ V C, we call an orbit GC ·v, or
G · π[v], distinguished if the orbit GC · π[v] in complex projective space
contains a critical point of ‖μ∗‖2, the norm square of the complex
moment map. Here π : RPV C → CP(V C) is the natural projection.
Our main theorems are:

Theorem 4.7. Given G�V , GC�V C, and [v] ∈ PV , we have

G · [v] is a distinguished orbit in PV if and only if

GC · π[v] is a distinguished orbit in CP (V C).

Here π : PV ⊆ RPV C → CP(V C) is the usual projection.

Theorem 5.1. For x ∈ CP(V C), suppose GC · x ⊆ CP(V C)
contains a critical point of ‖μ∗‖2. If z ∈ C ⊆ CP(V C) is such a
critical point, then C ∩GC · x = U · z. Moreover, U · z = ∪g∈GCω(gx).

Theorem 5.2. For x ∈ PV , suppose G · x ⊆ PV contains a
critical point of ‖m‖2. If z ∈ CR ⊆ PV is such a critical point, then
CR ∩G · x = K · z. Moreover, K · z = ∪g∈Gω(gx).

Here μ∗ is the moment map for the action of GC on CP(V C) and C
is the set of critical points of ||μ∗||2 in CP(V C), while m is the moment
map for the action of G on PV and CR is the set of critical points of
‖m‖2 in PV . In the theorems above, U is a specific maximal compact
subgroup of GC and K is a specific maximal compact subgroup of G;
these subgroups are described in the sequel.

The fact that C ∩ GC · x = U · z was proved in [18] in the complex
setting; the fact that CR ∩G · x = K · z was proved in [15] in the real
setting. The fact that the orbit collapses under the negative gradient
flow of ‖μ∗‖2, respectively ‖m‖2, to a single U -orbit, respectively K-
orbit, is our new contribution (see Definition 4.5 for the definition of
the ω-limit set).
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To motivate the reader, we present the following examples.

Example 1.1. A space of Lie algebra structures. Consider the
vector space V = ∧2(Rn)∗ ⊗ Rn = {μ : Rn × Rn → Rn |
μ is bilinear and skew-symmetric}. Observe that a Lie bracket μ on
the vector space Rn is an element of V . The usual action of GLnR on
Rn extends to an action on V defined as follows. For μ ∈ V , g ∈ GLnR,
and X,Y ∈ Rn we have

g · μ(X,Y ) = gμ(g−1X, g−1Y ).

This is a ‘change of basis’ action on V . Here the GLnR orbits are
precisely the isomorphism classes of algebras.

Consider μ ∈ V which is a Lie algebra on Rn, and let SLnR act
on V by restricting the GLnR action above; observe that the GLnR
orbits are the same as the SLnR orbits in projective space PV. The
Lie algebra μ is a semi-simple algebra if and only if the orbit SLnR · μ
is closed in V (see [12] for details). This fact demonstrates that the
geometry of GLnR orbits is related to the algebraic nature of the Lie
algebra μ.

As distinguished orbits are a natural generalization of closed orbits,
one would like to know what it means for an orbit GLnR · μ to
be distinguished. If μ is a nilpotent Lie algebra, then GLnR · μ
is distinguished if and only if the (simply connected) nilpotent Lie
group associated to μ admits a left-invariant Ricci soliton metric.
This relationship between the left-invariant geometry of nilpotent Lie
groups and the geometry of GLnR-orbits is our primary motivation
for studying the property of being a distinguished orbit. See Section 6
and [12] for more details on distinguished orbits for this particular
representation.

Example 1.2. The adjoint representation. Let G be a (real or
complex) semi-simple Lie group acting on its Lie algebra g by the
adjoint action. It is a classical result of Borel et al. that the adjoint
orbit AdG ·X is closed if and only if X is a semi-simple element of g;
that is, if and only if adX is a semi-simple endomorphism of g. The
remaining distinguished (non-closed) orbits will lie in the nullcone of g;
recall that the nullcone consists of X ∈ g for which adX is a nilpotent
transformation of g.
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It is a fact that the collection of orbits in the nullcone is finite.
Naturally, we want to know which of these are distinguished in the
sense presented here. It turns out that every orbit in the nullcone is
a distinguished orbit. To prove this result, one first proves it for the
complex Lie group SLnC, then one deduces the result for all complex
semi-simple Lie groups from this case. To obtain the result for real
semi-simple Lie groups, one must compare the real and complex cases
using Theorem 4.7. We do not present the details here; instead, we
refer the interested reader to [7]. For more information on the moment
map of the adjoint representation, see Example 2.5.

One application of Theorem 4.7 is as follows. Since GC · v ∩ V is
a finite union of G-orbits, if we can show that one of these G-orbits
is distinguished, then all of them are. This has been applied to the
problem of finding generic 2-step nilpotent Lie groups which admit
soliton metrics. (See [8] and Section 6 for more information on the
soliton problem.) Another application of the aforementioned theorem
is:

Theorem 6.5. Let N1 and N2 be two real simply connected nilpotent
Lie groups whose complexifications NC

1 , NC
2 are isomorphic. Then N1

is an Einstein nilradical if and only if N2 is an Einstein nilradical.

This theorem stands out in that it is special to the case of nilpotent
Lie groups. For example, SU(2) and SL2R are simple groups with
isomorphic complexifications. However, SU(2) does admit a left-
invariant Einstein metric while SL2R cannot.

In addition to Section 6, the technical results of this work are applied
to construct new examples of nilpotent Lie groups which cannot admit
left-invariant Ricci soliton metrics. For details on the construction of
such spaces, see [7].

2. Notation and technical preliminaries. Our goal is to study
closed reductive subgroupsG ofGL(E) which are more or less algebraic.
Here E is a real vector space, and we denote its complexification by
EC = E⊗C. We call a subgroup H of GL(E) a real algebraic group if
H is the zero set of polynomials on GL(E) with real coefficients; that
is, polynomials in R[GL(E)].

Consider a closed subgroupH ⊆ GL(E) with finitely many connected
components and its Lie algebra h ⊆ gl(E). Let z denote the center of
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h. We say that H , or h = L(H), is reductive if h = [h, h] ⊕ z, [h, h]
is semi-simple, and z ⊆ gl(E) consists of semi-simple endomorphisms.
Reductive groups in this sense are precisely the groups that are com-
pletely reducible, see [2, Section 1.2].

We say that a group G ⊂ GL(E) is a real linear reductive group if G
is a finite index subgroup of a real algebraic reductive group H ; that is,
G satisfies H0 ⊆ G ⊆ H , where H0 is the Hausdorff identity component
of H . For complex algebraic groups, the Hausdorff and Zariski identity
components coincide. However, this need not be true for real algebraic
groups. Given G, it is well known that a complex (algebraic) reductive
group GC exists defined over R such that G is Zariski dense in GC and
is a finite index subgroup of the real points GC(R) := GC ∩GL(E) of
GC; that is, GC(R)0 ⊆ G ⊆ GC(R). For completeness we construct
this group.

Consider G,H as above. The ideal of polynomials that describes
H ⊆ GL(E) also describes a variety H ⊆ GL(EC) which is defined
over R. This variety H is the Zariski closure of H in GL(EC). As
H is a subgroup of GL(EC), it follows that H is actually a complex
algebraic subgroup of GL(EC), see [1, I.2.1]. Moreover, H is smooth
and we have dimCH = dimRH , see [22]. By comparing the dimensions
of these groups and their tangent spaces at the identity, one sees
L(H) = L(H)⊗C. Thus, H is reductive as H is reductive.

To construct GC we consider H0, the Hausdorff identity component
of H . Recall that H0 is an algebraic group as the Hausdorff and Zariski
identity components of H coincide, see [1, I.1]. Define GC = H0 · G.
This is a subgroup ofH asH0 is normal inH ; moreover, asH0 has finite
index in H and GC contains H0, it follows that G

C has finite index in
H . Equivalently, we can write GC = ∪n(gn ·H0) where {gn} ⊂ G is a
finite collection. Thus, GC is an algebraic group as it can be described
as a union of varieties. Additionally, we observe that each component
gn · H0 of GC intersects G and that GC is the Zariski closure of G.
The importance of this observation will be made clear when extending
certain inner products on real vector spaces to their complexifications;
see Proposition 2.4.

We call group GC the complexification of G. We choose the complex
subgroup GC instead of H as H might have topological components
which do not intersect G. This is the complexification used by Mostow,
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see [16, Section 2]. We point out that we are always working in the
usual topology and will explicitly state when we are talking about
Zariski closed sets.

Let V be a real vector space, and denote its complexification by V C =
V ⊗C. We will consider representations ρ : G → GL(V ) that are the
restrictions of morphisms ρC : GC → GL(V C) of algebraic groups. See
[1] for more information on algebraic groups and morphisms between
them. We will call such a representation a rational representation of
G. Note: We will denote the induced Lie algebra representation by the
same letter.

2.1. Cartan involutions. Let E be a finite-dimensional real vector
space. A Cartan involution of GL(E) is an involution of the form
θ(g) = (gt)−1, where gt denotes the metric adjoint with respect to
some inner product on E. At the Lie algebra level this involution is
θ(X) = −Xt.

Proposition 2.1 [16]. A Cartan involution θ of GL(E) exists such
that GC(R) is θ-stable.

Proposition 2.2 [2, Proposition 13.5]. Let ρ : GC(R) → GL(V ) be
a rational representation. Let θ be a Cartan involution of GL(E) such
that GC(R) is θ-stable. Then a Cartan involution θ1 of GL(V ) exists
such that ρ ◦ θ = θ1 ◦ ρ.

This proposition is extended in the next proposition which follows
from Sections 1 and 2 of [20].

Proposition 2.3. Let G be defined as above and ρ : G → GL(V ) a
rational representation. Then:

a. There exists a K-invariant inner product 〈·, ·〉 on V such that G is
self-adjoint. Hence, the Lie algebra L(G) = g is also self-adjoint. That
is, Cartan involutions θ, θ1 exist on G, ρ(G), respectively, such that
ρ ◦ θ = θ1 ◦ ρ.
b. There exist decompositions of G and g, called Cartan decompo-

sitions, so that G = KP as a product of manifolds and g = k ⊕ p.
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Here K = {g ∈ G | θ(g) = g} is a maximal compact subgroup of G,
k = L(K) = {X ∈ g | θ(X) = X}, p = {X ∈ g | θ(X) = −X}, and
P = exp(p). Moreover, an AdK-invariant inner product 〈〈·, ·〉〉 exists
on g so that g = k⊕p is orthogonal and, for X ∈ p, adX is a symmetric
transformation relative to 〈〈·, ·〉〉.
c. Relative to the inner product 〈·, ·〉 on V , ρ(X) are symmetric trans-

formations for X ∈ p and ρ(X) are skew-symmetric transformations
for X ∈ k.

The subspaces k and p that arise in the Cartan decomposition above
have the following set of relations

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k.

This is easy to see since k and p are the +1,−1 eigenspaces, respectively,
of the Cartan involution θ. We point out that our AdK-invariant inner
product on g restricts to such on p as the relations above show that p
is AdK-invariant. Additionally, if the group G were semi-simple, then
up to scaling the only choice for 〈〈·, ·〉〉 would be −B(θ(·), ·) on each
simple factor of g, where B is the Killing form of G.

Our Cartan involution θ on G is the restriction of a Cartan involution
on GC, see [20, 2.8 and Section 8] and [16]. This gives Cartan
decompositions gC = u ⊕ q and GC = U · Q, where U is a maximal
compact subgroup of GC, Q = exp(q), and U ∩Q = {1}.
We observe that the maximal compact groups U and K are related

by U = KU0. To see this, it suffices to prove KU0Q = UQ = GC since
KU0 ⊆ U and U ∩ Q = {1}. Since U0Q = H0 and P ⊆ Q, we obtain
KU0Q = KP ·H0 = G ·H0 = H0 ·G = GC.

The subspaces u, q ⊆ gC are related to k, p ⊆ g as follows

u = k⊕ ip

q = ik⊕ p.

These two subspaces of LGC = gC have a nice interpretation relative
to a particular inner product on V C. Our construction of this inner
product on V C is similar to that done in [20, Sections 2 and 8]. We
will be consistent with their notation.



1528 M. JABLONSKI

Proposition 2.4. The K-invariant inner product 〈 , 〉 on V ,
described in Proposition 2.3, extends to a U -invariant inner product
S on V C with a similar list of properties for GC. Additionally, the
inner product 〈〈 , 〉〉 on g extends to an AdU -invariant inner product
S on gC.

Proof. The proof of this fact follows the construction of S in A2
(proof of 2.9) in [20]. Define the inner product on V C as

S(v1 + i v2, w1 + i w2) = 〈v1, w1〉+ 〈v2, w2〉.
In this way, V and iV are orthogonal under S and i acts as a skew-
symmetric transformation on V C relative to S. S is positive definite
on V C.

Recall that U = KU0 (see the remark above), and observe that S is
K-invariant as K preserves V , iV and 〈 , 〉 is K-invariant. Thus, to
show U -invariance, once just needs to show U0-invariance. This follows
since ρ(u) acts skew-symmetrically and U0 = exp(u).

We leave to the reader the details of showing that ρ(u) acts skew-
symmetrically and ρ(q) acts symmetrically relative to S. Lastly, the
extension of 〈〈 , 〉〉 on g to S on gC is a special case of the above work.

We say that the inner products on our complex spaces are compatible
with the inner products on the underlying real spaces. The inner
product S constructed here gives rise to a U -invariant Hermitian form
H = S+ iA on V C where we define A(x, y) = S(x, iy). This Hermitian
form is compatible with the real structure V in the sense of Richardson
and Slodowy, that is, A = 0 when restricted to V × V ; see Sections 2
and 8 of [20].

2.2. Moment maps. Next we define our moment maps. The
motivation for these definitions comes from symplectic geometry and
the actions of compact groups on compact symplectic manifolds. In
the complex setting, this moment map coincides with the one from the
symplectic structure on CP(V C). For more information, see [18] and
[4].

Real moment maps. Given G � V we define m̃ : V → p implicitly
by

〈〈m̃(v), X〉〉 = 〈Xv, v〉
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for all X ∈ p. Notice that m̃(v) is a real homogeneous polynomial
of degree 2. Equivalently, we could define m̃ : V → g; then using
K-invariance and k ⊥ p, we obtain m̃(V ) ⊆ p.

Example 2.5 (The adjoint representation). Consider a real semi-
simple Lie group G acting on its Lie algebra g by the adjoint action.
Fix a Cartan involution θ on G, and g. Let K = Gθ be the fixed set of θ;
then K is a maximal compact subgroup of G. Moreover, denoting the
Killing form of g by B, we see that 〈·, ·〉 = −B(·, θ(·)) is a K-invariant
inner product on g satisfying all of the hypotheses above.

Choosing the inner product on g = LieG to be the same, that is,
〈〈 , 〉〉 = 〈 , 〉, we see that the moment map of this action is

m(X) = −[X, θ(X)].

Embedding G ⊂ GL(V ), the Cartan involution can be written as
θ(g) = (gt)−1, where t denotes the metric adjoint with respect to
some inner product on V . In doing so, our moment map becomes
m(X) = XXt − XtX . See [3, 7, 20] for more information on the
adjoint representation from this perspective.

We can just as well construct a moment map for the action GC�V C

where we regard GC as a real Lie group. We use the inner product S
on V C. The (real) moment map for GC�V C, denoted by ñ : V C → q,
is defined by

S(ñ(v), Y ) = S(Y v, v)

for Y ∈ q and v ∈ V C.

Since these polynomials are homogeneous, they give rise to well-
defined maps on (real) projective space. Define

m : PV → p n : RPV C → q

m[v] = m̃

(
v

|v|
)

=
m̃(v)

|v|2 n[w] = ñ

(
w

|w|
)

=
ñ(w)

|w|2 ,

where |w|2 = S(w,w) and S = 〈 , 〉 on V . Since V ⊆ V C, we have
PV ⊆ RPV C; this is our main reason for studying the real moment
map on GC. The next lemma compares these two real moment maps.

Lemma 2.6. n restricted to PV equals m.
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Proof. Recall that n takes values in q = ik⊕ p and m takes values in
p ⊆ q. Take v ∈ V and X ∈ k. Then

S(ñ(v), iX) = S(iX · v, v) = 0,

as V ⊥ iV (see Proposition 2.4), and we are using (iX) · v = i(X · v),
i.e., gC acts C-linearly on V C. Since g ⊥ ig under S, we have ik ⊥ p.
Thus, ñ(v) ∈ p ⊆ q. Now take X ∈ p.

S(ñ(v), X) = 〈〈ñ(v), X〉〉 by compatibility of g ⊆ gC

‖
S(Xv, v) = 〈Xv, v〉 by compatibility of V ⊆ V C

= 〈〈m̃(v), X〉〉 by definition/construction of m̃.

Therefore, ñ(v) = m̃(v) for v ∈ V ⊆ V C, which implies n[v] = m[v] for
[v] ∈ PV ⊆ RPV C.

Complex moment maps. We choose a notation that is similar
to Ness [18] as we are following her definitions; the only difference is
that we use μ where she uses m. For v ∈ V C, consider ρv : GC → R
defined by ρv(g) = |g · v|2, where |w|2 = H(w,w) = S(w,w). Define
a map μ : CP(V C) → q∗ = Hom(q,R) by μ(x) = (dρv(e))/|v|2,
where v ∈ V C sits over x ∈ CP(V C), cf. [18, Section 1]. We define
the complex moment map μ∗ : CP(V C) → q by μ = S(μ∗, ·). Note
that, taking the norm square of our complex moment map will give us
the norm square of the moment map in Kirwan’s setting; in Kirwan’s
language, iμ would be the moment map [18, Section 1].

Let π denote the projection π : RPV C → CP(V C).

Lemma 2.7. The complex and real moment maps for GC are related
by μ∗ ◦ π = 2n.

Proof. Many of our computations have the same flavor as those of
Ness; we employ her ideas. Take an orthonormal basis {αi} of iu = q
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under S. Also, let x = π[v] ∈ CP(V C) for v ∈ V C. Then

μ∗(x) =
∑
i

S(μ∗(x), αi)αi

=
∑
i

[μ(x)αi]αi

=
∑
i

1

||v||2 dρv(e)(αi)αi

=
∑
i

1

||v||2
d

dt

∣∣∣∣
t=0

‖ exp tαi · v‖2αi.

Here the norm on V C is from H = S + iA. But S is the inner product
being used on V C, and so H(w,w) = S(w,w) tells us that μ∗(x)

=
∑
i

1

‖v‖2 2S(αiv, v)αi

=
∑
i

2S(ñ[v], αi)αi

= 2ñ[v].

Remark. Since PV is not a subspace of CP(V C), we use RPV C

and the real moment map of GC to work between the known results of
Kirwan and Ness to get information about our real group G�PV .

3. Comparison of real and complex cases. Most of algebraic
geometry and geometric invariant theory has been worked out exclu-
sively for fields which are algebraically closed. We are interested in the
real category and will exploit all the work that has already been done
over C. We use and refer the reader to [22] as our main reference for
real algebraic varieties.

Recall that our representation ρ : G → GL(V ) is the restriction
of a representation of GC. The following is Proposition 2.3 of [2]
and Section 8 of [20]. Originally this was stated as a comparison
between GC(R)0-orbits and GC-orbits; however, it can be restated
as a comparison between G and GC orbits, for any G satisfying
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GC(R)0 ⊆ G ⊆ GC(R). This is true as GC(R)0 has finite index
in G.

Theorem 3.1. Let v ∈ V . Then

GC · v ∩ V =
m⋃
i=1

Xi

where each Xi is a G-orbit. Moreover, GC · v is closed in V C if and
only if G · v is closed in V .

Complex group orbits have some nice properties that we don’t enjoy
over the real numbers. For example, the Hausdorff and Zariski closures
of a group orbit are the same for a complex linear algebraic group.
One property that does translate to the reals is that the boundary of
an orbit consists of orbits of strictly lower dimension. See [6, subsection
8.3] for the complex setting, and see below for the real setting. For some
interesting examples of semi-simple real algebraic groups whose orbit
closure is not the Zariski closure, see [3].

Proposition 3.2. Let G and GC be defined as above. Take v ∈ V ⊆
V C. Then

a. dimRG · v = dimCG
C · v.

b. ∂(G · v) = G · v − G · v consists of G-orbits of strictly smaller
dimension.

c. GC · v ∩G · v = G · v.

Proof of a. Notice that, for a real Lie group H , H · v � H/Hv. Let
h be the Lie algebra of H . Then, at the Lie algebra level, it is easy to
see that (hv)

C = (hC)v, for v ∈ V ⊆ V C. As dimRG = dimCG
C, we

are done.

Proof of b. Recall two facts about complex group orbits. First, the
boundary GC · v−GC · v of the complex group orbit GC · v consists of
GC-orbits of strictly smaller dimension, see [6, subsection 8.3]. Second,

GC · v
⋂

V =
m⋃
1

Xi,



DISTINGUISHED ORBITS OF REDUCTIVE GROUPS 1533

where each Xi is a G-orbit. Moreover, each Xi is closed in GC · v⋂V
as it is a finite union of connected components of GC · v ∩ V , see [2,
Proposition 2.3]. If v ∈ Xi for 1 ≤ i ≤ m, then G · v = Xi and

G · v ∩ GC · v = Xi. If w ∈ G · v − G · v, then w ∈ GC · v − GC · v,
and it follows from a and the first remark above that G ·w has smaller
dimension than G · v.
Proof of c. This follows immediately from b and its proof.

3.3. Orbits in projective space. Since our groups act linearly on
vectors spaces, we can consider the induced actions on projective space
G � PV and GC � RPV C.

Lemma 3.3. For v ∈ V , GC · [v] ∩G · [v] = G · [v] in RPV C.

This is the same result in projective space that we had for our vector
spaces.

Proof. The actions of R∗ ×G and G on PV are the same; moreover,
(R∗ × G)C = C∗ × GC. Given v ∈ V , take gn ∈ G and g ∈ GC such
that [gnv] → [gv] in PV . Then we want to show [gv] ∈ G · [v]. Now
take rn, r ∈ R such that rngnv, rgv have unit length in V C. We can
assume rngnv → rgv by passing to −r and a subsequence if necessary.

Then rngnv → rgv ∈ C∗ × GC · v ∩ R∗ ×G · v. Therefore, rgv ∈
R∗ ×G · v using Proposition 3.2 c, and our result follows.

4. Closed and distinguished orbits. We begin with a theorem
of Richardson and Slodowy (for real groups) which follows the work of
Kempf and Ness (for complex groups). To find which orbits are closed,
one looks for the infimum of |g · v|2 along the orbit. Such a vector
is called a minimal vector, and it occurs on the orbit precisely when
our orbit is closed. Let M denote the set of minimal vectors in V .
Although not stated using the moment map, the following was proven
in [20, Theorem 4.4, 7.3].

Theorem 4.1. G · v is closed if and only if w ∈ G · v exists such
that m̃(w) = 0. Such a vector w is minimal. Moreover, M = m̃−1(0)
and G · v ∩M is a single K-orbit.
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Equivalently we could find the zeroes of ‖m̃‖2 to find the minimal
vectors. Minimal vectors are used to understand the semi-stable points,
that is, all the vectors whose orbit closure does not contain zero. In
contrast, the null cone is the set of vectors whose orbit closure does
contain zero. To study the null cone, we move to projective space.
Clearly, we cannot use minimal vectors to study the geometry of the
null cone, so instead of looking for zeros of ‖m‖2 on PV , we look for
critical points of ‖m‖2.

Definition 4.2. We say that v ∈ V or [v] ∈ PV is distinguished if
‖m‖2 : PV → R has a critical point at [v]. We say that an orbit G·v or
G · [v] is distinguished if it contains a distinguished point. Analogously,
we define distinguished points and GC-orbits in V C andCP(V C) using
‖μ∗‖2.

Minimal vectors distinguished as zero is an absolute minimum of the
function ‖m‖2. Our goal is to find an analogue of Theorem 3.1 for
distinguished orbits. To understand critical points of ‖m‖2, we will
relate this function to ‖μ∗‖2 by means of ‖n‖2. Recall that ‖μ∗‖2 has
been studied extensively in [10, 18].

Our first observation is that the only closed orbits G · [v] ⊆ PV occur
when G · [v] = K · [v]. This is well known, but an elegant and geometric
proof is easily obtained using properties of the moment map, see e.g.,
[15, Theorem 1]. So our main interest is in the remaining distinguished
orbits.

Proposition 4.3. If [v] ∈ PV , then grad‖n∗‖2[v] = grad ‖m∗‖2[v] ∈
T[v]G · [v]. Hence, ‖n∗‖2 has a critical point at [v] ∈ PV ⊆ RPV C if
and only if ‖m∗‖2 does so. Moreover, if [v] ∈ PV , and ϕt[v] is the
integral curve of −grad‖n∗‖2 starting at [v], then ϕt[v] ∈ G · [v] ⊆ PV
for all t.

Before proving the proposition, we study the gradients of these
functions. Let φ : GC × V C → V C denote the action of GC on V C,
and let φv : GC → V C denote the induced map for every v ∈ V C. We
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define vector fields on V C and RPV C as follows. On V C we define

X̃α(v) := dφv(α) =
d

dt

∣∣∣∣
t=0

exp tα · v

for α ∈ gC. And, on RPV C,

Xα[v] := π∗X̃α(v)

where π : V C → RPV C is projection. Note, this is well defined as our
action GC�V C is linear.

Lemma 4.4. For x ∈ PV , grad‖m∗‖2(x) = 4Xm(x)(x). For
x ∈ RPV C, grad ‖n∗‖2(x) = 4Xn(x)(x).

Marian proves the first statement for ‖m∗‖2 on PV , see [15, Lemma
2]. Her proof carries over to obtain the statement for ‖n∗‖2 on RPV C.

Proof of Proposition 4.3. The first assertion follows from Lemma 4.4,
Lemma 2.6 and the fact that m[v] ∈ p ⊆ g for [v] ∈ PV . The second
and third assertions follow immediately from the first.

Next we relate the actions of our complex group GC on RPV C and
CP(V C). By Lemma 2.7, we know that ‖μ∗ ◦ π[v]‖2 = 4‖n[v]‖2 for
v ∈ V C and π : RPV C → CP(V C). This shows that ‖n‖2 is not just
U -invariant, it is also U ×C∗-invariant. We wish to relate the actions
of GC on RPV C and CP(V C) by comparing their gradients from the
natural Riemannian structures on these projective spaces.

4.1. The Riemannian structures and gradients on projective
space. Recall that projective space can be endowed with a natural
Riemannian metric so that projection from the vector space is a
Riemannian submersion. This natural Riemannian metric is called the
Fubini-Study metric and is defined as follows. Take ζi ∈ T[w]KP(V C),
where K = R or C. Let ΠK : V C → KP(V C) be the usual projection,
and take ξi ∈ TwV

C such that ΠK∗ (ξi) = ζi. The Fubini-Study metric
on KP(V C) is defined by

(ζ1, ζ2) =
(ξ1, ξ2)(w,w) − (ξ1, w)(ξ2, w)

(w,w)
.
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One can naturally identify the tangent space TΠK(w)KP(V C) with

the orthogonal compliment of K-span 〈w〉 in TwV
C. In our setting, we

are using S, the extension of 〈 , 〉 on V , as our inner product on V C.
Using these natural choices of Riemannian structures on RPV C and
CP(V C), we see that π : RPV C → CP(V C) is also a Riemannian
submersion.

We are interested in the negative gradient flow of the moment map.
Let ϕt denote the negative gradient flow of ‖n‖2 on RPV C and ‖μ∗‖2
on CP(V C).

Definition 4.5. The ω-limit set of ϕt(p) ⊆ RPV C is the set
{q ∈ RPV C | ϕtn(p) → q for some sequence tn → ∞ in R}. We
denote this set by ω(p).

Analogously, we can define the ω-limit set of ϕt(p) ⊆ CP(V C), and
we denote this set by ω(p) also. It is easy to see that ω(p) is invariant
under ϕt for all t.

Remark. We observe that points in the ω-limit set of a negative
gradient flow are fixed points of the flow, that is, critical points of the
given function. In general, this is not true for ω-limit points associated
to non-gradient flows. We include a brief argument for the reader.

Consider F : M → R, and let ϕt(p) denote the integral curve of
−gradF starting at p ∈ M . Observe that F is decreasing along
ϕt(p). Suppose that ω(p) is non-empty. Then we can define c =
limt→∞ F (ϕt(p)) to obtain ω(p) ⊆ F−1(c). Thus, for q ∈ ω(p), we
see that ϕt(q) ⊆ F−1(c). Hence, gradF (q) = 0. That is, points in the
ω-limit set of −gradF are critical points for F .

Proposition 4.6. Endow RPV C and CP(V C) with the Riemannian
metrics so that the projections from V C are Riemannian submersions.
Then the following are true for [v] ∈ RPV C:

a. 4π∗grad‖n‖2[v] = grad‖μ∗‖2(π[v]).
b. [v] ∈ RPV C is a critical point of ‖n‖2 if and only if π[v] ∈

CP(V C) is a critical point of ‖μ∗‖2.
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c. ϕt ◦ π = π ◦ ϕ4t, where ϕt denotes the negative gradient flow of
‖n‖2 on RPV C or ‖μ∗‖2 on CP(V C).

d. π(ω([v])) = ω(π[v]), where ω(p) denotes the ω-limit set of the
negative gradient flow starting from p.

Proof. Applying Lemma 2.7, we have

4〈grad‖n‖2[v], w[v]〉 = 4
d

dt

∣∣∣∣
t=0

‖n[v + tw]‖2

=
d

dt

∣∣∣∣
t=0

‖μ∗π[v + tw]‖2

= 〈grad‖μ∗‖2(π[v]), π∗w[v]〉

Since π∗ is a submersion, we have that π∗ maps the horizontal
subspace of T[v]RPV C isometrically onto Tπ[v]CP(V C) and part a is
proven. Thus, if [v] is a critical point for ‖n‖2, then π[v] is one for
‖μ∗‖2. To obtain the reverse direction use the C∗-invariance of ‖n‖2.
This proves part b.

Proof of part c. Let [v] ∈ RPV C. Consider the curve π ◦ ϕ4t[v] in
CP(V C). This curve satisfies the following differential equation

d

dt
π ◦ ϕ4t[v] = π∗4(−grad‖n‖2)(ϕ4t[v]) = −grad‖μ∗‖2(π ◦ ϕ4t[v]).

That is, the curve π◦ϕ4t[v] is the integral curve of the negative gradient
flow of ‖μ∗‖2 starting at π[v]. Thus, π ◦ ϕ4t = ϕt ◦ π.
Proof of part d. We will show containment in both directions. Take

p ∈ ω[v]. Then a sequence of tn → ∞ exists such that ϕtn [v] → p in
RPV C. Using part c, we have ϕtn/4(π[v]) = π ◦ ϕtn [v] → π(p). That
is, π(p) ∈ ω(π[v]), or π(ω[v]) ⊆ ω(π[v]). To obtain the other direction,
take q ∈ ω(π[v]) and tn → ∞ so that ϕtn(π[v]) → q in CP(V C).
Consider the set ϕ4tn [v] in RPV C. Since RPV C is compact, we can
find a limit point of this set and, passing to a subsequence, we may
assume ϕ4tn [v] → p. Then, p ∈ ω[v], π(p) = q by (c), and we have
shown q ∈ π(ω[v]). That is, ω(π[v]) ⊆ π(ω[v]).

We finish the section by stating our main theorem and some corol-
laries.
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Theorem 4.7. Given G�V , GC�V C, and [v] ∈ PV , we have

G · [v] is a distinguished orbit in PV if and only if

GC · π[v] is a distinguished orbit in CP(V C).

Here π : PV ⊆ RPV C → CP(V C) is the usual projection.

Remark. Analysis of the proof of Theorem 4.7 shows the following.
Given v ∈ V ⊆ V C, the orbits G · [v] ⊆ PV and GC · π[v] ⊆
CP(V C) being distinguished is equivalent to GC · [v] ⊆ RPV C being
distinguished using ‖n‖2 on RPV C.

Corollary 4.8. Suppose we have v1, v2 ∈ V with distinct G-orbits
but whose GC-orbits are the same. Then G · [v1] is distinguished if and
only if G · [v2] is distinguished.

Remark. The phenomenon of two vectors having different real orbits
but the same complex orbit happens often (see the following examples).
This corollary was a necessary ingredient in the solution to the problem
of showing that generic 2-step nilmanifolds admit soliton metrics (see
[8]). This corollary is also used to prove other interesting geometric
results, see e.g., Theorem 6.5.

Example 4.9 (Adjoint action of SL2R). Consider the elements

X1 =
[
0 1

0 0

]
and X2 =

[
0 0

1 0

]
of sl2R. It is a simple computation

that these elements lie on distinct orbits of SL2R; however, they
must lie on the same SL2C orbit (i.e., they have the same Jordan
normal form). Using Example 2.5, we compute that the moment

map at X1 is m(X1) = X1X
t
1 − Xt

1X1 =
[
1 0

0 0

]
. As m(X1) · X1 =

m(X1)X1 − X1m(X1) = X1, we see that X1 is a distinguished point
of this action. Applying the corollary above, we see that the orbit
SL2R ·X2 is also distinguished. The general case of adjoint actions of
semi-simple Lie groups is studied in [7] where it is shown that every
nilpotent orbit is distinguished.

Example 4.10 (Quadratic forms on Rn and Cn). Another classical
example that demonstrates the propensity for multiple real orbits lying
on the same complex orbit is the similarity action of GLnR on the
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set of symmetric real matrices Symm(n,R); recall that the space
Symm(n,R) is the space of symmetric (real) bilinear forms on Rn

which is the same as the space of quadratic forms on Rn. Here the
action is defined by g·M = gMgt for g ∈ GLnR andM ∈ Symm(n,R).
Likewise, we have the action of GLnC on Symm(n,C), the space of
symmetric complex matrices, which is the space of quadratic forms on
Cn.

Recall that Sylvester’s theorem says a real similarity class [M ] (or
orbit GLnR · M) is completely determined by its signature (p, q, k)
where p = # of positive eigenvalues, q = # of negative eigenvalues,
and k = nullity = n − (p + q). However, the complex similarity
classes are completely determined by their nullity and so two real orbits
GLn ·M1, GLnR ·M2 are on the same complex orbit if their nullities
are equal; that is, if p1+q1 = p2+q2. Clearly, there are several distinct
real orbits in a given complex orbit. Moreover, using the inner product
〈X,Y 〉 = tr (XY t) on both glnR and Symm(n,R), one can show that
every orbit in this representation is distinguished.

5. Proofs of main theorems. Here we prove Theorem 4.7 on
distinguished orbits. To do this, we first prove a statement for complex
moment maps in the complex setting. Then we will relate the complex
moment map information to the real moment map for the GC action.

Remark. For x ∈ CP(V C), the critical points of ‖μ∗‖2 restricted
to GC · x are precisely the critical points of ‖μ∗‖2 as a function on
CP(V C). This is because grad ‖μ∗‖2(x) is always tangent to GC · x.
We denote the set of critical points of ‖μ∗‖2 in CP(V C) by C.

Theorem 5.1. For x ∈ CP(V C), suppose GC · x ⊆ CP(V C)
contains a critical point of ‖m‖2. If z ∈ C ⊆ CP(V C) is such a critical
point, then C ∩GC · x = U · z. Moreover,

U · z =
⋃

g∈GC

ω(gx).

Let CR denote the set of critical points of ‖m‖2 on PV . We have a
real analogue of the theorem above.
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Theorem 5.2. For x ∈ PV , suppose G · x ⊆ PV contains a
critical point of ‖m‖2. If z ∈ CR ⊆ PV is such a critical point, then
CR ∩G · x = K · z. Moreover,

K · z =
⋃
g∈G

ω(gx).

Before proving Theorems 5.1 and 5.2, we apply Theorem 5.1 to prove
Theorem 4.7.

Proof of Theorem 4.7. Suppose first that G · [v] is distinguished.
Then G · [v] = G · [w] where [w] is a critical point of ‖m‖2. But
now Proposition 4.3 implies that [w] is a critical point of ‖n‖2 and
Proposition 4.6 implies that π[w] is a critical point of ‖μ∗‖2; that is,
GC · π[v] is distinguished.
Now suppose GC · π[v] is distinguished. Our goal is to show that the

orbit G· [v] in PV contains a critical point of ‖m‖2. We will use the GC

action on RPV C and the real moment map of this action. As GC ·π[v]
is distinguished, and π : GC · [v] → GC · π[v] is surjective, there exists
a w ∈ GC · [v] such that π[w] ∈ GC · π[v] is a critical point of ‖μ∗‖2.
Apply the negative gradient flow of ‖n‖2 in RPV C starting at

[v] ∈ PV . By Proposition 4.3, this is the negative gradient flow of
‖m‖2, and the ω-limit set ω[v] ⊆ G · [v] consists of critical points of ‖n‖2
and ‖m‖2 (see the remark following Definition 4.5). By Proposition
4.6 d and Theorem 5.1, we have π(ω[v]) = ω(π[v]) ⊆ U · π[w]; hence,
ω[v] ⊆ π−1(U · π[w]) = C∗ × U · [w] ⊆ C∗ ×GC · [v]. This implies

ω[v] ⊆ C∗ ×GC · [v] ∩G · [v] ⊆ C∗ ×GC · [v] ∩R∗ ×G · [v]
= R∗ ×G · [v]
= G · [v]

by Lemma 3.3 and the fact that (R∗ × G)C = C∗ × GC. Hence,
ω[v] consists of critical points of ‖m‖2 that lie in G · [v]. This proves
Theorem 4.7.

Before proving Theorem 5.1, we prove Theorem 5.2. The proof of
this theorem is actually embedded in the proof of Theorem 4.7. We
present it here.
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Proof of 5.2. The fact that CR ∩G · x constitutes a single K-orbit is
the content of [15, Theorem 1]. In [15], G is taken to be semi-simple;
however, all the results hold for G real reductive with the same proofs,
mutatis mutandis. Our original contribution is the second statement
of the theorem. We prove it here.

Suppose G · x ⊆ PV contains a critical point z of ‖m‖2. Then the
orbit GC ·π(x) is distinguished in CP(V C) by Theorem 4.7. The proof
of Theorem 4.7 shows, for g ∈ G, ω(gx) consists of critical points of
‖m‖2 in G · x. By Theorem 1 of [15], we have ω(gx) ⊆ K · z. Hence,

⋃
g∈G

ω(gx) = K · z,

since ω(y) = {y} for all y ∈ K · z.

Lastly we have to prove Theorem 5.1. The first statement is proven in
[18, Theorem 6.2]. That is, the critical points of ‖μ∗‖2 on a GC-orbit
comprise a single U -orbit. As in Theorem 5.2, our original contribution
is the second statement. While the proof of Theorem 5.1 follows from
well-known results in the classic literature, surprisingly, this theorem
does not appear in either [10, 18]. (As stated earlier, this theorem is
a necessary tool to understanding special solutions of the Ricci flow on
nilpotent Lie groups, see Section 6.)

Remark. It has been pointed out to me by Jorge Lauret that the set
ω(x) consists of a single point, see [21, subsection 2.5]. However, our
proof does not require the use of this fact.

Proof of Theorem 5.1. To obtain this result, we couple the works of
Kirwan and Ness, from which the theorem follows quickly. We begin
with the following theorem as motivation, see [18, Theorem 7.1].

Theorem (Ness). Let z ∈ CP(V C) be a critical point of ‖μ∗‖2. For
g ∈ GC,

‖μ∗‖2(z) ≤ ‖μ∗‖2(gz)
with equality if and only if g ∈ U ⊂ GC.
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On the orbit GC · z, one expects the values of ‖μ∗‖2 to be bounded
away from the minimum value ‖μ∗‖2(z) outside of a neighborhood of
U ·z. However, a priori, it is not clear if the following can occur: Letting
z be a point at which ‖μ∗‖2 is minimized along the orbit GC · z, does
there exist a sequence gn ∈ GC such that lim ‖μ∗‖2(gnz) = ‖μ∗‖2(z)
but lim gnz ∈ GC · z −GC · z? The technical work of [18, Section 7] is
not enough to avoid this scenario; we demonstrate below that this does
not happen.

We recall the following structural results from [10]. There is a smooth
stratification of CP(V C) into strata Sβ which are GC-invariant. The
strata are determined by a certain decomposition of the critical set C
of ‖μ∗‖2 in CP(V C). This critical set is a finite union C = ∪β∈BCβ

where ‖μ∗‖2 takes a constant value on Cβ and each Cβ is U -invariant.
We will denote this constant value of ‖μ∗‖2 on Cβ by Mβ = ‖β‖2.
Here B is actually a finite set in gC, and the norm ‖ · ‖ comes from the
prescribed inner product on gC.

For β ∈ B, the stratum Sβ is defined to be the set of points which
flow via the negative gradient flow to the critical set Cβ , that is,
Sβ = {x ∈ CP(V C) | ω(x) ⊆ Cβ}. In particular, Cβ ⊆ Sβ. See [10,
Section 2] for a detailed discussion of this Morse theoretic approach to
geometric invariant theory. If GC · y ∩ Cβ �= ∅, then

GC · y ∩ Cβ = U · z,
for z ∈ Cβ , that is, the critical points in a GC-orbit comprise a single
U -orbit, see [18, Theorem 7.1].

Fix β. We will be interested in z ∈ Cβ and the orbit GC · z. We
define Oε = {x ∈ CP(V C) | ‖μ∗‖2(x) ∈ [Mβ,Mβ +ε)}∩Sβ . This is an
open subset of Sβ that contains Cβ = {x ∈ Sβ | ‖μ∗(x)‖2 = Mβ}. We
observe that Oε is invariant under the forward flow ϕt of −grad ‖μ∗‖2
as ‖μ∗‖2 decreases along the trajectories t → ϕt(x). Since GC · z is a
submanifold of CP(V C), hence also of Sβ , Oε∩GC ·z is open in GC ·z
and contains U · z as Cβ is U -invariant.

Definition 5.3. We define {Vε,i} to be the collection of connected
components of Oε ∩GC · z that intersect U · z. We define

Vε :=
⋃
i

Vε,i.
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Remark. Vε is an open set of GC · z that contains U · z. As U has
finitely many components, U = ∪m

i=1φiU0, and we can write

Vε =

m⋃
i=1

Vε,i

where φiU0(z) ⊆ Vε,i. The Vε,i are connected and open in GC · z as
Oε ∩ GC · z is open in GC · z and GC · z is locally connected, see [17,
Theorem 25.3]. Moreover, since Oε and GC · z are invariant under ϕt,
t > 0, we see that the components Vε,i are invariant under forward
flow, as well.

Proposition 5.4. There exists a ε > 0 such that V ε ⊆ GC · z.
Moreover, ω(Vε) = U · z for small ε > 0.

Proof. Before proving this statement, we will show that some open
set A exists containing U · z in GC · z such that A is a compact subset
of GC · z. Then we will show that Vε ⊆ A for small ε. This would then
prove the first assertion of the proposition.

Recall that GC = U exp(iLU). If we let B be the open unit ball
in iLU , then A = U exp(B) · z has the said property, that is, A is a
compact subset of GC · z.

Lemma 5.5. Either Vε ⊆ A or Vε ∩ ∂A �= ∅. For small ε > 0,
Vε ⊆ A.

This will follow from

Lemma 5.6. Either Vε,i ⊆ A or Vε,i ∩ ∂A �= ∅.

To prove this lemma, suppose that Vε,i �⊆ A and Vε,i∩∂A = ∅. Since
Vε,i ∩ A intersects U · z, we see that Vε,i = (Vε,i ∩ A) ∪ (Vε,i\A); that
is, Vε,i is separated by these disjoint open sets. This contradicts the
connectedness of Vε,i, and the lemma is proved.

We continue with the proof of the first lemma. Suppose Vε �⊆ A for
every ε > 0. Then for each ε, there exists some point pε ∈ Vε ∩∂A. By
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definition, ‖μ∗‖2(pε) ≤ Mβ + ε. Letting epsilon go to zero, we can find
a limit point p∞ ∈ ∂A as ∂A is compact. Hence, p∞ ∈ GC · z − A ⊆
GC · z−U · z. Moreover, ‖μ∗‖2(p∞) = Mβ , and we have found a point
in GC · z which is not on U · z but minimizes ‖μ∗‖ on GC · z. This is a
contradiction since GC ·z∩Cβ = U ·z by [18, Theorem 7.1]. Therefore,
Vε ⊆ A for small ε. This proves the first lemma and the first claim in
the proposition.

To finish the proof of the proposition, we observe that U · z =
ω(U · z) ⊆ ω(Vε) since U · z ⊆ Cβ and ϕt fixes the points of Cβ for all t.
Thus, we just need to show containment in the other direction. Since
the set Vε is invariant under forward flow and Vε ⊆ GC · z ⊆ Sβ, we see
that ω(Vε) ⊆ Vε ∩ Cβ ⊆ GC · z ∩ Cβ = U · z.

Definition 5.7. Let O = {x ∈ GC · z | ω(x) ⊆ U · z}.

Lemma 5.8. Consider the set O defined above. Then O = GC · z.

To prove the lemma it suffices to show that O is open and closed in
GC ·z and intersects each component of GC ·z. To see that O intersects
each component of GC · z, we observe that O contains U · z and that
each component of GC intersects U since GC = UQ and Q = exp(q) is
contractible, see the remarks before Proposition 2.4. Choose ε > 0 as
in Proposition 5.4.

O is open. We know for small ε > 0, Vε is open in GC · z, contains
U ·z, and Vε is contained in O by Proposition 5.4. It suffices to consider
x ∈ O\U ·z. Then there exists a t∗ > 0 such that ϕt∗(x) belongs to Vε,
from the definition of O. But ϕ−t∗ : Vε → ϕ−t∗(Vε) is a diffeomorphism
of GC · z (and also of Sβ). Thus, ϕ−t∗(Vε) is an open set in GC · z
containing x, which is contained in O. Therefore, O is open.

O is closed. We will show ∂O = ∅; here we mean the boundary
of O in the topological space GC · z. Take yn ∈ O such that
yn → y ∈ GC · z. Since z ∈ Cβ ⊆ Sβ and Sβ is GC-invariant, it
follows that y ∈ GC · z ⊆ Sβ , and hence ω(y) ⊆ Cβ . Thus, there exists
an M > 0 such that ϕM (y) ∈ Oε. We will denote the component of
Oε ∩ GC · z containing ϕM (y) by Oy

ε ; again, this component is open
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in GC · z as GC · z is locally connected. Observe that, for t ≥ M ,
ϕt(y) ∈ Oy

ε and ϕs(Oy
ε ) ⊆ Oy

ε for s ≥ 0 as ϕs leaves Oε ∩ GC · z
invariant for s ≥ 0. Since ϕt is a diffeomorphism on Sβ which preserves
GC · z, ϕ−1

M (Oy
ε ) is an open set of GC · z containing y.

We assert that Oy
ε ∩Vε �= ∅. Since yn ∈ O, we know that there exists

a Tn > 0 such that ϕTn(yn) ∈ Vε, by definition of O. Additionally, for
t ≥ Tn, ϕt(yn) ∈ Vε by the flow invariance of Vε.

Pick N such that yN ∈ ϕ−1
M (Oy

ε ), which we can do as ϕ−1
M (Oy

ε ) is
open and yn → y. Then we have ϕM (yN ) ∈ Oy

ε , a single component of
Oε ∩GC · z, and ϕTN (yN ) ∈ Vε.

(i) If M ≥ TN , then ϕM (yN ) = ϕM−TN (ϕTN (yN )) ∈ ϕM−TN (Vε) ⊆
Vε. That is, ϕM (yN ) ∈ Oy

ε ∩ Vε �= ∅.

(ii) If TN ≥ M , then ϕTN (yN ) = ϕTN−M (ϕM (yN )) ∈ ϕTN−M (Oy
ε ) ⊆

Oy
ε . That is, ϕTN (yN ) ∈ Oy

ε ∩ Vε �= ∅.

Thus, Oy
ε being a connected component of Oε∩GC ·z which intersects

Vε, a union of connected components of Oε ∩GC · z, we have Oy
ε ⊆ Vε.

That is, y ∈ O since ϕt(y) ∈ Vε for t ≥ M and ω(Vε) ⊆ U · z by
Proposition 5.4. This proves the lemma and Theorem 5.1.

6. Applications to the left-invariant geometry of Lie groups.
We apply the previous results to the study of left-invariant metrics
on nilpotent and solvable Lie groups. The relationship between left-
invariant Einstein metrics on solvable Lie groups, left-invariant Ricci
soliton metrics on nilpotent Lie groups, and geometric invariant theory
was established and explored by Heber [5] and Lauret [11]. We present
a sketch of this relationship below and refer the reader to [14] for more
details.

To motivate the reader more familiar with Einstein metrics than Ricci
solitons, we present the following.

Theorem 6.1 [13]. Let S be a solvable Lie group with nilradical N . If
S admits a left-invariant Einstein metric, then N necessarily admits a
left-invariant Ricci soliton metric. Moreover, a classification of solvable
groups admitting left-invariant Einstein metrics reduces to classifying
nilpotent groups admitting left-invariant Ricci soliton metrics.



1546 M. JABLONSKI

Left-invariant Ricci soliton metrics on nilpotent Lie groups are often
referred to as nilsoliton metrics. Given the above theorem, a thorough
understanding of nilsolitons is necessary for understanding Einstein
metrics on solvmanifolds; however, they are very interesting in their
own right.

The relationship between left-invariant metrics on nilpotent Lie
groups and geometric invariant theory is as follows. Consider a nilpo-
tent Lie group N with Lie algebra N. A left-invariant metric on N
corresponds to a choice of inner product on N. Thus, the space of
left-invariant metrics on N is the space of inner products on N. We
can vary the inner products on N to search for nilsolitons, or we can
fix our choice of inner product on N and instead vary the Lie algebra
structure on N. This is the perspective taken by Lauret.

Consider the vector space Rn with the usual inner product; that is,
so that the standard basis is orthonormal. We consider the space of
skew-symmetric, bilinear forms on Rn

V = ∧2(Rn)∗ ⊗Rn

= {μ : Rn ×Rn −→ Rn | μ is bilinear and skew-symmetric}.
The set of Lie algebra brackets is clearly a subset of the vector space
above; in fact, the set of Lie algebra structures is a variety. Moreover,
the set of nilpotent Lie algebra brackets is also a variety. It is described
by the polynomials describing the Jacobi identity and nilpotency (via
Cartan’s criterion for nilpotentcy).

There is a natural GLnR action on V which preserves the varieties
of Lie algebra structures. For μ ∈ V , g ∈ GLnR and X,Y ∈ Rn, we
have

g · μ(X,Y ) = gμ(g−1X, g−1Y ).

In this setting, the GLnR-orbits are precisely the isomorphism classes
of Lie algebra structures on Rn.

The inner product on Rn extends naturally to an inner product on
V = ∧2(Rn)∗ ⊗ Rn as follows. Denote the inner product on Rn by
〈·, ·〉, and denote its extension to V by the same notation. Then for
μ, λ ∈ V , we define 〈μ, λ〉 =

∑
ij〈μ(ei, ej), λ(ei, ej)〉 where {ei} is an

orthonormal basis of Rn. On the Lie algebra glnR, we use the usual
inner product from the trace form, that is, 〈〈X,Y 〉〉 = tr (XY t) for
X,Y ∈ glnR.
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Using these inner products, we can construct the moment map m̃ for
the action of GLnR on V and similarly m for the action of GLnR on
PV (see Section 2).

Theorem 6.2 (Lauret). Let Nμ denote the simply connected nilpo-
tent Lie group with left-invariant metric whose Lie algebra Nμ (with
inner product) corresponds to the point μ ∈ V . Then Nμ is a nilsoliton
if and only if μ is a critical point of F (v) = ‖m ◦ π‖2(v). Equiva-
lently, Nμ is an Einstein nilradical if and only if the orbit GLnR · μ is
distinguished.

This theorem can be found in [14]. The last equivalence is not stated
using the label of distinguished orbit but is stated using the idea. In
Section 10 of [14], there are several open questions of interest which
are presented. We state Question 5 from this list.

Question 6.3. Consider the function F : V → R defined by
F (v) = ‖m◦π(v)‖2 where π : V → PV is the usual projection and m is
the moment map on real projective space. Define μt to be the integral
curve of −gradF starting at μ0 on the sphere of radius 2. Is μ∞ (the
limit point along the integral curve) contained in the orbit GLnR · μ0

if Nμ0 is an Einstein nilradical?

This is clearly a special case of our work (Theorem 5.2). The flow
restricted to the sphere of radius 2 in V projects onto the flow in
projective space; recall that the sphere is a two-to-one cover of PV.
Thus, convergence within the group orbit in the sphere is equivalent to
convergence within the group orbit in projective space. Finally, as Nμ0

being an Einstein nilradical is equivalent to the orbit GLnR · μ0 begin
distinguished, we have the following.

Theorem 6.4. Let Nμ0 be an Einstein nilradical. Let μ∞ denote
the limit point of the negative gradient flow of the function F starting
at μ0. Then μ∞ is contained in the orbit GLnR · μ0; that is, Nμ0 and
Nμ∞ are isomorphic Lie groups.

Lastly, we apply Corollary 4.8 to the setting of real forms of complex
Lie algebras to obtain another interesting geometric consequence of our
work. Let N be a simply connected real nilpotent Lie group with Lie
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algebra N. Let NC denote the simply connected complex Lie group
with Lie algebra NC = N⊗C. We call NC the complexification of N .

Theorem 6.5. Let N1 and N2 be two real simply connected nilpotent
Lie groups whose complexifications NC

1 , NC
2 are isomorphic. Then N1

is an Einstein nilradical if and only if N2 is an Einstein nilradical.

Remark. This theorem has also been obtained by Nikolayevsky
in [19, Theorem 6] where he studies closed orbits of a particular
reductive group associated to each nilmanifold. There, the philosophy
of comparing real and complex group orbits is also employed.

This theorem stands out in that it is special to the case of nilpotent
Lie groups. For example, SU(2) and SL2R are simple groups with
isomorphic complexifications. On semi-simple groups, if a left-invariant
metric is an algebraic Ricci soliton, then it must be a left-invariant
Einstein metric (see [11]). However, SU(2) does admit a left-invariant
Einstein metric while SL2R cannot.
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completed under the direction of Pat Eberlein at the University of
North Carolina, Chapel Hill. I am grateful to P. Eberlein and J. Lauret
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