INVARIANT MEANS ON ALMOST PERIODIC FUNCTIONS AND FIXED POINT PROPERTIES

ANTHONY TO-MING LAU

1. Introduction. Consider on a topological semigroup S the following fixed point properties:

(F) For any separately continuous, equicontinuous and affine action of S on a compact convex subset K of a separated locally convex space, K has a common fixed point for S.

(G) For any separately continuous and nonexpansive action of S on a compact subset K of a separated locally convex space, K has a common fixed point for S.

Recently, Holmes and the author have proved in [10, Corollary 1] that if S is *left reversible* (i.e., any two nonempty closed right ideals of S have nonvoid intersection; see [1, p. 34]), then S has property (G). For discrete left reversible semigroups, this latter result is due to T. Mitchell [14]; the implication was first proved by De Marr in [6, p. 1139] for commuting semigroups and then by W. Takahashi [16, p. 384] for discrete left amenable semigroups (i.e., the space of bounded real valued functions on the semigroup has a left invariant mean; see Day [2]).

A well-known theorem of Kakutani [7, p. 457] shows that if S is a group, then S has property (F). This result has also been generalised recently by Sneperman [19] and [20] to the class of left reversible discrete semigroups.

Note that, as known, any commuting semigroup is left amenable (see Day [2, p. 516]) and any left amenable discrete semigroup is left reversible (see Granirer [8, p. 371]).

The main purpose of this paper is to show that, for any topological semigroup S, the existence of a left invariant mean on AP(S), the space of strongly almost periodic functions on S, is equivalent to *each* of the two fixed point properties (F) and (G).

Since if S is left reversible then AP(S) has a left invariant mean (note that the converse is false; see [10, §4]), it follows that our result generalises Šneperman's fixed point theorem in [7, p. 457] and a fixed

Received by the editors January 14, 1971 and, in revised form, November 29, 1971.

AMS (MOS) subject classifications (1970). Primary 43A60, 43A07, 47H10; Secondary 20M20, 28A70.

¹This work is supported by NRC Grant No. A7679.

Copyright © 1973 Rocky Mountain Mathematics Consortium

point theorem of Holmes and the author in [10, Corollary 1].

We also show that AP(S) has a *multiplicative* left invariant mean if and only if whenever S is a separately continuous and equicontinuous action on a compact Hausdorff space X, X has a common fixed point for S.

2. Preliminaries and notations. For any set A, 1_A will denote the characteristic function on A and |A| will denote the cardinality of A.

If A is a subset of a topological space E, then \overline{A} will denote the closure of A in E. If in addition E is a linear topological space, then $[\overline{\text{co}A}]$ coA will denote the [closed] convex hull of A in E.

Throughout this paper, S will denote a *topological semigroup*; that is, S is a semigroup with a Hausdorff topology such that, for each $a \in S$, the two mappings from S into S defined by $s \rightarrow as$ and $s \rightarrow sa$ for all $s \in S$ are continuous.

An action of S on a topological space X is a mapping ψ from $S \times X$ into X, denoted by $\psi(s, x) = s \cdot x$, $s \in S$ and $x \in X$, such that $(s_1s_2) \cdot x = s_1 \cdot (s_2 \cdot x)$ for all $s_1, s_2 \in S$ and $x \in X$. The action is separately continuous if the mapping ψ is continuous in each of the variables when the other is kept fixed.

When X is a convex subset of a linear topological space, then an action of S on X is *affine* if for each $s \in S$, the mapping from X into X, defined by $x \rightarrow s \cdot x$ for all $x \in X$, is affine.

For any topological space X, let C(X) be the space of bounded continuous real valued functions on X. Let A be a sup norm closed subspace of C(X) containing constants, then an element $\phi \in A^*$, the conjugate space of A, is a mean if $\|\phi\| = \phi(1_X) = 1$. If in addition A is an algebra, then $\phi \in A^*$ is multiplicative if $\phi(fg) = \phi(f)\phi(g)$ for all $f, g \in A$.

For each $a \in S$, define the two mappings r_a , l_a from C(S) into C(S) by $r_a f(s) = f(sa)$ and $l_a f(s) = f(as)$ for all $s \in S$ and $f \in C(S)$. Let A be a translation invariant (i.e., $r_a(A) \subseteq A$ and $l_a(A) \subseteq A$ for all $a \in S$) sup norm closed subspace of C(S) containing constants. Then a mean ϕ on A is a *left invariant mean* (denoted by LIM) if $\phi(l_a f) = \phi(f)$ for all $f \in A$ and $a \in S$.

A function $f \in C(S)$ is strongly almost periodic if $\mathcal{LO}(f) = \{l_a f; a \in S\}$ is relatively compact in the sup norm topology of C(S). Then, as known [5, p. 80], AP(S), the space of strongly almost periodic functions on S, is a sup norm closed translation invariant subalgebra of C(S) containing constants. Furthermore, $f \in AP(S)$ if and only if $\mathcal{RO}(f) = \{r_a f; a \in S\}$ is relatively compact in the sup norm topology of C(S).

3. Equicontinuous actions. An action of S on a compact Hausdorff space X is *equicontinuous* if, for each $y \in X$ and $U \in \mathcal{U}$, where \mathcal{U} is the *unique* uniformity which determines the topology of X (see [11, p. 197]), there is a V in \mathcal{U} such that $(sx, sy) \in U$ for all $s \in S$ whenever $(x, y) \in V$.

The following lemma is crucial to the rest of our work:

LEMMA 3.1. If the action of S on a compact Hausdorff space Y is separately continuous and equicontinuous and $y \in Y$, then $T_y(C(Y)) \subseteq$ AP(S), where $T_yf(s) = f(s \cdot y)$ for all $s \in S$ and $f \in C(Y)$.

PROOF. Let $f \in C(Y)$ be fixed. We first show that the mapping T from Y into C(S) defined by $z \to T_z f$ for all $z \in Y$ is continuous when C(S) has the sup norm topology. Let $z \in Y$ and $\epsilon > 0$. By compactness of Y, we may choose $U \in \mathcal{U}$, where \mathcal{U} is the unique uniformity which determines the topology on Y, such that if $(x, y) \in U$ then $|f(x) - f(y)| < \epsilon/2$ (see [11, p. 198]). By equicontinuity of S on Y, there exists $V \in \mathcal{U}$ such that whenever $(x, z) \in V$, then $(sx, sz) \in U$ for all $s \in S$. Consequently if $y \in \{y \in Y; (y, z) \in V\}$, which is a neighbourhood of z, then

$$\sup\{|T_yf(s) - T_zf(s)|; s \in S\} < \epsilon.$$

To complete the proof, we let $y \in Y$ be fixed and $O(y) = \{sy; s \in S\}$. Then, for each $f \in C(Y)$, $\overline{O(T_yf)} = \{T_zf; z \in \overline{O(y)}\}$ is compact since $\overline{O(y)}$ is compact and T is continuous.

THEOREM 3.2. AP(S) has a LIM if and only if

(F) for any separately continuous, equicontinuous and affine action of S on a compact convex subset K of a separated locally convex space, K has a common fixed point for S.

PROOF. Let ψ be a LIM on AP(S) and let A(K) be the closed subspace of C(K) consisting of all real valued continuous affine functions on K. As known [2, p. 513], there is a net of finite means $\psi_{\alpha} = \sum_{i=1}^{n_{\alpha}} \lambda_i^{\alpha} p_{s_i^{\alpha}}, \ \lambda_i^{\alpha} > 0$, and $\sum_{i=1}^{n_{\alpha}} \lambda_i^{\alpha} = 1$, such that $\lim_{\alpha} \psi_{\alpha}(f) = \psi(f)$ for all $f \in AP(S)$, where $p_s(f) = f(s)$ for all $s \in S$. Let $y \in K$ be fixed and z be a cluster point of the net $\{\sum_{i=1}^{n_{\alpha}} \lambda_i^{\alpha} s_i^{\alpha} y\}$ in K. Then, for each $h \in A(K)$, we have $T_{y}h \in AP(S)$ (Lemma 3.1) and hence

$$h(s \cdot z) = \psi(l_s(T_u h)) = \psi(T_u(h)) = h(z)$$

for all $s \in S$, where the first equality follows by virtue of the affineness of S and h. Since A(K) separates points (see [15, p. 31]), it follows that z is a fixed point for S.

Conversely, observe that the semigroup S acts linearly on $AP(S)^*$,

by $s \rightarrow l_s^*$, and it leaves the set (K, weak*) of the means on AP(S) invariant. To see that the action of S on K is separately continuous, it prove that $a \rightarrow l_a^*(m)(\bar{f}) = m(l_a f)$ is sufficient to is continuous for each $m \in K$ and $f \in AP(S)$. Since $\mathcal{LO}(f)$ is norm relatively compact, the norm topology in $\mathcal{LO}(f)$ is the same as the topology of pointwise convergence. Since $a \rightarrow (l_a f)(t) = f(at)$ is continuous for each $t \in S$, the map $a \to l_a f$ is a continuous map $S \rightarrow (\mathcal{LO}(f), \text{ norm})$. Hence $a \rightarrow l_a^{\hat{*}}(m)$ is continuous on S into $(K, weak^*)$. For each $f \in AP(S)$, let p_f be a pseudonorm on $AP(S)^*$ by $p_f(\phi) = \sup \{ |\phi(l_a f)|, |\phi(f)|; a \in S \}$ for each ϕ defined $\in AP(S)^*$, and let $Q = \{p_f, f \in AP(S)\}$. Then clearly the action of S on $AP(S)^*$ (and therefore on K) is equicontinuous with respect to the topology determined by Q. Since, on K, weak* topology agrees with the topology of uniform convergence on totally bounded subsets of AP(S), O determines the weak^{*} topology on K. Hence the action of S on (K, weak*) is both affine and equicontinuous. Consequently any fixed point in K under this action is a left invariant mean on AP(S).

Theorem 3.2 yields the following generalisation of Sneperman's fixed point theorem [19] and [20]:

COROLLARY 3.3. If S is left reversible, then S has property (F).

PROOF. Let \overline{S}^a denote the strongly almost periodic compactification of S (see [5, p. 90]). Then S is left reversible implies that \overline{S}^a is also left reversible. Consequently it follows from [5, Lemma 2.8] that AP(S) has a LIM.

REMARK 3.4. The converse of Corollary 3.3 is certainly false, since there exist topological semigroups S such that AP(S) (or even C(S)) has a LIM and yet S is not left reversible (see [10, §4]).

Our next result shows that when AP(S) has a multiplicative LIM, then S has fixed property much stronger than (F) (compare with Mitchell [13, Theorems 1 and 3] and the author [12, Theorem 2.2]).

THEOREM 3.5. Let n be a positive integer. Then AP(S) has a LIM of the form $(1/n) \sum_{i=1}^{n} \phi_i$, where each ϕ_i is a multiplicative mean on AP(S), if and only if

Q(n) whenever S is a separately continuous and equicontinuous action on a compact Hausdorff space X, there exists a nonempty finite subset $F \subseteq X$, $|F| \leq n$, |F| divides n, such that $s \cdot F = F$ for all $s \in S$.

PROOF. Let $y \in X$. By Lemma 3.1, we may define, for each $i = 1, \dots, n$, a multiplicative mean on C(X) by $\psi_i(f) = \phi_i(T_y f)$ for all $f \in C(X)$. By compactness of X, there exists $x_i \in X$ such that

 $\psi_i(f) = f(x_i)$ for all $f \in C(X)$, $i = 1, \dots, n$ (see [7, p. 278]). Let Y be the set of distinct elements in $\{x_1, \dots, x_n\}$; it follows easily from the invariance of $(1/n) \sum_{i=1}^n \phi_i$ that $s \cdot Y = Y$ for all $s \in S$.

Let *H* be the set of distinct elements in $\{\phi_1, \dots, \phi_n\}$. Since finite subsets in the set of multiplicative means of AP(S) are linearly independent, it follows that $L_sH = H$ for all $s \in S$, where $L_s\phi(f) = \phi(l_sf)$ for all $\phi \in H$, $f \in AP(S)$. Let *G* be the factor semigroup of *S* defined by the equivalence relation (E): *a* (E) *b* if and only if $L_a\phi = L_b\phi$ for all $\phi \in H$. Then *G* may be regarded as a finite group of transformations from *Y* onto *Y* defined by $\overline{s}y = sy$ for all $s \in S$, where \overline{s} is the homomorphic image of *s* in *G*. Let $F = \{sx_1; s \in S\}$. Then sF = F for all $s \in S$, and |F| divides |G|. Consequently, if we can show that

$$(*)$$
 $|G|$ divides n

then F is the required invariant subset of X.

To prove (*), we let S_1, \dots, S_m be the distinct cosets of S by (E). Then, as easily seen, each S_i is an open and closed subset of S and $O(1_{S_i}) = \{1_{S_j}; j = 1, \dots, m\}$. Hence $1_{S_i} \in AP(S)$ for each $i = 1, \dots, m$. For each $f \in C(G)$, define $\pi f(s) = f(\bar{s})$ for all $s \in S$. Then $\psi_i = \pi^* \phi_i$, $i = 1, \dots, m$, are multiplicative means on C(G) and $\psi = (1/n) \sum_{E_i}^n \psi_i$ is even a LIM. Hence, there exists $g_i \in G$, such that $\psi(f) = (1/n) \sum_{i=1}^n f(g_i)$ for all $f \in C(G)$. On the other hand, we have, by the uniqueness of LIM on C(G), that $\psi(f) = (1/|G|) \sum \{f(g); g \in G\}$ for all $f \in C(G)$. Consequently, |G| divides n.

To prove the converse, we consider the equicontinuous action of S on $(X, \text{ weak}^*)$ the set of multiplicative means of AP(S) defined by $(s, m) \rightarrow l_s^*(m)$ (see the proof of Theorem 3.2). Let F be a nonempty finite subset of X such that $l_s^*(F) = F$ for all $s \in S$ and |F| divides n. Then $(k/n) \sum \{\phi; \phi \in F\}$, where $k \cdot |F| = n$, is a LIM on AP(S).

For n = 1, we have

THEOREM 3.6. AP(S) has multiplicative LIM if and only if whenever S is a separately continuous and equicontinuous action on a compact Hausdorff space, X has a common fixed point for S.

EXAMPLE. Let T be a regular Hausdorff topological space such that C(T) consists of only constant functions (see [9]). Define on T the multiplication $a \cdot b = a$ for any $a, b \in T$. If G is a finite group of n elements and S is the product topological semigroup $T \times G$, with product topology, then it is easy to see that AP(S) = C(S) has a LIM of the form $(1/n) \sum_{i=1}^{n} \phi_{i}$, where $\{\phi_{1}, \phi_{2}, \dots, \phi_{n}\}$ are distinct multiplicative means on AP(S) (see [18, Proposition 6.4]).

4. Nonexpansive actions. In this section we shall be concerned with a special kind of equicontinuous (but *not* necessarily affine) action on a compact convex subset of a locally convex space E, namely, the nonexpansive actions.

Let Q denote a (fixed) family of continuous seminorms on E which determine the topology of E. Then an action of S on X is Q-non-expansive if $p(s \cdot x - s \cdot y) \leq p(x - y)$ for all $s \in S$, $x, y \in X$ and $p \in Q$.

THEOREM 4.1. AP(S) has LIM if and only if

(G) whenever S is a separately continuous and Q-nonexpansive action on a compact convex subset K of a separated locally convex space E, K has a common fixed point for S.

PROOF. Assume that AP(S) has a LIM ψ . By Zorn's lemma, there exists a nonempty compact convex subset X of K which is minimal with respect to being closed, convex and invariant under each element of S. A second application of Zorn's lemma shows that there exists a nonempty subset F of X which is minimal with respect to being closed and invariant under each element of S. Let $y \in F$. Using Lemma 3.1, we may define a mean ϕ on C(F) by $\phi(f) = \psi(T_n f)$ for as readily checked, $\phi(sf) = \phi(f)$ $f \in C(F)$. Then, all for all $s \in S$ and $f \in C(F)$, where ${}_{s}f(x) = f(s \cdot x)$ for all $x \in F$. Furthermore, using Riesz Representation Theorem, the functional ϕ defines a (regular) probability measure μ on F such that $\mu(A) =$ $\mu(a^{-1}A)$ for all $a \in S$, and for each Borel subset A of F. Let \mathfrak{S} be the family of all closed subsets A of F such that $\mu(A) = 1$, and let $F_0 = \bigcap \mathfrak{S}$ which is nonempty. If $A \in \mathfrak{S}$ and $s \in S$, then $s^{-1}A \in \mathfrak{S}$. Hence $s^{-1}F_0 \supset F_0$ or $F_0 \supset sF_0$. By minimality of $F, F = F_0$. Since $\mu(aF) = \mu(a^{-1}(aF)) = \mu(F) = 1, aF \in \mathfrak{I}$ for each $a \in S$. Therefore $F \supset aF \supset F_0 = F$; hence aF = F.

We now follow an idea similar to that in [6, Lemma 2]. If F consists of only one point, we are done. Otherwise, there exists a continuous seminorm p in Q such that $r = \sup \{p(x - y); x, y \in F\} > 0$. Then, as known (see De Marr [6, Lemma 1] replacing the norm by p), there exists $\mu \in \overline{\text{co}} F$ such that

$$r_0 = \{ \sup p(\mu - x); x \in F \} < r.$$

Let $X_0 = X \cap (\bigcap \{B_p[x, r_0]; x \in F\})$, where

$$B_p[x, r_0] = \{y \in F; p(y - x) \leq r_0\}.$$

Then $\mu \in X_0$ and X_0 is a nonempty closed convex *proper* subset of X. Furthermore, if $x \in X_0$, then $x \in X$ and $F \subseteq B_p[x, r_0]$. Hence,

for any $a \in S$, $F = aF \subseteq B_p[s \cdot x, r_0]$ by nonexpansiveness of S on X. It follows that $sX_0 \subseteq X_0$ for all $s \in S$, contradicting the minimality of X. Consequently, F must consist of a single point.

The proof of the converse is identical to that of Theorem 3.2 noting that the linear action of S on (K, weak^*) the set of means on AP(S) is even Q-nonexpansive.

The author is much indebted to the referee for his many stimulating suggestions leading to simpler proofs of the main results.

References

1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*. Vol. 1, Math. Surveys, no. 7, Amer. Math. Soc., Providence, R. I., 1961. MR 24 #A2627.

2. M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544. MR 19, 1067.

3. —, Fixed-point theorems for compact convex sets, Illinois J. Math. 5 (1961), 585-590. MR 25 #1547.

4. ——, Correction to my paper "Fixed point theorems for compact convex sets", Illinois J. Math. 8 (1964), 713. MR 29 #6463.

5. K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63-67. MR 24 #A1632.

6. R. E. De Marr, Common fixed points for commuting contraction mappings, Pacific J. Math. 13 (1963), 1139–1141. MR 28 #2446.

7. N. Dunford and J. T. Schwartz, *Linear operators*. I. *General theory*, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.

8. E. E. Granirer, A theorem on amenable semigroups, Trans. Amer. Math. Soc. 111 (1964), 367-379. MR 29 #3870.

9. E. Hewitt, On two problems of Urysohn, Ann. of Math. (2) 47 (1946), 503-509. MR 8, 165.

10. R. D. Holmes and A. Lau, Nonexpansive actions of topological semigroups and fixed points, J. London Math. Soc. (to appear).

11. J. L. Kelley, *General topology*, Van Nostrand, Princeton, N. J., 1955. MR 16, 1136.

12. A. Lau, Functional analytic properties of topological semigroups and *n*-extreme amenability, Trans. Amer. Math. Soc. 152 (1970), 431-439. MR 42 #4667.

13. T. Mitchell, Topological semigroups and fixed points, Illinois J. Math. 14 (1970), 630-641. MR 42 #5245.

14. ——, Fixed points of reversible semigroups of nonexpansive mappings, Kōdai Math. Sem. Rep. 22 (1970), 322–323. MR 42 #2316.

15. R. R. Phelps, *Lectures on Choquet's theorem*, Van Nostrand Math. Studies, no. 7, Van Nostrand, Princeton, N. J., 1966. MR 33 #1690.

16. W. Takahashi, Fixed point theorem for amenable semigroups of nonexpansive mappings, Kodai Math. Sem. Rep. 21 (1969), 383-386. MR 41 #7501.

17. A. Lau, Topological semigroups with invariant means in the convex hull of multiplicative means, Trans. Amer. Math. Soc. 148 (1970), 69-84. MR 41 #1911.

18. L. B. Sneperman, A fixed point of a semigroup of transformations and invariant integration on a bicompact semigroup, Vesci Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 1966, no. 4, 30-36. (Russian) MR 34 #8203.

19. ——, The fixed point of a semigroup of transformations and invariant integration, Interuniv. Sci. Sympos. General Algebra, Tartu Gos. Univ., Tartu, 1966, pp. 215–216. (Russian) MR 34 #624.

UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA, CANADA