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ON A GENERAL THEORY OF FACTORIZATION
IN INTEGRAL DOMAINS

D.D. ANDERSON AND ANDREA M. FRAZIER

ABSTRACT. This paper introduces a general theory of fac-
torization of elements in integral domains. This theory sub-
sumes most if not all previously studied cases such as the usual
factorization into irreducible elements or into prime elements;
the factorization into distinguished classes of elements such as
prime powers, primary, or t-pure elements, and the comaximal
factorizations of McAdam and Swan.

Let D be an integral domain, let D# = D — (U(D) U {0})
where U(D) is the group of units of D, and let 7 be a relation
on D#. The key ideas are the notions of a 7-factorization of
a € D# (a = Aai---an where XA € U(D), a; € D# and a;7a;
for ¢ # j), 7-divides | (a|+b if a occurs in a T-factorization
of b), a T-irreducible element (the only t-factorizations of
a are the trivial ones a = A(A\7la)), a T-prime element
(a]Aai - --an, a T-factorization, then ala; for some i) and a
|r-prime element (a|rAa1 - - - an, a T-factorization, then a|ra;
for some 7). Numerous examples are given to illustrate the
theory.

1. Introduction. The notion of factorization of an element of an
integral domain plays a central role in algebra. The last 15 years has
seen an explosion of research concerning factorization. For example,
one can note the work of the first author, D.F. Anderson, Zafrullah and
others on generalizations of unique factorization, the work of Chapman,
Coykendall, Smith and others on half-factorial domains, the work of
D.F. Anderson and others on elasticity, the work of Geroldinger, and
Halter-Koch and others on lengths of factorizations, the work of Hassler
and Kainrath, and the recent work of McAdam and Swan on comaximal
factorization. The purpose of this paper is to lay the foundation for
a general theory of factorization of the nonzero nonunit elements of
an integral domain. We believe that our theory subsumes most if not
all of the various types of factorizations that have been studied. For
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example, it includes the usual factorization into irreducible elements
or into prime elements, the factorization into elements that behave
like powers of primes such as primary elements or t-pure elements,
and the recent comaximal factorizations of McAdam and Swan [36].
Our theory is based on the notions of 7-factorizations, 7-divides, 7-
atoms, 7-primes and 7-divides primes where 7 is a relation on the
nonzero nonunit elements of the integral domain in question. Before
defining these terms, we give a brief overview of factorization in integral
domains.

Throughout, D will denote an integral domain with quotient field
K, group of units U(D), and D¥ its set of nonzero nonunits. By a
factorization of a € D¥ we mean a = a; - - - a,, where each a; € D¥#.
Sometimes it is useful to write a factorization as a = Aaj - - - a,, where
A € U(D) and a; € D¥. An element a € D¥ is irreducible or an atom
if it can not be factored as a = bc where b,c € D# and is prime if a|bc
implies a|b or alc. The domain D is atomic if each element of D# has
a factorization into atoms. Of course a UFD is an atomic domain in
which the factorization of each nonzero nonunit into atoms is unique up
to associates and order of factors, or equivalently, an integral domain
in which each nonzero nonunit element is a product of prime elements.
For atomic domains one is interested in how well-behaved factorizations
into atoms must be. For example, atomic domains in which any two
factorizations of an element into atoms have the same length, called
half-factorial domains, have received wide attention [23]. Various
other factorization properties on atomic domains weaker than unique
factorization were defined in [6]. The definitions of these domains will
be reviewed in Section 2 and then extended to T-factorizations.

We can also study (unique) factorization in nonatomic integral do-
mains. Now UFD’s can be characterized by the property that each
nonzero nonunit has the form Ap{* - - - p%» where A is a unit, p1,... ,pn
are nonassociate prime elements, and each a; > 1. Each of the p}‘,
in addition to being a power of a prime, has other properties, each
of which is subject to generalization. For example, each p;’ is pri-
mary, each is contained in a unique maximal ¢-ideal (defined below),
and the pf* are pairwise coprime. Weakly factorial domains, integral
domains in which every nonzero nonunit is a product of primary ele-
ments, were introduced in [10]. Let D be an integral domain. Call a
nonzero nonunit x € D t-pure if it is contained in a unique maximal
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t-ideal (as is the case for a nonzero primary element). It turns out
that every element of D¥ is a product of ¢-pure elements (respectively,
primary elements) if and only if the intersection D = Pet-max(D) DP
(respectively, D = ﬂpex(l)(D) Dp) is locally finite, is independent (i.e.,
distinct maximal ¢-ideals contain no common nonzero prime ideal (this,
of course, always holds for the second intersection)), and has t-class
group C?;(D) = 0. (This result is generalized to arbitrary finite char-
acter star-operations in Theorem 4.6.) Here ¢t-max(D) is the set of
maximal ¢-ideals of D and X (1) (D) is the set of height-one prime ideals
of D. The t-class group is defined below. This factorization into t-
pure elements (respectively, primary elements) is unique once elements
contained in the same maximal ¢-ideal are combined, or equivalently,
when the elements in the product are pairwise v-coprime. For more
on factorizations induced by independent locally finite intersections of
localizations, see [17]. For more on factorization into ¢-pure elements
and for factorizations into other types of elements such as homogenous
elements and rigid elements see [2, 12, 37-39] and [8]. See [4] for a
survey on non-atomic (unique) factorization.

Recently McAdam and Swan [36] studied comaximal factorizations.
For a € D#, D an integral domain, a comazimal factorization of a is a
factorization a = a; - - - a, where (a;,a;) = D for i # j. They defined
a € D# to be pseudo-irreducible (respectively, pseudo-prime) if a does
not have a comaximal factorization a = be (respectively, if a|bc where
b and ¢ are comaximal, then alb or a|c). They showed that an integral
domain D with the property that each element of D# has a comaximal
factorization into pseudo-irreducible elements has unique comaximal
factorization into pseudo-irreducible elements if and only if every two-
generated invertible ideal of D is principal. In [4], the first author
following suggestions of Zafrullah extended these definitions to general
star-operations. Recall that a star-operation % is a closure operation
on the set F(D) of nonzero fractional ideals of D with D* = D that
satisfies (aA)* = aA* for all a € K* = K — {0} and A € F(D). Here
a *-comazximal factorization of a is a factorization a = a; - - - a,, where
(ai,a;)* = D for i # j. And a € D¥ is -pseudo-irreducible (resp.,
*-pseudo-prime) if a does not have a *-comaximal factorization a = bc
(respectively, if a|bc where (b, c)* = D, then a|b or alc). If we take % to
be the d-operation A — Ay = A we get the comaximal factorizations of
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McAdam and Swan. Also of interest is the case of the t-operation
Ay =U{B, = (B')"Y B € F(D), B C A s finitely generated}.

For an introduction to star-operations, see [29]; while for a more
detailed account the reader may consult [33] and the references given
there. We recall a few more definitions and facts concerning star-
operations. Let D be an integral domain and x a star-operation on
D. A fractional ideal A € F(D) is called a x-ideal if A = A*. A
fractional ideal A € F(D) is x-invertible if there is a B € F (D) with
(AB)* = D. We can then take B = A~L. The set T} (D) of x-invertible
*-ideals of D forms a group under the x-product A x B = (AB)*. Let
Princ (D) be its subgroup of nonzero principal fractional ideals. Then
the quotient group C?,(D) = T,(D)/Princ(D) is called the *-class
group of D. For x = d, C¢,(D) = Pic(D) and for x = t, Cl(D)
is the t-class group or just the class group of D. For more on *-
invertibility and x-class groups, especially in the case of x = t, see
[20, 40]. Given two star-operations x; and x on D, we write x; < %o
if A** C A* for all A € F(D). Now « has finite character if for each
A € F(D), A* = J{B*|B € F(D),B C A is finitely generated}. So
the d-operation and t-operation have finite character. Suppose that x
has finite character. Then each proper integral x-ideal is contained in a
maximal *x-ideal and a maximal x-ideal is prime. Let x-max(D) denote
the set of maximal x-ideals. We always have D =) PEx-max(D) Dp.

We now define the key notions of our theory. Let D be an integral
domain and 7 a symmetric relation on D#. For a € D¥#, a 7-
factorization is a factorization ¢ = Aaj ---a, where A € U(D) and
a;Ta; for i # j. In this case we call a; a 7-factor of a and say that
a; T-divides a, written a;|;a. Call a € D# r-irreducible or a T-atom
if a = A(A1a) (A € U(D)) are the only 7-factorizations of a, and
call D 7-atomic if each element of D# has a 7-factorization into -
irreducibles. Finally, a € D* is 7-prime (respectively, |.-prime) if
whenever a|Aa; - - - a,, (respectively, a|;Aay - - - a,,) where Aa; - -ay, is a
T-factorization, then al|a; (respectively, al.a;) for some .

Let us see how the previously mentioned factorization schemes relate
to 7-factorizations. If we let 7 = D# x D#, a r-factorization is just
a usual factorization, |, is the usual divides |, T-irreducible is just
irreducible, and 7-prime and |,-prime are just prime. Next suppose
we want to study factorization into a set S of distinguished elements
such as atoms, primes, or primaries. Define atb < a, b € S. Here a
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non-trivial 7-factorization is just a factorization a = Aaj ---a, where
each a; € S. Finally, let x be a star-operation on D. Define ar,b <
(a,b)* = D. Then a 7,-factorization is a x-comaximal factorization
and a x-pseudo-irreducible (respectively, x-pseudo-prime) element is a
Ty-atom (respectively, 7,-prime).

Section 2 develops the general theory of r-factorizations while the
remaining sections cover particular examples. Section 2 begins with the
relevant definitions and then gives a number of examples. Of particular
importance is the notion of a divisive relation 7 on D# for the integral
domain D. Here 7 is divisive if, for a,a’,b,b' € D# with a'|a, b'|b and
atb, then a'7b'. The notions of 7-UFD, 7-FFD, 7-HFD, 7-BFD, -
ACCP, and T-atomic are defined and studied. For example, it is shown
that 7-UFD = 7-FFD = 7-BFD = 7-ACCP = r-atomic and that
the various factorization properties such as UFD or BFD imply 7-UFD
or 7-BFD. Several of these implications require 7 to be divisive (see
Figure 2). Perhaps the most interesting result of Section 2 is that for
7 divisive, a UFD is a 7-UFD (Theorem 2.11).

Section 3 covers the relation 8 on D[X], D an integral domain, defined
by f0g < degf = degg. Note that 0 is not divisive. It is shown
(Theorem 3.1) that D[X] is a 0-UFD < D[X] is 0-atomic < D = K
is algebraically closed. More generally (Theorem 3.3), every f € D[X]
with deg f > 1 has a J-atomic factorization < every indecomposable
polynomial of D[X] has degree one < D is a Schreier domain with
algebraically closed quotient field. The relation 8 on R[X], R the reals,
is used to exhibit bad behavior that can occur when the relation is not
divisive (Example 3.2). While the reader may question the naturalness
of O-factorizations, they are useful for providing counterexamples and
their study lead us to Theorems 3.1 and 3.3.

Section 4 covers *-comaximal factorizations (which we will call x-
atomic factorizations) where % is a (finite character) star-operation.
This generalizes the work of McAdam and Swan [36] on comaxi-
mal factorizations. Perhaps the main result of this section is Theo-
rem 4.6 which characterizes the 7,-UFDs with the property that each
*-irreducible element is contained in a unique maximal x-ideal: a do-
main D is a 7,-UFD in which each x-irreducible is contained in a unique
maximal x-ideal if and only if *-max(D) is independent of finite char-
acter and Cl,(D) = 0.
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Section 5 studies the relation 7, on Z#, Z the integers, where
at,b < a = b modn. This topic is developed in more detail in the
second author’s dissertation [26, 27]. The relation 7, is never divisive
and hence exhibits some bad behavior. For example, Z is never a 7,-
UFD and need not be a 7,,-HFD or even 7,-atomic. Also, the usual
primes of Z (while being 7,-primes) are rarely |, -primes. We feel
that 7,-factorization gives a particularly good illustration of the topics
discussed in this article and can be used to provide some interesting
research projects for undergraduates.

The theory put forth in this article has several natural extensions.
First, the definitions have natural generalizations (often in several
ways) to commutative rings with zero divisors and to modules. For
the theory of (ordinary) factorization in commutative rings, see [14,
15] and for factorization in modules over commutative rings, see [15].
Second, since much of factorization in an integral domain only involves
the multiplicative monoid of the integral domain, we could have devel-
oped our theory in the context of commutative cancellative monoids.
Third, we could consider T-factorizations of proper ideals of a domain
(or ring) D where T is now a relation on the proper ideals of D.

For terms and notation not defined here the reader is referred to [29].
The conference proceedings [1, 22] and the book of survey articles
[24] are particularly good sources for articles on factorization. Highly
recommended is the recent book by Geroldinger and Halter-Koch [28].
It contains an extensive bibliography.

2. r-factorizations. Let D be an integral domain with quotient
field K. Let D* = D — {0}, U(D) the group of units of D, and
D# = D* — U(D), the nonzero nonunits of D. As usual, a ~ b
means that a and b are associates. Let 7 be a relation on D#, that is,
7 C D# x D¥. We call 7 multiplicative (respectively, divisive) if for
a,b,c € D¥ (respectively, a,a’,b,b' € D#), atb and atc imply arbc and
bra and cra imply bera (respectively, arb, a’|a and ' |b imply o' 7d).
We say that 7 is associate-preserving if for a,b,b' € D# with b ~ ¥/,
atb implies arb’ and bra implies b’ Ta.

For a € D#, we define a = \ay---a,, A € U(D), a; € D¥, to be a
(an ordered) T-factorization of a if a;Ta; for each i # j (i < j). We say
that a is (an ordered) T-product of the a; and that a; is a (an ordered)
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T-factor of a. For a,b € D#, we say that a 7-(order-) divides b, written
al-b (a|29b), if there exist A € U(D), ¢i,...,cn € D¥ n > 0, so
that Aejp -+ - cjaciyy -+ ¢p is a (an ordered) T-factorization of b. We call
a = MA7'a) a trivial T-factorization of a. Note that if a = Aay ---ay,
is a 7-factorization, then so is each rearrangement a = Aag (1) * @y (n),
o € S,,. This need not be true for ordered r-factorizations.

We pause to give several examples, some of which will be considered
in more detail later.

Example 2.1. Throughout D will be an integral domain. (1) 7 =
D# x D#. This gives the usual notions of factorization and divides.
Of course, 7 is both multiplicative and divisive.

(2) 7 = @. Here a € D¥ has only the trivial 7-factorization and
al:b < a ~ b. Vacuously, 7 is both multiplicative and divisive.

(3) Let S be a non-empty subset of D# and take 7 = S x S, so
athb < a,b € S. Here 7 is multiplicative (divisive) if and only if S
is multiplicatively closed (closed under nonunit factors). A non-trivial
T-factorization is up to unit factors just a factorization into elements
from S. Thus if we take S to be the set of atoms of D we get the
usual factorization of an element into irreducible factors. In this case,
every element of D# is an atom or has a non-trivial 7-factorization
if and only if D is atomic. We could also take S to be the set of
prime elements, prime power elements, primary elements, or other
distinguished elements such as rigid elements or t-pure elements (see
[12] for definitions). Or we could replace S by a subset S’ where for
each s € S there exists exactly one s’ € S’ with s’ ~ s. For example, for
D = Z, take S to be the set of prime elements and take S’ = {n € N | n
is prime}. Here 7 is not associate-preserving. Examples of this type
are one of the reasons we chose to include a unit factor in the definition
of a 7-factorization. Sometimes it is of interest to replace S x S by
SxS—A={(st) € SxS|s#t} For example, if P = {p,} is a
set of nonassociate primes, take S = {p* | p, € P,k > 1}. Then for
T = S5%S5—A, anon-trivial T-factorization is just a product Ap’j}l e ijL
where p,,,. .. ,Pa, are distinct elements of P and each k; > 1.

(4) Let I be an ideal of D and define atb < a — b € I. A special
case that we will examine later in more detail in Section 5 is the case

D =7 and I = (n), so at,b < a = b mod n. Here 7, is multiplicative
or associate-preserving only for n = 2 and is never divisive.
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(5) Let x be a star-operation on D, and define arb < (a,b)* = D,
that is, a and b are *x-coprime or x-comaximal. It is easily checked that
T4 is both multiplicative and divisive. This example will be studied in
Section 4. In the case where * = d (the d-operation A — Ay = A),
we have the comaximal factorization of McAdam and Swan [36]. Also
of interest is the case where % is the t-operation.

(6) Related to factorizations into v-coprime elements, we have fac-
torizations into relatively prime elements. Define for a,b € D#
amb < [a,b] = 1, that is, a and b have no common nonunit factor.
While divisive, 77 need not be multiplicative. We consider this relation
in more detail in Section 4.

(7) In D[X], define fO0g < degf = degg. Clearly 0 is neither
multiplicative nor divisive, but is associate-preserving. We consider
0 in more detail in Section 3.

(8) Suppose that < is a transitive order on D#. Define ath < a < b.
Then an ordered 7-factorization a = Aaj ---a, is just a factorization
where A € U(D), each a; € D¥, and a; < --- < a,. For example, for
D[X] and f < g & deg f < degg, an ordered T-factorization is just a
factorization into polynomials of ascending degree.

From now on we will consider only 7-factorizations. Thus we will
assume that 7 is symmetric. We invite the reader to formulate the
definitions and results given for 7-factorizations in the context of
ordered 7-factorizations. Given a factorization, we often want to
further factor certain terms or want to combine terms. In general
neither action preserves r-factorizations (see Example 3.2). Our first
proposition shows that if 7 is divisive (respectively, multiplicative) then
the refinement of a 7-factorization by T-factoring a term (respectively,
combining terms in a 7-factorization) again gives a 7-factorization.
This good behavior was the main reason for introducing the notions
of multiplicative and divisive relations.

Proposition 2.2. Let D be an integral domain, and let T be a
relation on D*. (1) Suppose that T is divisive. Let a,b,b € D#
where b ~ b'. Then atb < atl/. So 7 is associate-preserving. Thus
a = Aay - ay 18 a T-factorization of a if and only if ay--- (Aa;) - - ay
is a T-factorization of a. Hence, when T is divisive, or more generally
associate-preserving, we can dispense with the unit \.
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(2) Suppose that T is divisive. Let a = ay -+ - an be a T-factorization
of a, and let a; = by b, be a T-factorization of a;. Then a =
ay---a;—1by -+ bpair1---a, is a T-factorization of a, called a T-
refinement of a. Thus when 7 is divisive, a T-refinement of a 7-
factorization is a T-factorization.

(3) Suppose that T is multiplicative. Let a = Aay---a, be a 7-
factorization of a. Then a = Aay---a;—1(a;a;41)ai42--ay 18 a T-
factorization of a. More generally, if {1,2,...,n} = A;U---UA,
(disjoint union) with each A; non-empty and b; = I{a;|j € A;}, then
a = Aby ---bs is a T-factorization of a.

Proof. (1) Let b ~ b, so b'|b and b[b’. Then atb and b'|b give atbd’
and arb’ and b|b'give arb. The second assertion follows.

(2) Let @ = ay ---a, and a; = by - - - by, be T-factorizations. (By (1)
we can dispense with the leading unit factor.) So a,7a; and b,7b; for
£#j. Thenina = ai-- aj_1by - bpaiy1 - an,apra; and byrbh; for
¢ # j and for ¢ # i, agTa;, so T divisive gives ay7b; since bj|a;.

(3) We prove the first statement, the second is similar. Let Aay - - - a,
be a T-factorization where 7 is multiplicative. Then a;Ta; and a;Ta;11
for j # ¢, ¢ + 1; since 7 is multiplicative, then a;Ta;a;+1. Thus
Aay - a;—1(a;a;41) - - - ap is a T-factorization. ]

A comment concerning 7-refinements is in order. Let D be an
integral domain, a € D#_ and a = \ajy ---a, a 7-factorization. Now
a T-refinement of a should be obtained by further 7-factoring one
or more a;. A t-factorization of a; has the form a; = pub;y---bs.
But here Xaj:--aj_1puby---bsa;jy1---a, is not a 7-factorization as
p ¢ D#. However, in the case of interest where 7 is divisive, we
have (Ap)ay---a;_1by - -bsaii1---a, is a T-factorization. Also, a 7-
refinement of a 7-factorization cannot necessarily be obtained by 7-
factoring individual 7-factors one by one. For example, in Q [X] define
the relation 7 by X*rX* and X?rX2 Then X® = X*. X% and
X* = X?.X? are r-factorizations and X® = X?.X?.X?2.X? is the 7-
refinement of X® = X*- X* obtained by 7-factoring each X*. However,
since X* #X?2, the 7-refinement cannot be obtained by first 7-factoring
the first X* and then 7-factoring the second X% as X% = X2.X2. x4
is not a 7-factorization.

We next discuss the relation |, in more detail. Let D be an integral
domain and 7 a relation on D#. Let a,a’,b,t/,c € D#. Certainly
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al,b = alb, but the converse is false. For in R[X], X|X(X? + 1) but
X f5X(X? + 1) where 0 is the relation given in Example 2.1 (7).
We have (1) a|ra and (2) a|;b and b|;a < a ~ b. If b ~ b/, then
al:b < al;b. If a ~ a' and 7 is associate-preserving, then a|,b < da'|.b.
However, in general a ~ a’ and a|;b # d/|;b; see Example 2.3. If
7 is divisive, then (3) a|,;b and b|,¢c = a|,c. However, in general
this is also false. For in R[X], X|sX? and X?|sX?(X? + 1), but
X f5X?(X2+1). We can define the semigroup of 7-divisibility. Define
a<b<salb So(l)a<aand (2)a<band b<a< a~b For
7 divisive, a < band b < ¢ = a < c and for a ~ a’ and b ~ ¥,
a < b« o < V. Thus for 7 divisive, the monoid D*/U(D) is
partially ordered by aU(D) < bU(D) < a|,b. However, in general
we need not have aU(D) < bU(D) = aU(D)cU(D) < bU(D)cU(D);
that is, a|,b need not imply ac|,bc. For in R[X], X?|3X?%(X2+1), but
X3 JoX3(X?%+1). If 7 is both multiplicative and divisive, then a|,b
and bre = acl,be.

For a € D#, D an integral domain and 7 a relation on D#, a is
T-1rreducible or a T-atom if the only 7-factorizations of a are the trivial
ones. Note that an associate of a T-atom is again a 7-atom. Let 7/ be
another relation on D#. By a 7-atomic 7'-factorization for a € D#, we
mean a 7'-factorization of @ into T-atoms. We say that D is 7-7’ atomic
if each @ € D# has a T-atomic 7/-factorization. When 7 = 7/, we simply
say a T-atomic factorization or that D is T-atomic. We say that a 7-
factorization a = Aay - - - a, is T-unrefinable or 7-complete if it has no
proper 7-refinements. Of course, a 7-atomic factorization is 7-complete.
By Proposition 2.2 (2) for 7 divisive a 7-complete factorization is the
same thing as a T-atomic factorization. This is not true, in general, see
Example 3.2. And D is 7-complete if every a € D# has a T-complete
factorization. Hence for 7 divisive, D is T-complete if and only if it is
T-atomic.

Suppose that D is 7-atomic. We have the 7-length functions

l:(a) =inf{n | a = Aay - - a, is a T-atomic factorization}

L.(a) =sup{n|a= Xa;j---a, is a T-atomic factorization}

for a € D#. We could define ¢,(a) = L,(a) = 0 for a € U(D). The
T-elasticity of a is p-(a) = L, (a)/l:(a) (pr(a) =1 for a € U(D)) and
the T-elasticity of D is p,(D) = sup{r(a)la € D#}. More generally,
using T-atomic 7'-factorizations we could define 7-7'-length functions
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and 7-7'-elasticity. We invite the reader to extend results on elasticity
from [5, 19] to this more general setting.

Let 7 be a relation on D#, D an integral domain. Then a € D¥ is
T-prime if whenever a|\a; - - - a,, where Aaj ---a, is a 7-factorization,
then ala; for some i. An ideal P of D (P # D) is T-prime if whenever
Aaj - -+ ayp is a T-factorization lying in P, then some a; € P. So (a) isa 7-
prime ideal if and only if a is 7-prime. An associate of a 7-prime element
is again 7-prime. We call @ € D¥ a |,-prime if whenever a|,\a; - - - a,
where Aaj ---a, is a 7T-factorization, then a|,a; for some i. If 7 is
associate-preserving, then an associate of a |,-prime element is again |-
prime. However, Example 2.3 below shows that in general an associate
of a |,-prime element need not be |,-prime. Note that 7-primes and |-
primes are a special case of what we might call a 71-7o-73-prime (where
each 7; is a relation on D#): whenever a|,,\a; - --a, where \aj ---a,
is a T -factorization, then a|,,a; for some i. For example, a 7-prime is
a 7-7'-7'-prime where 7/ = D# x D# (Example 2.1 (1)) and a |,-prime
is a T-T-T-prime.

Example 2.3. An associate of a |,-prime element need not be
|--prime. Define the relation 7 on Z# by —479, 97 — 4, and 676.
Now 4|;a = a = £4; so 4 is |,-prime. But —4[.36 = 6 - 6 since
36 =(—1)(—4)-9, but —4 f, 6. So —4 is not |,-prime. Also, note that
while —4/36, 4 /,36.

Let D be an integral domain, let 7 be a relation on D#, and let
a € D#. Clearly if a is irreducible (respectively, prime), then a is -
irreducible (respectively, 7-prime) and if a is 7-prime or |,-prime, then
a is T-irreducible. If 7 is multiplicative and divisive, then a 7-prime
implies a is |,-prime (see Proposition 2.4 below). But in general a
prime or 7-prime element need not be |,-prime, see Example 3.2. Note
that in the definitions of 7-irreducible, 7-prime, and |,-prime we did
not restrict ourselves to the case of T-factorizations Aa; - - - a,, of length
n = 2 as is usual. We next show that if 7 is multiplicative, we can
restrict ourselves to the case n = 2. We then give an example showing
that in general this is not the case.

Proposition 2.4. Let D be an integral domain, and let 7 be a
relation on D¥. (1) Suppose that T is multiplicative, and let a € D¥.
Then a is T-irreducible (respectively, T-prime, |.-prime) if and only if
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a has no T-factorization a = Aajas (respectively, for a T-factorization
Aajag, a|dajas = alay or alas, al;Aajax = alray or alraz).

(2) If T is both multiplicative and divisive, then a T-prime element is
|--prime.

Proof. (1) Clearly (=) holds in each case. Let Aaj---a, be
a t-factorization. By Proposition 2.2, 7 multiplicative gives that
Aay(az---ay) is also a T-factorization. Thus a nontrivial 7-factorization
a = Aay---a, would yield a non-trivial 7-factorization Aaj(az---ay)
of length two. The proofs for the two other cases are similar.

(2) Suppose that 7 is both multiplicative and divisive. Assume that
a € D¥ is 7-prime. We show that a is |,-prime. Suppose that a|,bc
where bre. So ra = be where rra. Now albe, so since a is T-prime, alb,
say. Then sa = b for some s € D, so ra = bc = sac = r = sc. Now
r7a, s|r, and 7 is divisive, so sta (the case s € U(D) is trivial). Thus
al:b. o

Example 2.5. Let n > 2, and let py,... ,p,4+1 be the first n + 1
prime numbers. Define the relation 7 on Z# by atb < |a| = p;
and |b| = p, for distinct p;,p;, 1 < 4,5 < n+ 1. Note that 7 is
divisive, but not multiplicative. A nontrivial 7-factorization has the
form (£1)(£p;,)---(£p;,) where s > 2 and p;,,...,p;, are distinct.
Let a = p;---pp4+1- Then a is not r-irreducible, but a has no 7-
factorization of length & where 2 < k < n. Since a is not 7-irreducible,
a is not 7-prime nor |.-prime. Note that for any r-factorization
b=MXby b, 2<k<n,a /band a f;b. Thus, vacuously, if Aa - - - ag
is a 7-factorization where 1 < k < n and a|)a; - --ay (respectively,
al:Aay - - - ag), then ala; (respectively, a|,a;) for some i. A more natural
example involving the relation 7y) is given at the end of Section 4.

Let D be a fixed integral domain. For relations 71,7 on D#, define
T < 1o < 1 C 7o, that is, amb = amsb. Let R be the set of
relations on D#. So R is partially ordered by <. Note that @
(Example 2.1 (2)) is the least element of R and the usual factorization
given by 7 = D# x D# (Example 2.1 (1)) is the greatest element.
Suppose that 71,72 are relations on D# with 7 < 7. Then a 7i-
factorization of a € D¥ is also a mp-factorization of a. Thus if a is
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a 7o-atom (respectively, To-prime), then a is a 7j-atom (respectively,
71-prime). Hence we have the previously mentioned fact that an atom
(respectively, prime) of D is a T-atom (respectively, 7-prime). However,
a |r,-prime need not be a |,,-prime. For example, X2 + 1 is a prime
of R[X], that is, a |,-prime for 7 = R[X]# x R[X]#, but is not a |,,-
prime by Example 3.2. Suppose that x; and x; are two star-operations
on D with x; < %9, that is, A** C A*2 for all A € F(D). Then
aty, b < (a,0)** = D = (a,b)* = D < aty,b. So 74y < Ty

There is a natural extension of the notion of a UFD to 7-factorizations.
Let D be an integral domain and 7 a relation on D#. We say that D is
a 7-UFDif (1) D is T-atomic and (2) if Aaj - - - ap = puby - - - by, are two
T-atomic factorizations, then n = m and after re-ordering, if necessary,
a; ~ b; for each i. We leave it to the reader to define a 7-7'-UFD using
T-atomic 7'-factorizations.

Proposition 2.6. Let D be an integral domain and T a relation
on D#. Suppose that \py ---pp = pqy---qm are two T-factorizations
where the p; are |.-prime and the ¢; are T-atoms. Then n = m and
after re-ordering, if necessary, p; ~ q;-

Proof. Now py is |.-prime, so pi|-q; for some i. After re-ordering,
if necessary, we can take i = 1. So ep; = ¢; for some ¢ € U(D).
Thus A\p1ps - - - pn = p(ep1)q2 - - - ¢n and hence Apy - - - pp, = (1€)g2 - - - gm
where the last two factorizations are again 7-factorizations. By induc-
tion n —1 = m — 1; so n = m, and after re-ordering, if necessary,
pi ~ q;- m]

Note that Proposition 2.6 is not true if we replace |,-prime by 7-
prime. For consider 7 on Z. Then for odd primes p1,p2; 2, 2p;, and
2po are To-primes and 2p;ps is a Te-atom. Now 2py - 2ps = 2 - 2p1p2
but 2p; ¢ 2 and 2p; £ 2p1ps. However, if 7 is both multiplicative and
divisive, then by Proposition 2.4 (2), a 7-prime is |,-prime. So in this
case we can replace |,-prime by 7-prime in Proposition 2.6. Also, in
Proposition 2.6 if 7 is divisive and the g;’s are 7-primes, then we can
replace |,-prime by 7-prime. For if pq|g; and g;|p;, then p:1|p;. So by
Lemma 2.10, p; ~ p;. Hence p; ~ ¢; and the proof proceeds as in the
| --case.
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Theorem 2.7. Let D be an integral domain and T a relation on D,

(1) Suppose that every element of D¥* has a T-factorization into |-
primes. Then D is a T-UFD. Moreover, a € D¥ is T-irreducible if and
only if a is an associate of a | -prime.

(2) Suppose that T is divisive and that D is a 7-UFD. Then a T-
irreducible element of D is |.-prime (and of course the converse always
holds).

(3) For T divisive, the following are equivalent:

(a) D is a T-UFD,

(b) every element of D¥ has a T-factorization into |.-primes, and
(

¢) D is T-atomic and every T-irreducible element of D is |.-prime.

Proof. (1) Suppose that every element of D# has a T-factorization
into |.-primes. Since a |,-prime is 7-irreducible, D is T-atomic. By
Proposition 2.6, D is a 7-UFD. Suppose that a € D is 7-irreducible.
Then a being a 7-product of |,-primes gives that a is an associate of a
| --prime.

(2) Suppose that 7 is divisive. Let D be a 7-UFD, and let a € D be
T-irreducible. We show that a is |.-prime. Suppose that a|.a; - ay,
say €1 - -+ €@ = ay - - - G, where both are T-factorizations. Now 7-factor
each ¢;,a; into T-atoms: ¢; = Il¢;5, a; = Ila;;. So Ileyj---lepja =
Iaq, - - - Iay,j. Moreover, since T is divisive, by Proposition 2.2 (which
also says that we can dispense with the unit factors) these are both
T-factorizations. Thus since D is a 7-UFD, a ~ a;; for some ¢, j. Hence
alra;. So a is |.-prime.

(3) This follows from (1) and (2). |

In Theorem 2.7 (3) if we replace |.-prime by 7-prime we have (a) <
(b) < (c). We do not know if (a) = (b).

Example 2.8. (1) A domain D in which every element of D# is a
7-product of associates of |,-primes, but D is not a 7-UFD. Let 7 be
defined on Z# as in Example 2.3. As is the case for a = 4, each a > 1,
a #6,9,36, is | -prime. While 6 and 9 are not |.-prime, —6 and —9 are
|--primes and 36 is a T-product of associates of |.-primes. However, Z
is not a 7-UFD since 36 =6-6 = (—1)(—4)(9).
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(2) A 7-UFD D in which an element of D# is not a 7-product
of 7-primes (respectively, |,-primes). Define 7 on Z# by +£27 + 3,
+57 £ 7, £67 £+ 35 and 107 £ 21. The only nontrivial 7-products are
(£1)(£2)(£3), (£1)(£5)(£7), (£1)(£6)(£35) and (£1)(£10)(+21).
So the only a € Z# that are not T-atoms are +6,+35 and +210.
Clearly Z is 7-atomic. In fact, Z is a 7-UFD. For up to associates,
the only case where we have two different non-trivial 7-factorizations
is 210 = 10 21 = 6 - 35. While the first factorization is T-atomic, the
second one is T-complete, but not 7-atomic. Note that the 7-atoms
+10 and +21 are neither 7-primes nor |,-primes and thus cannot be
7-products of T-primes (respectively, |.-primes). While Z has unique
T-factorization into 7-atoms, it does not have unique 7-factorization
into 7-complete factorizations.

At the end of Section 5, it is shown that for 75 on Z# defined by
atob < a = b, Z is a 70-UFD in which every element of Z# is a 7o-
product of |,,-primes, but not every element of Z# is a mo-product of
To-primes.

In [6] a number of factorization properties of an integral domain D
weaker than unique factorization were studied. Following Cohn [25]
we say that D is atomic if each element of D# is a product of a finite
number of irreducible elements (atoms) of D. We say that D satisfies
the ascending chain condition on principal ideals (ACCP) if there does
not exist an infinite strictly ascending chain of principal ideals of D.
The integral domain D is a bounded factorization domain (BFD) if
D is atomic and for each nonzero element of D there is bound on
the length of factorizations into irreducible elements, or equivalently,
each nonzero nonunit has a bound on the length of factorizations into
nonunits. A domain D is a half-factorial domain (HFD) if D is atomic
and each factorization of a nonzero nonunit of D into a product of
irreducible elements has the same length. This concept was introduced
by Zaks [41, 42]. The domain D is an idf-domain (for irreducible-
divisor-finite) if each nonzero element of D has at most a finite number
of nonassociate irreducible divisors. They were introduced by Grams
and Warner [32]. Atomic idf-domains are precisely the domains in
which each nonzero nonunit has only a finite number of nonassociate
divisors and hence, only a finite number of factorizations up to order
and associates. Such a domain is called a finite factorization domain
(FFD). They are considered in more detail in [13]. In general
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FIGURE 1.

Examples were given in [6] to show that no other implications were
possible. We can also define the following 7-factorization properties
weaker than 7-unique factorization. Let D be an integral domain and
7 a relation on D#. We have already defined T-atomic. We say that
D satisfies 7-ACCP if for each infinite sequence {a,}2°; of elements
of D¥ with a,41|; a, for each n > 1, there is an N (depending
on the sequence) with agy; ~ aj for each k& > N. The domain D
is a 7-half-factoral domain (7-HFD) if D is T-atomic and whenever
Aay---a, = pby---by, are two T-atomic factorizations, then n = m.
Of course, D is a 7-HFD if and only if D is T-atomic and p,(D) = 1.

We say that D is a T-bounded factorization domain (7-BFD) if D is
T-atomic and for each a € D#, there is a natural number N (a) so that
if a = Aay -+ - ay, is a T-atomic factorization of a, then n < N(a), that
is, L,(a) is finite. Note that for = divisive, D is a 7-BFD if and only
if for each a € D¥, there is a natural number N(a) so that for any 7-
factorization a = Aaj - --an, n < N(a). This follows from Proposition
2.2 (2) which gives that for 7 divisive a maximal length T-factorization
is a T-atomic factorization. Thus for 7 divisive, a BFD is a 7-BFD.

We say that D is a 7-idf-domain if each a € D# has at most
finitely many nonassociate T-factors that are T-atoms. D is a 7-finite-
factorization domain (7-FFD) if D is T-atomic and each a € D¥ has
only finitely many 7-factorizations (up to order and associates) into
T-irreducibles. Clearly a 7-FFD is a 7-BFD. Suppose the 7 is divisive.
Then a modification of the proof of [6, Theorem 5] gives that the
following are equivalent: (1) D is a 7-FFD, (2) D is a T-atomic 7-
idf-domain, (3) each @ € D* has only finitely many 7-factorizations up
to order and associates.
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Theorem 2.9. Let D be an integral domain and T a divisive relation
on D#. Then D a1-BFD implies D satisfies T-ACCP and if D satisfies
7-ACCP, then D is T-atomic.

Proof. (1) Suppose that D is a 7-BFD. Suppose that D doesn’t
satisfy 7-ACCP. So there is an infinite sequence {a,},2; of ele-
ments of D# with a,i1|ra, but any1 = a, for each n > 1. Let
An = Tpill®" Tntls,; @nt1 be a T-factorization of a,. So a1 =
To1 - T2s,Q2 = T21---T2s,T31 - T3s,03 = ---, where each factoriza-
tion is a 7-factorization since 7 is divisive. Moreover, again since 7 is
divisive, each of these T-factorizations can be T-refined to a T-atomic
factorization. So L,(a1) > sz + $3 + -+ + s, + 1 > n for each natural
number n. But this contradicts that D is a 7-BFD.

(2) Suppose that D satisfies —-ACCP, but that D is not 7-atomic.
So some a € D# does not have a 7-factorization into 7-atoms. Thus
a = aj---a,, a T-factorization where n > 1. Now some a;, say a1,
must not be a 7-product of T-atoms (here we use divisive). Here a1|-a
and a; ~ a. Put by = a;. Again, a; cannot be a 7-atom; so a; has a
T-factorization a; = as1 - - - az,, where ny > 2. One of the r-factors,
say agi, cannot be a 7-product of 7-atoms. Here agi|ra; = by and
az1 =~ ai. Put by = ag;. Continuing we get a sequence {b,}52, of
elements of D# with by, 1|,b, but b, 1 < b, for each n > 1. But this
is a contradiction. ]

Let D be an integral domain and 7 a relation on D#. Note that if D
satisfies ACCP, then D satisfies 7-ACCP. Thus for 7 divisive, ACCP
= 7-atomic. So for 7 divisive, a UFD, FFD, HFD and BFD are 7-
atomic. Thus a FFD (respectively, BFD) is a 7-FFD (respectively,
7-BFD) for 7 divisive.

We next show that for 7 divisive, a UFD is a 7-UFD. We need the fol-
lowing lemma which states that for 7 divisive, a 7-atomic factorization
is a mix of atomic factorizations and coprime factorizations.

Lemma 2.10. Let D be an integral domain, and let T be a divisive
relation on D#. Let ay---a, be a T-atomic factorization. Then for
i # j, either [a;,a;] =1 or a; ~ a;j are atoms.

Proof. Suppose that [a;,a;] # 1; so there is an a € D# with ala;
and ala;. Write a; = aja and a; = a%a. Now ajataja; so since T is
divisive, either a} is a unit or ajra. But if aj7a, then a; = ala is a

nontrivial 7-factorization of the T-atom a;; a contradiction. Hence a;
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!
J
not an atom. So a = be where b,c € D#. But then b|a; and b|a;; so

as before a; ~ b ~ a;. Thus a ~ b; a contradiction. Hence a; ~ a; are
irreducible. a

Theorem 2.11. Let D be a UFD and T a divisive relation on D¥.
Then D is a T-UFD.

Proof. We have already remarked that for 7 divisive a UFD is 7-
atomic.

is a unit. Likewise a’; is a unit. So a; ~ a ~ a;. Suppose that a is

Suppose that a € D# has a 7-atomic factorization a = a1 - -ay
where [a;,a;] # 1 for some ¢ # j. We show that up to order
and associates this is the unique 7-atomic factorization for a. By
Lemma 2.10 a; ~ p ~ a; for some prime p. Suppose that p’ is
the largest power of p dividing a. Re-ordering, we can assume that

ay ~ ag ~ +-- ~ a; ~ p. Suppose that by ---b,, is another T-atomic
factorization of a. If p divides two different b;’s, then we can re-order
so that by ~ by ~ --+ ~ by ~ p. Thus after a “unit adjustment”

Q41" G = Abgyq -+ - by, are two T-atomic factorizations. By induction
n—t = m—t; son = m, and after re-ordering ay ~ by for t+1 < k < n.
Thus we are reduced to the case where say pt|b1. Let b; = p'b] and
let b} = by, ---b}, be a T-atomic factorization of bj. So canceling p*
we get agi1 @y = Abjy - bl by - by, where both factorizations are
T-atomic factorizations. We can assume that m > 1. By induction
by ~ ay for some k with i +1 < k < n. Re-ordering, a, ~ b,.-
So ay---ap—1 = pby---by,_1 for some unit p. Again by induction
n—1=m—1, so n = m and after re-ordering ay ~ by for 1 < ¢ < m—1.

Thus we are reduced to the case where every T-atomic factorization
of a, a = ay---an, has [a;,a;] = 1 for i # j. Let p; be a prime
with pi|a; say pila;. We can assume that pi|b;. So if pi* is the
largest power of p; dividing a, then p?\al and pt11|b1. Suppose that
pit---pts (t; > 0) is the product of prime powers dividing a; and b;.
So a; = pit---pleal and by = plt---plsd) where [a},b}] = 1. Let
al = al, ---ay,, by = b, --- b}, be T-atomic factorizations of a} and b].
Canceling pi' ---pls gives a}y ---aj,as---a, = byy- - biba--- by, are
two 7T-atomic factorizations. By induction on the length of an atomic
factorization, we can assume that these two 7-atomic factorizations are
unique up to order and associates. If some a; ~ b;, then we can cancel
a; ~ b; from ay---a, = by -+ - by, and use induction to get uniqueness.
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Thus we can assume that for each ¢ > 2, a; ~ bflj for some j and
b; ~ a;j, for some j'. Soas---a, is a factor of b; and by - - - b,, is a factor
of a;. Write a; = pi*---pleby---b,, A and by = pi* - pleag -+ - a,B.
Now pit---plebiby-- by A = arby = pi*---ptsa;---a,B. Canceling
gives A = B. But [d],b]] = 1 gives [A,B] = 1; so A is a unit.
So a1 = A(p’i1 «-epls)by -+ by, is a T-factorization of the T-atom aj;
a contradiction. u]

So we have the following diagram where * indicates 7 is divisive.
Example 3.2 shows that R[X] with the 0 relation (which is not divisive)
is a UFD, FFD, BFD and is atomic, but is not a 0-UFD, 0-FFD, 0-
BFD, nor J-atomic. Also, R[X] satisfies 9-ACCP but is not 9-atomic.
The relation 72 (Example 2.1 (4)) is both associate-preserving and
multiplicative, but Z, while being a UFD, is not a 72-UFD (see Section
5). We do not know whether atomic = 7-atomic for 7 divisive.

We have based our factorization theory on 7-atomic factorizations.
We could have instead used 7-complete factorizations. We leave it
to the reader to define 7-complete length functions and 7-complete
elasticity. Let D be an integral domain. Define D to be a 7-
complete HFD (respectively, T-complete UFD) if (1) D is T-complete
and (2) if @ = Aay---a, = pby---b, are two T-complete factoriza-
tions of a € D#, then n = m (respectively, and after re-ordering, if
necessary, a; ~ b; for i = 1,...,n). We say that D is a 7-complete
FFD (respectively, T-complete BFD) if for each a € D* there are only

/ 7-1IFD \
-UFD \ /7 -BFD - > ’T—A/QCP > T-atomic
\,\ /
* T-EFD *
*
UFD FFD >BFD >ACCP —————>atomic

FIGURE 2.
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T-complete HFD

\
/

T-complete UFD T-complete BFD = 7-ACCP = 7-complete

/
\

T-complete FFD

FIGURE 3.

finitely many 7-factorizations for a up to units, order, and associates
(respectively, there is a natural number N(a) so that for each 7-
complete factorization a = Aaj---a,, n < N(a)). We have the
following diagram which unlike the case for T-atomic holds for any
relation 7. For 7 divisive, this reduces to Figure 2.

Example 2.8 (2) shows that even in a 7-UFD, a 7-factorization cannot
necessarily be 7-refined to a T-atomic factorization. Let us say that an
integral domain D is T-atomizable (respectively, 7-completeable) if each
T-factorization of D can be 7-refined to a 7-atomic (respectively, 7-
complete) factorization. We have the following implications:

T-atomizable = T-atomic

¢ U

7-ACCP = 7-completeable = 7-complete.

Note that for 7 divisive, 7-complete = 7-atomizable, but T-complete
need not imply 7-ACCP since an atomic domain need not satisfy
ACCP. We have already remarked that Example 2.8 (2) shows that
T-atomic # T-atomizable. Example 3.2 shows that 7-completeable
# T-atomizable and that 7T-complete # 7-atomic. We next show
that 7-complete # T-completeable. Let S be the additive abelian
monoid ({1/2"}2° ), Q[X;S] the monoid ring and D = Q[X; S|y
where N = {f € Q[X; S]|f has 0 constant term}. So every element
of D# has the form AX? where A € U(D) and a € S — {0}. Define 7
on D# by 2X%/27(1/2)X%/? for each a € S — {0} and X¥/2"7Xx1/2"
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for each n > 1. Now AX® = X\ -2X%2.(1/2)X%/? is a T-complete
factorization of AX?, so D is 7-complete. However, X = X1/2. X1/2
is a 7-factorization of X that can not be 7-refined to a 7-complete
factorization of X. So D is not 7-completeable.

3. The 0 relation on D[X]. Let D be an integral domain with
quotient field K. Define the relation 0 on (D[X])* by f0g < deg f =
degg. Thus for f € (D[X])#, a O-factorization is a factorization
f = Afi---fn where A is a unit and deg f; = deg f;, 1 < 4,5 < n.
So for a € D#, a O-factorization of a is just a usual factorization of
a in D. Note that 0 is neither multiplicative (X0X and X0X, but
X § X?) nor divisive (X20X? and X |X2, but X § X?). However, 9 is
associate-preserving.

Theorem 3.1. Let D be an integral domain with quotient field K.
Then the following are equivalent. (1) D[X] is a 0-UFD.

(2) D[X] is O-atomic.
(3) D = K is algebraically closed.

Proof. (1) = (2). A 0-UFD is 0-atomic by definition. (2) = (3).
Suppose D[X] is §-atomic. Then D is atomic. Suppose that D is not
a field, so there is an atom a € D. Then the polynomial X? + a is
irreducible in D[X]. Consider g = (X2+a)X?2. Then g = (X?>+a)- X?
is a O-factorization, so g is not O-irreducible. But since X2 + a is 0-
irreducible while X? is not, g does not have a 9-atomic factorization.
This contradiction gives that D = K is a field. Suppose that f € K[X]
is irreducible where degf = n > 1. Then as above g = fX" does
not have a 0-atomic factorization. Thus deg f = 1; and hence K is
algebraically closed. (3) = (1). Since D is algebraically closed, every
nonconstant polynomial of D[X] is a product of linear polynomials.
Thus a d-atom of D[X] is just a linear polynomial and hence a 0-
atomic factorization in D[X] is the same thing as a factorization into
atoms. But D[X] is a UFD and hence is a §-UFD. O

For n > 1, the element ¢ = fX™ in the previous proof is a 0-
factorization that cannot be J-refined to a 0-atomic factorization. Let
D be an integral domain, 7 a relation on D#, and a € D#. Recall
that a 7-factorization of a, a = Aay -+ -ay, is T-unrefinable if this -
factorization has no proper 7-refinements.
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Example 3.2. In R[X], (X? +1)X?2 = (X?2+1)-X%?isa 0-
factorization that is J-unrefinable, but is not a J-factorization into 0-
atoms. Note that while X - X is a O-factorization of X?, (X2 +1)-X-X
is not a O-factorization of (X2 + 1)X?. So a O-refinement of a O-
factorization need not be a O-factorization. Likewise X° = X - X - X
is a O-factorization, while X® = (X - X) - X is not. Here R[X] satisfies
ACCP and hence 9-ACCP and is atomic; but R[X] is not J-atomic.
Also, R[X] is a UFD, HFD, FFD, and BFD, but is not a 9-UFD, 0-
HFD, 0-FFD, nor 9-BFD. Note that while R[X] has only finitely many
O-factorizations (up to order and associates) and has a bound on the
length of O-factorizations, R[X] is neither a 9-FFD nor 0-BFD. The
two O-factorizations (X(X?+1))- X3 = (X2 +1) - X?- X? show that
even in a PID, 7-unrefinable factorizations can have different lengths
and that a prime (and hence 7-prime) element need not be |.-prime.
For X2+1[5(X (X2+1))- X3 but X2+1 [5(X(X?%+1)) and X241 [pX3.

Let D be an integral domain. Cohn [25] defined ¢ € D# to be primal
if clajas = ¢ = cycy where ¢;la; and then defined D to be a Schreier
domain if D is integrally closed and each element of D# is primal.
We will use the following characterization of Schreier domains given by
McAdam and Rush [35]: an integral domain D with quotient field K
is a Schreier domain if and only if for 0 # f € D[X] with f = af where
a,f € K[X] with dega, deg8 > 1, then f = gh where g,h € D[X]
with deg g, degh > 1. Moreover, in this case we can take deg g = deg«
and deg h = deg 8. Recall that a polynomial f € D[X] with deg f > 1
is said to be indecomposable if f cannot be factored as f = gh where
deg g, degh > 1. The equivalence (1) < (2) of the next theorem is also
given in [18].

Theorem 3.3. Let D be an integral domain with quotient field K.
Then the following conditions are equivalent. (1) D is Schreier and K
is algebraically closed.

(2) Every indecomposable polynomial f € D[X] has degree one, or
equivalently, every polynomial f € D[X] with deg f > 1 is a product of
linear polynomials.

(3) Every f € D|X] with deg f > 1 has a 0-atomic factorization.

Proof. (1) = (2). Let f € D[X] with degf > 1. Since K
is algebraically closed, in K[X] we can write f = gh where degg,
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degh > 1. But D is Schreier, so f = gihy with g1, hy € D[X] where
degg; = degg > 1 and degh; = degh > 1. So f is not indecomposable.
(2) = (1). Every irreducible polynomial of K[X] has degree one;
thus K is algebraically closed. Let f € D[X] with n = degf > 1.
Suppose that f = gh in K[X] where degg, degh > 1. Now in D[X],
f = f1-+- fn where each f; is linear. Let g’ = f1--- fs where s = degyg
and b’ = fs41--- f, where degh = n —s. So f = g’h’ in D[X]| where
degg’ = degg and degh’ = degh. Thus D is Schreier. (2) = (3).
Clear. (3) = (2). Suppose that f € D[X] is indecomposable with
degf =n > 1. Consider g = fX". Let g = fX" = f1---fs be a
O-atomic factorization for g; so s > 1 since g is not O-irreducible. Put
fi = flX%, t; >0, where X [fl. So fX™ = f|--- fiX"+*t Hence
t1+---+ts=nand f = f]--- f.. Since f is indecomposable, each f/
except one, say fi, is in D. But then deg f; = n, so deg fi = n and
hence s = 2. Then fo = f§X" is O-irreducible, a contradiction. Thus
n=1. ]

4. x-comaximal factorizations. Let D be an integral domain with
quotient field K, and let x be a finite character star-operation on D.
Then x induces a relation 7, on D# by arib < (a,b)* = D; that is, a
and b are *-comazimal. (Since we are applying x to finitely generated
ideals, there is no loss of generality in assuming that x has finite
character.) If ar,b and a'|a and b'|b, then D = (a,b)* C (a’,b’)* C D*;
so (a’,b')* = D. Hence 7, is divisive. Also, if arb and ar,c, then
(a,b)* = D = (a,¢)*. So D = ((a,b)*(a,c)*)* = ((a,b)(a,c))* C
(a,bc)* C D*, and hence (a,bc)* = D. So 7, is also multiplicative.

Consider the case of x = d (the d-operation is the star-operation
A — Ag = A). Here argb < (a,b) = D, that is, a and b are comaximal.
So this gives the comaximal factorizations of McAdam and Swan [36].
Let us recall their definitions and some of their results.

An element b € D# is pseudo-irreducible (respectively, pseudo-prime)
if b = cd (respectively, bled) with ¢,d comaximal implies ¢ or d is
a unit (respectively, blc or b|d). Note that b is pseudo-prime if and
only if D/(b) is indecomposable [36, Lemma 3.1]. For b € D7,
b=by- by is a (complete) comazimal factorization of b if the b; are
pairwise comaximal nonunit (pseudo-irreducible) elements. Evidently
a comaximal factorization b = by ---b,, is complete if and only if
it has no proper refinements that are also comaximal factorizations
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of b. Then D is a comazimal factorization domain (CFD) if every
nonzero nonunit of D has a complete comaximal factorization and D
is a unique comazimal factorization domain (UCFD) if D is a CFD in
which complete comaximal factorizations are unique up to order and
associates.

They showed [36, Lemma 1.1] that an integral domain D is a CFD
if either (i) each nonzero nonunit of D has only finitely many minimal
primes or (ii) each nonzero nonunit of D is contained in only finitely

many maximal ideals. Here (i) insures that a Noetherian domain is a
CFD. We will show that if D satisfies ACCP, then D is a CFD.

A key concept in their work is the notion of an S-ideal. A nonzero
ideal I of D is an S-ideal if I = (a,c) = (a?,¢) for some a,c € I. The
relation to comaximal factorizations is the observation that (a,c) =
(a?,¢) if and only if there is an element b € D with (a,b) = D and
clab [36, Lemma 1.2]. They proved that S-ideals are invertible and
that any two-generated invertible ideal is isomorphic to an S-ideal [36,
Lemma 1.5]. They gave the following characterization of UCFD’s (we
have added (3)).

Theorem 4.1 [36, Theorem 1.7]. For an integral domain D the
following conditions are equivalent. (1) D is a UCFD.

(2) D is a CFD and every pseudo-irreducible element of D is pseudo-
prime.

(3) Every nonzero nonunit of D has a comazimal factorization into
pseudo-prime elements.

(4) D is a CFD and every two-generated invertible ideal of D is
principal.

(5) D is a CFD and every S-ideal of D is principal.

It should be noted that in the previous theorem we cannot add
Pic(D) = 0 as the following example from [36, Section 4] shows. Let
A, be the subring of B, = R[Xo, -, X,]/(X& + -+ X2 — 1), the
ring of real-valued polynomial functions on the n-sphere S”, consisting
of all even functions. Then for n > 2, A, is a regular domain that is a
UCFD, but Pic(A,) # 0.

Following suggestions from Zafrullah, the first author [4] generalized
comaximal factorizations to *-comaximal factorizations where x is a
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finite character star-operation on D. He defined a € D# to be -
pseudo-irreducible (respectively, x-pseudo-prime) if for b,c € D with
(b,e)* = D, a = bc (respectively, albc) implies b or ¢ is a unit
(respectively, alb or alc). A factorization b = by - - - by, into nonunits
is a (complete) x-comazimal factorization if for i # j, (b;,b;)* = D
(and each b; is *-pseudo-irreducible). Finally, D is a x-CFD if every
nonzero nonunit of D has a complete x-comaximal factorization and
a *-CFD is a x-UCFD if each complete x-comaximal factorization is
unique up to order and associates. Let us put these definitions into the
context of T-factorization. So as before we define arib < (a,b)* = D.
So 7, is both multiplicative and divisive. A *-comaximal factorization
is a 7.-factorization. Since 7, is multiplicative, we only need consider
T-factorizations of length two in defining 7,-irreducible and 7,-prime
(Proposition 2.4). Hence a € D# is x-pseudo-irreducible (respectively,
*-pseudo-prime) if and only if a is 7.-irreducible (respectively, 7~
prime). Since 7, is divisive, a complete *-comaximal factorization
is the same thing as a 7,-atomic factorization. So D is a *CFD
(respectively, x-UCFD) if and only if D is 7,-atomic (respectively, a 7~
UFD). However, in this section we adopt the terminology and notation
of Section 2 with one change; we will abbreviate 7, by *. For example,
we will speak of x-atoms (respectively, x-atomic factorizations) instead
of 7,-atoms or x-pseudo-irreducible elements (respectively, 7,-atomic
factorizations or complete x-comaximal factorizations).

Thus by the paragraph after Theorem 2.9, if D satisfies ACCP, then
D is x-atomic. We do not know whether atomic implies x-atomic,
even for x = d. We next generalize the previously mentioned result of
McAdam and Swan that D is a CFD if either (1) each element of D¥ is
contained in only finitely many maximal ideals or (2) for each element
x of D¥ there are only finitely many prime ideals minimal over (z).

Theorem 4.2. Let D be an integral domain and * a finite character
star-operation on D. Let S be a set of prime *-ideals of D. For
x € D¥, let V(z) = {P € S| 2 € P} and let minV(x) be the
set of minimal elements of V(x). Suppose that (1) for each x € D¥,
0 < |minV(z)| < o0 and (2) for 0 # (z) C (y) € P € minV(y), there
is a @ € minV(z) with Q@ C P. Then D is x-atomic.

Proof. Let x € D¥ and minV(z) = {Py,...,P,}. Suppose that
r is not x-irreducible; so z = ab where a,b € D* with (a,b)* = D.
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Since (a,b)* = D, each P; contains exactly one of a or b. Re-
ordering, suppose a € P;,...,P; and b € Psy4,...,P,. Note that
1 < s < n. For suppose a € Py,...,P,; sob & P,...,P,. Let
P € minV(b). Now for some i, ab € P, C P. But then a,b € P, a

contradiction. A similar argument gives that min V(a) = {P1,... , Ps}
and min V(b) = {Pst1,...,Pn}. The proof proceeds by induction on
n = |minV(z)|. The case n = 1 follows from the above remarks.
So by induction we have x-atomic factorizations a = aj---a; and
b =0by---by. But then £ = ab = a;---a;b;---by is a *-atomic
factorization for « since (a,b)* = D. o

Corollary 4.3. Let x be a finite character star-operation on the
integral domain D. Then D is x-atomic if either (1) each nonzero
nonunit of D is contained in only finitely many mazximal x-ideals or
(2) for each nonzero nonunit x € D, there are only finitely many prime
ideals minimal over (x).

Proof. For (1) take S to be the set x-max(D) of maximal x-ideals
and for (2) take S to be the set of prime ideals of D minimal over a
principal ideal (note that such an ideal is a *-ideal). O

Using the equivalence (1) < (4) of Theorem 4.1, McAdam and Swan
[36, Corollary 1.8] proved that a UFD is a UCFD. This result is actually
a special case of Theorem 2.11 as seen by the next theorem.

Theorem 4.4. Let D be an integral domain and * a finite character
star-operation on D. (1) If D satisfies ACCP, then D is x-atomic.

(2) If D is a UFD, then D is »-UFD.

Proof. (1) We have already remarked that since 7, is divisive, this
follows from the paragraph after Theorem 2.9. (2) Again since 7, is
divisive, Theorem 2.11 gives that D is a x-UFD. O

Corollary 4.5. Let D be an integral domain.
(1) If D satisfies ACCP, then D is a CFD.
(2) If D is a UFD, then D is a UCFD.

Let D be a UFD and % the v-operation, or equivalently, the t¢-
operation on D. By the previous theorem D is a ¢t-UFD. Here t-
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max(D) = XM (D). A t-irreducible element has the form Ap™ where
(p) € XWI(D), A € U(D), and n > 1; and a t-atomic factorization
has the form Ap7* ---p% where A\ € U(D), py,... ,ps are nonassociate
principal primes, s > 1, and each n; > 1. Here D is a t-UFD and each ¢-
irreducible element is contained in a unique maximal ¢t-ideal. Our next
goal is to characterize the x-UFD’s with this property. But first we
need to review the associated star-operation x,, which was introduced
in [9].

Let x be a finite character star-operation on the integral domain D
with quotient field K. For A € F (D), define A*» = {z € K|zI C A,
I is a finitely generated ideal of D with [* = D}. Then A — A*v is
a finite character star-operation on D with %, < x. Moreover, A*» =

N{ADp|P € x-max(D)}, xmax(D) = %,-max(D), and A € F(D) is
*-invertible if and only if it is x,-invertible. Thus C¢,(D) = C¥, (D)
and an ideal I of D has the property that [* = D & [*+ = D.
For a,b € D#, we have (a,b)* = D < (a,b)*> = D and so 7, = T,.
Thus all the notions involved with 7,-factorization and 7, -factorization
coincide.

Theorem 4.6. Let D be an integral domain, and let x be a finite

character star-operation on D. Then the following are equivalent.

(1) D is »atomic and each *irreducible element is contained in a
unique mazimal *ideal.

(2) D is a »UFD and each *irreducible element is contained in a
unique mazimal *ideal.

(3) Each x € D¥ has a (*atomic) factorization x = xy - - -z, where
each x; is contained in a unique mazrimal *ideal.

(4) *-max(D) is independent of finite character and Cl,(D) = 0.
(5) For each x € D¥* and each P € -max(D), xDp N D is principal
and is contained in at most one mazimal xideal.
(6) The natural map G(D) — M pey_max(p)G(Dp) has image
® pex-max(D)G(Dp) where G(D) is the group of divisibility of D.
Moreover, in case any of (1)—(6) hold, then up to order and associates

a x-atomic factorization of x € D# has the form x = xy---x, where
Py,..., P, are the mazimal x-ideals containing x and ;D = xDp,ND.
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Proof. From the comments of the preceding paragraph there is no
harm in assuming that x = %,. Let F = x-max(D). Then in the
terminology of [17], F is a defining family of D (i.e., D = (\p.z Dp)
of incomparable primes and * = xz where A*7 = ({Ap | P € F}. It
is immediate from [17, Corollary 3.5] that (4)—(6) are equivalent and
(3) = (4). (4) = (3). Again by [17, Corollary 3.5] each z € D# has
a factorization z = y; - - -y, where each y; is contained in a unique
maximal *-ideal M;. Suppose that M; = M for < # j. Then M; is the
unique maximal x-ideal containing y;y;. Thus by combining the y;’s
contained in the same maximal x-ideal, we can write x = x1 - - - &,, where
x; is contained in the unique maximal x-ideal M; and M; # M; for
i # j. But then (z;,z;)* = D, that is, x = 1 - - - z,, is a *-factorization
which is even a x-atomic factorization since each z; is x-irreducible. For
if ; = yz where y, 2 € D#, then clearly M; is the only maximal %-ideal
containing y or z, so (y,2)* # D. (1)=(3). Clear. (3)=-(1). The proof
of (4) = (3) shows that if « is contained in a unique maximal x-ideal,
then z is %-irreducible. Thus D is x-atomic. Suppose that = € D# is
*-irreducible. Since x has a x-atomic factorization z = z; - - - 2,, where
each x; is contained in a unique maximal %-ideal M;, x x-irreducible
gives n = 1. So z is contained in a unique maximal *-ideal. (2) =
(1). Clear. (1) = (2). By hypothesis, D is x-atomic. Let z € D#,
and let x = x1---x, be a x-atomic factorization. By hypothesis z;
is contained in a unique maximal *-ideal M;. And (z;,z;)* = D for
i # j gives M; # Mj for i # j. Thus Dy, N D = x;D. Since (1)
= (5), x;Dpg, N D is principal, say, z; Dy, N D = (y) and certainly
M; is the unique maximal %-ideal containing y. But then z;D C yD,
so x; = 1y for some r € D. Since x; and y are contained in the
unique maximal x-ideal M;, either r is a unit or r € M;. But r € M;
gives rDar,yDyr, = x; Dy, = yDyy,, a contradiction. So r is a unit.
So Dy, N D = x;Dpr, N D = x;D. Thus the x-atomic factorization
T =1 T, is unique up to order and associates. This also proves the
moreover statement. O

Corollary 4.7. For an integral domain the following statements are
equivalent. (1) D is a CFD and each pseudo-irreducible element is
contained in a unique mazximal ideal.

(2) D is a UCFD and each pseudo-irreducible element is contained
in a unique mazimal ideal.

(3) Each x € D¥ has a (comazimal, complete comazximal) factor-
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ization © = x1 - -z, where each x; is contained in a unique maximal
ideal.

(4) D is h-local and Pic (D) = 0.

(5) For x € D¥ and M a mazimal ideal, xDys N D, is principal and
is contained in at most one maximal ideal.

(6) The natural map G(D) = I yremax(p)G(Dar) has image
® Memax(D)G (Dar).

Proof. Here we have x = d. The proof is immediate once we note that
Clq(D) = Pic(D) and d-max(D) = max(D) is independent of finite
character precisely when D is h-local. O

Corollary 4.8. Let D be a x-UFD with the property that each
*-irreducible element is contained in a unique mazimal *-ideal. For
x € D¥, the following are equivalent: (1) x is x-prime, (2) = is |-
prime, and (3) x is x-irreducible.

Proof. (1) = (2). Since 7, is both multiplicative and divisive,
Proposition 2.4 (2) gives that a x-prime element is |,-prime for any
integral domain D. (2) = (3). This holds for any integral domain and
relation 7. (3) = (1). Suppose that D is a »-UFD with the property
that each x-irreducible element is contained in a unique maximal *-
ideal. Let z € D be x-irreducible; so «x is contained in a unique maximal
x-ideal M. Suppose that z|z;---z, where z;---z, is a *-atomic
factorization. Then each z; is contained in a unique maximal x-ideal M;
and M; # M; for ¢ # j. Since x1 -+ -z, € M, some x;, say 1, must lie
in M. Hence My, = M. But then 1D = x1Dy;ND C Dy N D = xD;
s0 z|zy. Thus z is x-prime. mi

Recall that an element z € D#, D an integral domain, is t-pure if x
is contained in a unique maximal ¢-ideal. So Theorem 4.6 for the case
* =t gives the result mentioned in the introduction that each element
of D# is a product of t-pure elements if and only if the intersection
D = (\petmax(p) Dp is locally finite and independent and C¢;(D) = 0.

Of course in a UCFD a pseudo-irreducible element need not be
contained in a unique maximal ideal; for example, X in K[X,Y], K a
field, is contained in infinitely many maximal ideals. However, we next
show that in the one-dimensional case this cannot happen.
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Theorem 4.9. Let D be a one-dimensional integral domain and * a
finite character star-operation on D. The the following are equivalent.

(1) D is a #UFD.
(2) D is a UCFD.
(3) D is weakly factorial.

(4) Every element of D¥ is contained in only finitely many mazimal
ideals and Pic (D) = 0.

Proof. (1) < (2). Since dim D = 1, max(D) = x-max(D); s0 %, = d.
Thus 7, = 7, = 74- (3) & (4). [10, page 149]. (4) = (2). Corollary 4.7
or Theorem 4.1. (2) = (3). Let d € D# be pseudo-prime. Then D/(d)
is indecomposable and thus D/ \/@ is also indecomposable. But then
D/+/(d) being zero-dimensional and reduced is von Neumann regular.
Thus D/ \/@ is an indecomposable von Neumann regular ring and
hence is a field. So /(d) is a maximal ideal and hence (d) is a primary
ideal. Since every element of D# is a product of pseudo-prime elements,
every element of D# is a product of primary elements. So D is weakly
factorial. o

However, in a one-dimensional CFD a pseudo-irreducible element may
be contained in infinitely many maximal ideals. In [31], Grams gives
an example of an almost Dedekind domain D with ACCP which is not
Dedekind. By Corollary 4.5, D is a CFD. Since D is not Dedekind,
some element of D#, and hence some pseudo-irreducible element of D,
must be contained in infinitely many maximal ideals. It is interesting to
note that the Nagata ring D(X) is not a CFD. For suppose that D(X)
is a CFD. Then D(X) being Bezout is actually a UCFD. But then by
Theorem 4.9 each element of D(X)# is contained in only finitely many
maximal ideals, a contradiction.

We next give a x-factorization version of Theorem 4.1. By a S*-ideal
we mean a x-ideal I with I = (a,c)* = (a,c?)* for some a,c € D.

Theorem 4.10. Let D be an integral domain, and let x be a finite
character star-operation on D. Consider the following seven conditions.

(1) D is atomic and every two-generated *invertible xideal of I of
D is principal.

(2) D is xatomic and each S*w-ideal of D is principal.
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3) D is »atomic and every *atom is *prime.
4) Each a € D* is a »product of »primes.
5) D is a #UFD.

6) Each a € D¥ is a *product of |,-primes.

(
(
(
(

(7) D is x-atomic and every x-atom is |,-prime.
Then (1) = (2) = (3) & (4) = (5) & (6) & (7).

Proof. (1) = (2). Let I be a x,-ideal with I = (a,c)** = (a,c?)*v.
Then for P € x-max(D), (a,¢)Dp = IDp = (a,c®)Dp. Thus either
c is a unit in Dp or ¢cDp C aDp. So IDp is principal. Hence [
is *,-invertible and so is x-invertible. So I* = (a,c¢)* is principal.
But I *-invertible gives I = I,,. Hence I = I* is principal. (2) =
(3). Let c be a x-atom. Suppose that ¢ | ab where (a,b)* = D. So
a € a(a,b)* = (a?,ab)*» C (a?,¢)*» and hence (a2,c)** = (a,c)*v.
So by hypothesis (a,c)* is principal and hence (a,c)* is principal.
Now (a,b)* = D, so ((a,c),(b,¢))* = D. Hence (a,c)* N (b,c)* =
((a,c)(b,e))*. So (¢) C (a,c)* N (b,e)* = ((a,c)(b,c))* C (¢). Thus
((a,c)(b,c))* = (c). Since (a,c)* is principal, so is (b,c)*. Say
(a,¢)* = (d) and (b,¢)* = (e). Then (¢) = (d)(e); so ¢ = Ade for
some unit A\. Now (d,e)* = ((a,b)*, (b,c)*)* = D; so ¢ a x-atom gives
d or e is a unit. If d is a unit, (¢) = (e) = (b,e)*,s0c| b. Ifeisa
unit, then (¢) = (d) = (a,¢)*, so ¢ | a. Hence c is a x-prime. (3) = (4).
Clear. (4) = (3). A *-prime is a x-atom. (4) = (5). Theorem 2.7 (1).
(5) & (6) < (7). Here 7, is divisive, so Theorem 2.7 (3) applies. O

We suspect, but have been unable to prove, that (1)—(7) of Theo-
rem 4.10 are equivalent (as is the case for x = d by Theorem 4.1). Note
that (1)—(7) are indeed equivalent if any one of the following holds:
(a) each x-atom of D is contained in a unique maximal *-ideal (Theo-
rem 4.6), (b) dim D = 1 (Theorem 4.9), or (c) D has only finitely many
maximal x-ideals (Corollary 4.11).

Corollary 4.11. Let D be an integral domain and x a finite character
star-operation on D. Suppose that D has only finitely many mazimal
*-ideals My, ... ,M,. Then D is a x-UFD. Moreover, for each x € D#,
0.(z) < n, and there is an x € D# with {,(x) = n.
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Proof. By Corollary 4.3, D is x-atomic. Since x-max(D) is finite,
C?,(D) =0 by [16, Remark 2.3]. So by Theorem 4.10, D is a x-UFD.
Suppose that z € D# is in exactly m maximal x-ideals of D. Then
l,(z) < m < n by the proof of Theorem 4.2. For each i, 1 < i < n,
choose z; € M; — Ulﬁ M;. Consider x = x1:- x,. For i # j,
(zi,z;)* = D and since M; is the unique maximal x-ideal containing
x;, z; is *-irreducible. So £, (x) = n. ]

One can ask about the converse of the second statement of the
previous corollary. Namely, if D is an integral domain and * is a finite
character star-operation on D with ¢, (z) < n for all z € D#_ must D
have at most (or equivalently, exactly) n maximal *-ideals? For x = d
and n = 1, this is true. For suppose that D has at least two maximal
ideals, say M; and M>. Then M; + My = D, so we have x; € M; with
my + mg = 1. But then 2 = mymg has £4(z) > 2.

In attempting to prove that (1)—(7) of Theorem 4.10 are equivalent,
we discovered the following two theorems.

Theorem 4.12. Let 7 be a divisive relation on the integral domain
D. Let a € D be T-prime and b € D a T7-atom. Then either atb or ab
s a T-atom.

Proof. Suppose that a 7b. We show that ab is a 7-atom. Deny. So
ab = ¢y ---c, where ¢;7c; for ¢ # j and n > 2. Now a is 7-prime and
a|ab =cy---cp, s0 a | ¢; for some i, say a | ¢;. Write ¢; = ra.
So ab = racy--- ¢, and hence b = rcg---c,. Suppose that r is not
a unit. Then r | ¢; and ci7¢; (j # 1) gives rrc; since 7 is divisive.
Thus b = rcy -+ - ¢, is a non-trivial 7-factorization of the 7-atom b; a
contradiction. Hence » must be a unit. So again rcy---c, is a non-
trivial 7-factorization of b unless n = 2. Hence n = 2, b = rcy and
a=1r"tc. SociTcy and ¢; ~ a, co ~ b give aTh; a contradiction. O

Theorem 4.13. Suppose that D is a T-UFD where 7 is divisive.
Then the following conditions are equivalent. (1) If a and b are T-atoms
of D with a #b, then ab is a T-atom.

(2) If c € D* has a factorization ¢ = ¢y ---c, into T-atoms, then
{1,2,...,n} = S1U---USp (disjoint union) so that each b; = II{c; |
c; € Si} is a T-atom and ¢ = by - - by, is a T-atomic factorization of c.

(3) Each T-atom of D is T-prime.



ON A GENERAL THEORY OF FACTORIZATION 695

Proof. (1) = (2). If ¢;7c; for each ¢ # j, we are done. So assume,
say, ¢; fco. Then cjcp is a 7-atom and ¢ = (cjc9)cs---¢, where
€1C2,C3,... ;¢ are T-atoms. The result follows by induction. (2)
= (3). Let a € D¥* be a T-atom. Suppose that ala; ---a, where
ai---a, is a 7-factorization. We need that a | a; for some i. There
is no harm in assuming that each a; is a 7-atom (here we use that
7 is divisive). Suppose that ra = ay---a,. Let r = ry---r,, be a
T-atomic factorization. Then grouping the terms of ry---r,a as in
(2) we get a T-atomic factorization of ay - - - a, with one factor having
the form r’'a where 7’ is a product of some of the r;’s or is 1. By
unique 7-factorization 7'a ~ a; for some i. But then ala;. (3) = (1).
Theorem 4.12. o

Carlitz [21] showed that a ring of algebraic integers D is a HF D if
and only if |C¢(D)| < 2. Now the implication < holds for any Dedekind
domain. But the implication = does not hold for a general Dedekind
domain; Carlitz used the facts that |C¢(D)| < oo and that each class of
C{(D) contains a prime. We recast the implication < as follows. Let
D be an integral domain with the property that for each a € D¥, (a)
is a d-product of prime ideals (that is, D is a 7-domain). Suppose that
|Clq(D)| < 2 (that is, |Pic (D)| < 2). Then D is a HFD. We next give
a star-operation version of this result.

Theorem 4.14. Let D be an integral domain, and let x be a
finite character star-operation on D. Suppose that each nonzero proper
principal ideal of D is a x-product of prime ideals. If |Cl,(D)| < 2,
then D is a x-HFD.

Proof. Suppose that a € D#. Then (a) = (P, - - - P,)* for some prime
ideals Pi,..., P, of D. Since % has finite character, (a) = (Py--- P,):.
So every nonzero proper principal ideal of D is a t-product of prime
ideals. So by [34] or [11, Corollary 3.2], D is a Krull domain. Hence
D satisfies ACCP and so is x-atomic by Theorem 4.4. If C¢,(D) = 0,
then D is a x-UFD by Theorem 4.10 and hence is a x-HFD. So assume
that |C4(D)| = 2.

Let a € D#; so (a) = (P;*--- P3")* where Py,..., P, are distinct
prime ideals with each P} # D and s; > 1. Now P; is x-invertible and
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hence *,,-invertible. Thus P;Dp, is a principal prime ideal in the Krull
domain Dp,. Hence P; € X(Y)(D). Thus (a) = (P;* --- P3"); and hence
this is the unique representation of (a) as a t-product of height-one
primes. Thus (a) = (P;*--- P2)* is the unique representation of (a)
as a x-product of prime ideals where each P} # D. Since |C¢,(D)| = 2,
either P; is principal, so each P}’ is principal, or P; is not principal and
hence (P;]*)* is principal & s; is even.

Observe that a x-factorization of a € D# corresponds to a partition C
of {P;*,..., P~} with the property that for each C € C, (II{ P;’*|P]* €
C})* is principal. Moreover, C corresponds to a *-atomic factorization
of a if and only if no C' € C can be split as a disjoint union of nonempty
subsets C' = C1UC where for j = 1,2, (II{P;*|P;* € C;})* is principal.
So suppose the C corresponds to a x-atomic factorization of a. Now
{P/} is aclass of C & (P;*)* is principal < P; is principal or P; is not
principal but s; is even. Suppose that C = {Pisli1 Yo ,PZ-S,:’“} is a class
of C with k = |C| > 3. Observe that each (Pisjzj )* is not principal, so
each si; 18 odd. Since s;; + -+ s;, is even and s;, and s;, are odd,

Sig + -+ 84, is also even. So (P, P;"*)* and (P;ie‘ e Pfk’“ )* are both
principal. But then we can split C' as {P;* P, 2} U{P;* ---Piii’“ 1 a
contradiction. So each nonprincipal class of C has cardinality two. So
IC| =0+ (n—4£)/2=(n+{)/2 where £ = |{P;"!| | (P{*")* is principal}|.
Hence any *-atomic factorization of a has length (n + ¢)/2. Thus D is

a x-HFD. u]

We end this section by considering the relation 7| which is related
to 7¢. Let D be an integral domain. We denote the gcd of a,b € D
by [a,b]. Define the relation 7| on D# by ar b < [a,b] = 1. Note
that [a,b] = 1 < (a,b) is not contained in a proper principal ideal.
Also, (a,b), = D = [a,b] = 1, but not conversely. Certainly the
relation 7| | is divisive. However, 7| | is multiplicative precisely when for
a,b,c € D¥, [a,b] = [a,¢] =1 = [a,bc] = 1, the so called PP-property.
The PP-property has been studied in regards to Gauss’ lemma, see [3]
for details and references. Briefly, D satisfies the GL-property (Gauss’
lemma: f=ao+a; X+ -+a, X", g=bo+b1 X +---+b, X™ € D[X]
with [ag,... ,an] = [bo,-.. ,bm] = 1 = the coefficients of fg have gcd
1) = D satisfies the PP-property = D satisfies the AP-property (atoms
of D are prime). Hence a GCD domain satisfies the PP-property and
an atomic domain satisfying the PP-property is a UFD.
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We will abbreviate 7 by [ |, for example, we will speak of a [ |-
factorization or say that D is a [ ]-UFD rather than speaking of a 7 }-
factorization or saying that D is a 71-UFD. Thus a [ |-factorization
is just a factorization a = Aaj---a, where [a;,a;] = 1 for i # j.
Since 77 is divisive, if D satisfies ACCP, then D is [ ]-atomic. Also
a UFD is a [ ]-UFD. Here a [ ]-factorization has the form Ap%" ... pks
where A € U(D), p1, ... ,ps are nonassociate principal primes, and each
k; > 1. An integral domain D has every element of D# a [ ]-atom if
and only if (D, M) is quasilocal and for each finitely generated ideal
I C M, there is an m € M with I C (m) C M. Hence in a valuation
domain V every element is a [ ]-atom (and hence V is a [ ]-UFD) and
for a Noetherian domain the converse is true. Note the relationship to
“Kummer’s property” [30]: For z,y € D, either (z,y) = D or (z,y) is
contained in a proper principal ideal.

The relation 7)) is another example of a relation 7 where it is not
sufficient to consider only 7-factorizations a = Aay - - - a,, of length n = 2
when defining 7-irreducibles, 7-primes, and |,-primes. Let K C L be
fields, and let D = K + XL[[X]]. Since D satisfies ACCP, D is [ -
atomic. Up to associates, the nonzero nonunits (respectively, atoms)
of D have the form uX™ where v € L* and n > 1 (respectively, n = 1).
Let u,v € L*. Then uX and vX are associates <> uv~! € K. If n. > 1,
uX™ = (vX)(uwv™'X"!). Hence [uX",vX™] =1« n=m =1 and
uwv~! ¢ K. Thus if f € D# has a [ |-factorization of length 2, then
ord f =2. For K =L, D = L[[X]] is a DVR, D is a [ ]-UFD, and each
element of D is a [ ]-atom. So suppose K C L. Let u € L — K. Then
u+1¢ K and (u+1)u"! ¢ K. Sou(u+1)X3 = X(uX)((u+1)X)isa
[ |-factorization. Thus u(u+1)X? is not a [ ]-atom. However, u(u+1)X?>
has no | |-factorization of length 2. Also, if X3|fg for f,g € D¥, then
ord fg > 3, so fg has no [ ]-factorization of length 2. Thus vacuously,
if X3|fg (respectively, X3|/fg) where fg is a [ ]-factorization, then
X®|f or X?|g (respectively, X?|; 1f or X?|[1g); but X? is not [ ]-prime
(respectively, || ;-prime). Finally, observe that D is not a [ ]-UFD. For
if u € L — K, then we have three | ]-atomic factorizations of uX?:
uX?=uX -X =u’X v 'X =u(u+1)X - (u+1)"1X. Now the first
two [ ]-atomic factorizations are distinct unless u? € K, while the first
and third are distinct unless u(u + 1) € K. But if both u? € K and
u(u+1) € K, then u = u(u + 1) — v?> € K, a contradiction.
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5. The congruence modulo n T-relation. As defined in Section 2,
the “congruence modulo n” relation is given by ar,b < a = bmod n
for a,b € Z#, n € N* = {2,3,4,...}. The second author would like to
thank Suzanne Hamon for several discussions of this example.

Note that this relation is never divisive. Recall that a divisive relation
must be associate-preserving; if this relation preserved associates, then
we would have k¥ = —k mod n for every k € Z. This would imply
2k = 0 mod n for all £ € Z, which is clearly only possible for n = 2.
Thus none of the other 7, is associate-preserving, and so 7, is not
divisive for n > 2. While m is clearly associate-preserving, the
counterexample 6724 but 3 722 demonstrates that this 7, too, is not
divisive.

If n # 2, then 2 = 2 mod n, but 2 -2 # 2 mod n. Thus the relation
Ty, is not multiplicative for n > 2. However, it is multiplicative in the

case n = 2; aeb is equivalent to saying “a and b are both even” or “a
and b are both odd.”

Z need not be 7,-atomic; in fact for odd n > 7, 4r, where r is a prime
congruent to 4 mod n, is an element with a 7,,-complete factorization
(4 - r) but not a 7,-atomic factorization (as 4 = 2 -2 is not a 7,-
atom, and 2 -2 -7, 2(2r) are not 7,-factorizations). Whether Z is 7,-
atomic or not, note that for any n € N#, the bound on the length of
standard factorizations in the UFD Z gives a bound on the length of 7,,-
factorizations. Thus Z is a 7,,-complete BFD and hence is 7,,-complete.
However, for every n, we can find an element with two distinct 7,-
factorizations (so Z is never a 7,-UFD under this relation). To see
this, consider n?p;ps, where the p; are (standard) primes congruent to
1 mod n. We can easily verify that np; and np;ps are 7,-atoms if n
itself is a 7,-atom, and that (np1)(np2) = (np1p2)(n) gives two distinct
Tp-atomic factorizations of the same element. When n is not a 7,,-atom,
then n can be factored as n = Aaq ---ay for A a unit and a; = a; for
all 4,5 € 1,... k. Then A(aip1)(azp2) - --ar = (a1p1p2)as - - - ai yields
our counterexample. Now Z also need not be a 7,,-HFD; for example, if
n=30,216=6-6-6=—1-18-—12 yield two 7,-atomic factorizations
of different lengths. Similar counterexamples can be manufactured for
many composite n; indeed, in the cases n > 6, we have yet to find an
n for which 7,-atomic factorizations must have unique length.
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Given a specific n € N#_ it is possible to compute the |, -prime, 7,-
prime, and 7,-atomic elements of Z. The elements to be considered
will vary in each case, but always depend on the (usual) primary
decomposition of n.

To fully illustrate the relation 7,,, let us consider the most basic case:
arob & a = bmod 2. (Note that, throughout this section, A and
indicate units of Z.) In this case, a 7y-product is simply a product which
consists of either all odd or all even numbers. Therefore, if n € Z is
odd, its T-atomic factorization is its prime factorization (note that the
primary factorization of n is not a Te-atomic factorization, as for general
m, primary elements of Z are 7,,-atoms < they are prime). If the
standard primary factorization of n is given by n = 2kop k1 ... p Fm,
where the p; = 1 mod 2, then each 7»-factor of n must be a multiple
of 2. However, we may completely m-factor 45 = 2(25) for odd j (and
similarly for larger powers of 2), so the m-atoms are the (usual) primes
and integers of the form 2p; ---p, where the p; are (not necessarily
unique) odd (standard) primes. Thus ¢,,(n) = L,,(n) = k¢ for n =
2kop k1. pFmoand €, (n) = Ly, (n) = Yoim ki for n = pikro.ppFm,
where the p; are odd primes. Therefore Z is a 7o-HFD and 7»-FFD,
although it is clearly not a 72-UFD.

The 75 relation also gives examples of 7o-primes which are not
standard primes and of standard primes which are not |.,-primes.
Standard primes are of course 7,-primes for any n. Also consider
a = 2p, for p a standard odd prime. If 2p|Ab; - -- by, with b;72b; for
1 # 7, then 2 must divide some b;. Therefore, all of the b; are even, and
so there must be some b; divisible by both 2 and p. Thus a = 2p is a
To-prime for this relation. However, a = 2p; - - - py, is not a mo-prime if
m > 2 (as a|2p1 - 2ps - - - Pm, but divides neither factor). Since products
of odd primes are 7y-reducible, these cannot be 7o-primes unless the
products have length 1. Thus the only 7o-primes are the standard
primes and a = 2p for p an odd prime. If p is an odd prime and
D|rb1 *+ - b, then the b; must all be odd. Since p is prime and p, b; are
odd, then p|,,b; for some 1 < i < m. However, note that 2|.,6 - 10, but
2 T9-divides neither factor; thus 2 is a standard prime which is not a
| -,-prime (as is —2). Similarly, for p an odd prime, 2p|, (6p)(2q), where
q # p is another odd prime, but 2p 72-divides neither factor. Therefore
2p is a Tp-prime which is not a |,,-prime. Thus the only |.,-primes are
the odd primes of standard factorization, illustrating that, as asserted



700 D.D. ANDERSON AND ANDREA M. FRAZIER

in Section 2, a a standard prime need not imply a is a |,-prime for
non-divisive 7.

From Section 2, recall that 7,-primes and | -primes must be 7,-
atoms. For small n, we may compute the 7,-primes and |, -primes
(full details are given in [26]). For n > 6, we may categorize the |, -
primes and 7,-primes.

Theorem 5.1 [27]. For n > 6, the relation at,b < a = bmod n
yields no |, -prime elements in Z.

The |, -primes yielded by the smaller n are easily computed (full
details are given in [26]). The relation 75 has no |,-primes. The odd
standard primes are the |,,-primes; the standard primes different from
3 and —3 are the |,,-primes; all primes congruent to +1 mod 6 are the
|-s-primes, and so therefore all standard primes except £2,+3 are |
primes.

We may also easily classify the 7,,-prime elements for any 7,:

Theorem 5.2 [27]. Fizn € N#. Then a € Z is 7,-prime if and
only if a = Ap1°t -+ - px®q, where e; = 1 or 0, p; are distinct prime
divisors of n, and q is a (standard) prime which does not divide n (or
q s a unit).

To prove that such a are necessarily 7,-prime, we must show that if
a prime p divides a 7,-product, then each 7,-factor is a multiple of p:

Lemma 5.3 [27]. Choose n € N#; suppose p is a prime divisor of
n and p|Aby - - - by, where b; = b; mod n for i # j. Then plb; for all
1€1,...,m.

The preceding results depend on the knowledge that a is 7,-irreduci-
ble. Since a = Ap;°! - - - px®*q, it’s not difficult to check by hand whether
a given a is 7,-irreducible (at worst, consider each of the partitions
of the prime factors; compare their products to see if a 7,-factoring
is possible). Indeed, for a given z € Z¥, considering each of the
factorizations given by the (finite number) of partitions of the (not
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necessarily distinct) prime factors of z yields a decidable procedure
for determining whether z is 7,-irreducible. We invite the reader to
create an effective program which determines whether a given a is 7,-
irreducible (for congruence mod a specified n) by exhausting possible
partitions. To close, we describe several classes of elements which must
be 7,-irreducible for a fixed but arbitrary n (as well as some obvious
types of elements that must be 7,-reducible).

To construct all of these cases, we use the modn multiplication
table. Instead of considering the congruence classes as represented by
the elements 0,... ,n — 1, we instead write the table considering the
equivalence classes as represented by the integers between —(n — 1)/2
and (n—1)/2 for n odd, or as the integers between —(n —2)/2 and n/2
for n even. Since factorizations of integers may always be augmented
by units, we need only consider products of integers between 0 and n/2
(or 0 and (n —1)/2, if n odd). Of course then prime elements of Z are
either factors of n or are relatively prime to n. If p|n for p prime, then
p is the only prime element of Z in its congruence class; congruence
classes represented by multiples of p will contain no standard primes.
All other congruence classes do contain (infinitely many) primes (19
and —71 are examples of “primes congruent to £4” mod 15). Since we
may always insert units into a factorization as necessary (for example,
writing —4-4 = —1-—4-—4), we will refer to primes as being congruent
to the absolute value of their class representative (for example, we will
treat 71 as a “prime congruent to 4 mod 15,” even though strictly
speaking it is congruent to —4).

Theorem 5.4 [27]. Ifb € Z is a 7,-irreducible, b Z +1 mod n, then
wbpy -+ P 18 a Ty-trreducible for any (not necessarily distinct) primes
p; = =1 mod n.

This theorem allows us to consider only the primes not congruent to 1
when determining the 7,-irreducibility of a given z € Z. This theorem
allows us to inductively build up more 7,-irreducibles.

We next give some classes of elements whose 7,-atomicity may be
determined. The list is by no means exhaustive, but is intended to give
the reader some concrete practice in manipulating 7,-products. Full
details of the following cases may be found in [27].
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Example 5.5. (1) Let n = s;% ---;%, where s; are primes and
a; > 1; then b = 51 -+ 5;% g+ ¢q; is Tp-irreducible if a; = 1 for at
least one ¢ and either j is 0 or the ¢; are primes coprime to n.

(2) If ¢,r are primes from different congruence classes modn, then
uqr is a T,-irreducible.

(3) If ¢ = pgr---qjs1---Sk, where s; = *1modn for each i,
q¢; = pg mod n for some unit g and each i,l € 1,...,7, then c is
T-reducible.

by

(4) Write n=s,%-- - 5,%, where s; are primes; then d=ps,% - s c

is 7,-reducible whenever b; > 2a; for alli € 1,... ,k and ¢ € Z.

We end this section, and hence the paper, by considering the relation
T, for the degenerate cases n = 0,1. First, suppose that n = 1.
So arb < a = bmod 1. But since this is always true, we have
11 = Z# x Z% and hence we get the usual factorization in Z.

The case n = 0 is more interesting. Here amgb < a = bmod 0 &
a = b. So 7y is not associate-preserving, and hence not divisive, and
is not multiplicative. A 1p-factorization has the form (£1)b---b where
b€ Z#. So al,,b < b= (£l)a” for some n > 1. And a € Z¥ is a
To-atom unless a = (£1)b" for some b € N# and n > 2. Note that
a = (£1)b---b (n b’s) is a Tp-atomic factorization unless b = (£1)c™
for some ¢ € N# and m > 2. But then a = (£1)c---¢ (mn cs) is
a 7o-factorization of a. This shows that each 7-factorization can be
refined to a 7y-atomic factorization and hence Z is 7g-atomic. In fact,
Z is even a 79-UFD. For suppose that a = (+£1)b---b = (£1)c---c are
two Tg-atomic factorizations of a. We can easily reduce to the case
where a, b, ¢ are positive. Thus we have b™ = ¢™ where b,c > 2 and
b and c are not themselves proper powers. But then factoring b and ¢
into prime powers and employing unique factorization in Z yields that
n =m and hence b = c.

Since a € Z* is a Tp-atom unless a = (£)b" for some b € N# and
n > 2, the 7p-atoms of Z have the form a = (£1)p*---p% where

D1, .. ,Ds are distinct primes, each a; > 1, and [ay,... ,as] = 1. The
To-primes are (£1)p; - - - ps where pq, ... ,ps are distinct primes. (For if
say a; > 1, then p{* ---p%|(py---ps)* where k = max{ay,...,as},

but pf*---p¥ tp1---ps.) So even though Z is a 70-UFD, a 7op-
irreducible element need not be 7y-prime and an element of Z# need
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not be a 7p-product of 7o-primes. However, the |, -primes of Z#
are just the rp-irreducibles. Certainly if a is |, -prime, then a is 7o-
irreducible. Conversely, suppose that a is 7p-irreducible and suppose
that a|,,(+1)b---b, a 7o-factorization. So (+1)a* = (£)b---b for
some ¢ > 1. Factor b into 7y-irreducibles, say b = (£1)c---¢. Then
(£1l)a---a = (£1)c- - - c are two Tp-atomic factorizations. Hence a ~ c.
So (£1)a™ = b, i.e., al;,b. So a is |, -prime. Note that every element
of Z# is a Tp-product of |,,-primes.

Several of the questions raised in this paper have been answered
by the first author’s student Jason Juett in “Two counterexamples
in abstract factorization,” which will appear in this journal. He has
conducted a thorough study of 7-UFDs. He has given a much simpler
proof of Theorem 2.11 showing that if ; < 75 are divisive and D is
a 17-UFD, then D is a 73-UFD and has shown that if we replace |-
prime by 7-prime in Theorem 2.7 (3), then (a) % (b). He has also
given an example of an atomic domain that is not d-atomic (i.e., not a
CFD). This answers in the negative the question concerning Figure 2
whether atomic = 7-atomic for 7 divisive and the question preceding
Theorem 4.2 as to whether an atomic domain is *-atomic.
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