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INVARIANT MEANS ON ALMOST PERIODIC 
FUNCTIONS AND FIXED POINT PROPERTIES 

ANTHONY TO-MING LAU l 

1. Introduction. Consider on a topological semigroup S the follow­
ing fixed point properties: 

(F) For any separately continuous, equicontinuous and affine action 
of S on a compact convex subset K of a separated locally convex space, 
K has a common fixed point for S. 

(G) For any separately continuous and nonexpansive action of S 
on a compact subset K of a separated locally convex space, K has a 
common fixed point for S. 

Recently, Holmes and the author have proved in [10, Corollary 1] 
that if S is left reversible (i.e., any two nonempty closed right ideals 
of S have nonvoid intersection; see [1, p. 34] ), then S has property (G). 
For discrete left reversible semigroups, this latter result is due to 
T. Mitchell [14] ; the implication was first proved by De Marr in [6, 
p. 1139] for commuting semigroups and then by W. Takahashi [16, p. 
384] for discrete left amenable semigroups (i.e., the space of bounded 
real valued functions on the semigroup has a left invariant mean; see 
Day [2] ). 

A well-known theorem of Kakutani [7, p. 457] shows that if S is a 
group, then S has property (F). This result has also been generalised 
recently by Sneperman [19] and [20] to the class of left reversible 
discrete semigroups. 

Note that, as known, any commuting semigroup is left amenable 
(see Day [2, p. 516] ) and any left amenable discrete semigroup is left 
reversible (see Granirer [8, p. 371] ). 

The main purpose of this paper is to show that, for any topological 
semigroup S, the existence of a left invariant mean on AP(S)7 the 
space of strongly almost periodic functions on S, is equivalent to each 
of the two fixed point properties (F) and (G). 

Since if S is left reversible then AP(S) has a left invariant mean (note 
that the converse is false; see [10, §4]), it follows that our result 
generalises Sneperman's fixed point theorem in [7, p. 457] and a fixed 
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point theorem of Holmes and the author in [10, Corollary 1]. 
We also show that AP(S) has a multiplicative left invariant mean 

if and only if whenever S is a separately continuous and equicontinu-
ous action on a compact Hausdorff space X, X has a common fixed 
point for S. 

2. Preliminaries and notations. For any set A, 1A will denote the 
characteristic function on A and \A\ will denote the cardinality of A. 

If A is a subset of a topological space E, then A will denote the 
closure of A in E. If in addition E is a linear topological space, then 
[co A] co A will denote the [closed] convex hull of A in E. 

Throughout this paper, S will denote a topological semigroup; that 
is, S is a semigroup with a Hausdorff topology such that, for each 
a G S, the two mappings from S into S defined by s—> as and s-> sa 
for all s G S are continuous. 

An action of S on a topological space X is a mapping i// from 
S X X into X, denoted by i//(s, x) = s • x, s G S and x G X, such that 
(siS2) ' x = sl - (s2 ' *) for all sls s 2 G S and x G X. The action is 
separately co itinuous if the mapping iff is continuous in each of the 
variables when the other is kept fixed. 

When X is a convex subset of a linear topological space, then an 
action of S on X is affine if for each s G S, the mapping from X into 
X, defined by x —> s • x for all x G X, is affine. 

For any topological space X, let C(X) be the space of bounded 
continuous real valued functions on X. Let A be a sup norm closed 
subspace of C(X) containing constants, then an element $ G A*, the 
conjugate space of A, is a mean if ||0|| = <f>(lx) = 1. If in addition A 
is an algebra, then <j) (E A* is multiplicative if <f>(fg) — <f>(f)<f>(g) 
for all /, g G A. 

For each a G S, define the two mappings ra> la from C(S) into 
C(S) by ra/(s) — /(sa) and laf(s) = f(as) for all s G S and 
/ G C(S). Let A be a translation invariant (i.e., ra(A) Ç A and 
Za(A) Ç A for all a G S) sup norm closed subspace of C(S) containing 
constants. Then a mean 0 on A is a left invariant mean (denoted by 
LIM) if <j>(laf) = <f>(f) for all / G A and a G S. 

A function / G C(S) is strongly almost periodic if XO(f) = 
{ i f l / ;ûGS} is relatively compact in the sup norm topology of 
C(S). Then, as known [5, p. 80], AP(S), the space of strongly almost 
periodic functions on S, is a sup norm closed translation invariant 
subalgebra of C(S) containing constants. Furthermore, / G AP(S) 
if and only if JtO(f) = {raf; a G S} is relatively compact in 
the sup norm topology of C(S). 
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3. Equicontinuous actions. An action of S on a compact Hausdorff 
space X is equicontinuous if, for each y G X and U G Hl, where ^U 
is the unique uniformity which determines the topology of X (see 
[11, p. 197] ), there is a V in Hi such that (sx, sy) G 17 for all s G S 
whenever (x,y) G V. 

The following lemma is crucial to the rest of our work: 

LEMMA 3.1. If the action of S on a compact Hausdorff space Y is 
separately continuous and equicontinuous and i /GY, then Ty(C(Y)) Ç 
AP(S), where Tyf(s) = f(s • y)for alls G S and f G C(Y). 

PROOF. Let / G C(Y) be fixed. We first show that the mapping 
T from Y into C(S) defined by z —> T z / for all % G Y is continuous 
when C(S) has the sup norm topology. Let z Œ.Y and € > 0. By 
compactness of Y, we may choose U G *!!, where *!£ is the unique 
uniformity which determines the topology on Y, such that if (x, y) G U 
then \f(x)-f(y)\<el2 (see [11, p. 198]). By equicontinuity of 
S on Y, there exists V G. ll such that whenever (x, z) G V, then 
(sx, sz) G (7 for all s G S. Consequently if t/ G {*/ G Y; (y, z) G V}, 
which is a neighbourhood of z, then 

sup{)Tvf(s)- Tzf(s)\;sGS}<6. 

To complete the proof, we let y G Y be fixed and 0(y) = {sy; s G S } . 
Then, for each / E C(Y), ~0(fyJ) = {Tzf;zGÖ(y)} is compact 
since 0(j/) is compact and T is continuous. 

THEOREM 3.2. AP(S) has a LIM if and only if 
(F) for any separately continuous, equicontinuous and affine action 

of S on a compact convex subset K of a separated locally convex 
space, K has a common fixed point for S. 

PROOF. Let \p be a LIM on AP(S) and let A(K) be the closed sub-
space of C(K) consisting of all real valued continuous affine functions 
on K. As known [2, p. 513], there is a net of finite means i/*a = 
I M V R « , V > 0 , and 2 ï = i V = 1, such that lim^a(f) = <K/) 
for all / G AP(S), where ps(f) = f(s) for all s G S. Let y G K be 
fixed and ^ b e a cluster point of the net {^/l=i Xfsfy) in K. Then, for 
each h G A(K), we have Tyh G AF(S) (Lemma 3.1) and hence 

h(s - z) = ilj(ls(Tyh)) = *(Ty{h)) = h(z) 

for all s G S, where the first equality follows by virtue of the affine-
ness of S and h. Since A(K) separates points (see [15, p. 31] ), it follows 
that z is a fixed point for S. 

Conversely, observe that the semigroup S acts linearly on AP(S)*, 
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by s -» 4*, and it leaves the set (K, weak*) of the means on AP(S) 
invariant. To see that the action of S on K is separately continuous, it 
is sufficient to prove that a —> Za*(ra)(/) = m(laf) is con­
tinuous for each m (E K and fG. AP(S). Since XO(f) is norm 
relatively compact, the norm topology in XO(f) is the same as 
the topology of pointwise convergence. Since a —> (laf)(t) = f(at) 
is continuous for each £ £ S, the map a —» laf is a continuous map 
S —» (jßO(f), norm). Hence a —» Z0*(m) is continuous on S into 
(K, weak*). For each / £ AP(S), let py be a pseudonorm on AP(S)* 
defined by P/(<t>) = sup{\<t>(laf)\> \4>(f)\'> Ö G S} for each <f> 
GAP(S)*, and let Q= {pf; / G A P ( S ) } . Then clearly the action 
of S on AP(S)* (and therefore on K) is equicontinuous with respect to 
the topology determined by Q. Since, on K, weak* topology agrees 
with the topology of uniform convergence on totally bounded subsets 
of AP(S)7 Ç determines the weak* topology on K. Hence the action 
of S on (K, weak*) is both affine and equicontinuous. Conse­
quently any fixed point in K under this action is a left invariant mean 
on AP(S). 

Theorem 3.2 yields the following generalisation of Sneperman's 
fixed point theorem [19] and [20]: 

COROLLARY 3.3. If S is left reversible, then S has property (F). 

PROOF. Let Sa denote the strongly almost periodic compactification 
of S (see [5, p. 90] ). Then S is left reversible implies that Sa is also 
left reversible. Consequently it follows from [5, Lemma 2.8] that 
AP(S) has a LIM. 

REMARK 3.4. The converse of Corollary 3.3 is certainly false, since 
there exist topological semigroups S such that AP(S) (or even C(S)) 
has a LIM and yet S is not left reversible (see [10, §4] ). 

Our next result shows that when AP(S) has a multiplicative LIM, 
then S has fixed property much stronger than (F) (compare with 
Mitchell [13, Theorems 1 and 3] and the author [12, Theorem 2.2] ). 

THEOREM 3.5. Let n be a positive integer. Then AP(S) has a LIM 
of the form (1/n) ^"=1 </>i, where each fa is a multiplicative mean on 
AP(S), if and only if 

Q(n) whenever S is a separately continuous and equicontinuous 
action on a compact Hausdorjf space X, there exists a nonempty finite 
subset F Ç X, \F\ a n , \F\ divides n, such that s • F = F for all s E. S. 

PROOF. Let y G X. By Lemma 3.1, we may define, for each 
i = 1, • • -, n, a multiplicative mean on C(X) by ^i(f) = <l>i(Tyf) 
for all f Œ. C(X). By compactness of X, there exists X j Ë X such that 
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M / ) = /(*«) f o r a11 f^C(X)9 * = 1 > • • ' , n (see [7, p. 278]). 
Let Y be the set of distinct elements in {x1? • • -, xn}; it follows easily 
from the invariance of (1/n) 5]f=i <& that 5 • Y = Y for all s G S. 

Let H be the set of distinct elements in {fa, • • -,fa}. Since finite 
subsets in the set of multiplicative means of AP(S) are linearly inde­
pendent, it follows that LSH = H for all s G S, where Lsfaf) = 
falj) for all <f>E H, / G AF(S). Let G be the factor semigroup 
of S defined by the equivalence relation (E): a (E) b if and only if 
La<f) = Lb<f> for all <f> G H. Then G may be regarded as a finite group 
of transformations from Y onto Y defined by ~sy = sy for all s G S, 
where 5 is the homomorphic image of s in G. Let F = {sx^ s E S } . 
Then sF = F for all 5 G S, and | F | divides |G|. Consequently, if we 
can show that 

( * ) \G\ divides n 

then F is the required invariant subset of X. 
To prove ( * ), we let S1? • • -, Sm be the distinct cosets of S by (E). 

Then, as easily seen, each S{ is an open and closed subset of S and 
0 ( l s j = {hpj = 1, ' • - ,m}. Hence lS|. G AP(S) for each i = 1, • • -,m. 
For ' each fGC(G), define 7rf(s) = f(s) for all 5 G S. Then 
ijji = 7T*<£>j, i = 1, • • -, m, are multiplicative means on C(G) and 
\\f = (1/n) ^ £ \fji is even a LIM. Hence, there exists g{ G G, such 

that*(/)= (Ì/n)2"=i/(&) for a11 f^c(G)- ° n the o t h e r h a n d > 
we have, by the uniqueness of LIM on C(G), that */>(/) = 

(1/|G|) 2] {/(g); g É G } for all / G C(G). Consequently, \G\ divides n. 
To prove the converse, we consider the equicontinuous action of 

S on (X, weak*) the set of multiplicative means of AP(S) defined by 
(5, m) -» ls*(m) (see the proof of Theorem 3.2). Let F be a nonempty 
finite subset of X such that / S *(F)= F for all s G S and | F | 
divides n. Then (kin) ^ {</>; 0 G F }, where fc • | F | = n, is a LIM on 
AP(S). 

For n = 1, we have 

THEOREM 3.6. AP(S) has multiplicative LIM if and only if whenever 
S is a separately continuous and equicontinuous action on a compact 
Hausdorff space, X has a common fixed point for S. 

EXAMPLE. Let T be a regular Hausdorff topological space such that 
C(T) consists of only constant functions (see [9] ). Define on T the 
multiplication a • b = a for any a, b G T. If G is a finite group of n 
elements and S is the product topological semigroup T X G, with 
product topology, then it is easy to see that AP(S) = C(S) has a LIM 
of the form (Un) ^^ fa, where {fri, fa, ' ' ',fa} are distinct multi­
plicative means on AP(S) (see [18, Proposition 6.4] ). 
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4. Nonexpansive actions. In this section we shall be concerned with 
a special kind of equicontinuous (but not necessarily affine) action on 
a compact convex subset of a locally convex space E, namely, the 
nonexpansive actions. 

Let Q denote a (fixed) family of continuous seminorms on E which 
determine the topology of E. Then an action of S on X is Q-non-
expansive if p(s • x — s • y) ^ p(x — y) for all s G S, x, y G X and 
pGÇ. 

THEOREM 4.1. AF(S) has LIM if and only if 
(G) whenever S is a separately continuous and Q-nonexpansiv e 

action on a compact convex subset K of a separated locally convex 
space E, K has a common fixed point for S. 

PROOF. Assume that AP(S) has a LIM i/i. By Zorn's lemma, there 
exists a nonempty compact convex subset X of K which is minimal 
with respect to being closed, convex and invariant under each element 
of S. A second application of Zorn's lemma shows that there exists a 
nonempty subset F of X which is minimal with respect to being closed 
and invariant under each element of S. Let y G F. Using Lemma 
3.1, we may define a mean </> on C(F) by <f>(f) = $(Tyf) for 
all / G C(F). Then, as readily checked, <f>(sf) = <f>(f) for 
all s G S and f EL C(F), where sf(x) = f(s • x) for all x G F. 
Furthermore, using Riesz Representation Theorem, the functional <j> 
defines a (regular) probability measure fi on F such that fx(A) = 
fjL(a~lA) for all a G S, and for each Borei subset A of F. Let ^ be the 
family of all closed subsets A of F such that joi(A) = 1, and let 
F0 = Pi ^ which is nonempty. If A G 9 and s G S, then s~]A G ^ . 
Hence s~lF0D F0 or F0 D sF0. By minimality of F, F = F0. Since 
/Lt(aF) = n(a~[(aF)) = fx(F) = 1, aF G D for each a G S. Therefore 
F D aF D F0 = F; hence aF = F. 

We now follow an idea similar to that in [6, Lemma 2]. If F con­
sists of only one point, we are done. Otherwise, there exists a con­
tinuous seminorm p in Q such that r = sup{p(x — y); x, y G F} > 0. 
Then, as known (see De Marr [6, Lemma 1] replacing the norm by 
p), there exists / x E c o F such that 

r0 = {sup p(/x — x); x G F} < r. 

Let Xo = X PI ( f i {Bp [x, r0];xG F}), where 

Bp[*> ro] = ( ! / Ë f ; p(y - x) = M-

Then /u, G X0 and X0 is a nonempty closed convex proper subset of 
X. Furthermore, if x G X0, then x G X and F Ç Bp[x, r0]. Hence, 
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for any a G S, F = aFÇ. Bp[s • x, r0] by nonexpansiveness of S on X. 
It follows that sX0 Q X0 for ail s G S, contradicting the minimality of 
X. Consequently, F must consist of a single point. 

The proof of the converse is identical to that of Theorem 3.2 noting 
that the linear action of S on (K, weak*) the set of means on AP(S) 
is even Ç-nonexpansive. 

The author is much indebted to the referee for his many stimulating 
suggestions leading to simpler proofs of the main results. 
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