OBSTRUCTIONS TO EMBEDDING AND ISOTOPY IN THE METASTABLE RANGE

LAWRENCE L. LARMORE

1. Introduction.

1.1. Preliminary definitions and summary. Throughout this paper, "manifold" means differentiable manifold (closed or open) without boundary, with a countable base. "Differentiable" means infinitely differentiable, and "embedding" means differentiable embedding.

Suppose V and M are manifolds of dimension k and n, respectively, V compact, and $f: V \rightarrow M$ is a differentiable map. An embedding homotopy of f (abbreviated e-homotopy) shall be defined to be a homotopy of differentiable maps, $f_{t}: V \rightarrow M$, for $0 \leqq t \leqq 1$, such that $f_{0}=f$ and f_{1} is an embedding. We say that e-homotopies $\left\{f_{0, t}\right\}$ and $\left\{f_{1, t}\right\}$ are isotopic if there exists a 2-parameter homotopy of differentiable maps $f_{\tau, t}: V \rightarrow M$, for $0 \leqq \tau, t \leqq 1$, such that $f_{\tau, 0}=f$ and $f_{\tau, 1}$ is an embedding for all $\boldsymbol{\tau}$. Let $\left[f_{t}\right]$ denote the isotopy class of $\left\{f_{t}\right\}$, and let $[V \subset M]_{f}$ denote the set of all isotopy classes of e homotopies of f.

It is not difficult to show that if f is an embedding, $[V \subset M]_{f}$ naturally has the structure of an Abelian group with identity [f] (where $\{f\}$ is the constant homotopy), provided $2 n>3(k+1)$. However, this construction is not within the scope of the present paper; we refer the reader to J. C. Becker [1] for the case when M is a Euclidean space. $\left[V \subset R^{n}\right]_{f}$ becomes $E(V, n)$, the so-called embedding group.

We consider three problems in this paper. The first is existence of an e-homotopy of f, i.e., whether $[V \subset M]_{f}$ is nonempty; the second is enumeration of $[V \subset M]_{f}$; more precisely, whether two given e homotopies are isotopic. The third question deals with the function $\Delta:[V \subset M]_{f} \rightarrow[V \subset M]$, where $[V \subset M]$ is the set of isotopy classes of embeddings of V into M, and where, for any e-homotopy $\left\{f_{t}\right\}$ of f, $\Delta\left[f_{t}\right]=\left[f_{1}\right]$, the isotopy class containing f_{1}. As we see in $\S 3.5$, there is an action of $\pi_{1}\left(M^{V}, f\right)$ on $[V \subset M]_{f}$ whose orbits correspond to the image of Δ, where M^{V} is the space of differentiable functions $V \rightarrow M$ with the compact-open topology. In $\S 3.8$, we discuss

Received by the editors December 19, 1970.
AMS (MOS) subject classifications (1970). Primary 57O40, 57G35; Secondary 57B30.
that action in the special case that $k \geqq 2, V=S^{k}$, the k-sphere, $n=$ $2 k+1$, and f is inessential.

We translate the problem of existence and isotopy of e-homotopies of f into a lifting problem, using Haefliger's results [4]. In §3.1, we define a $2 k$-manifold $\boldsymbol{R}^{*} V$ with boundary $P V$, the total space of the projective bundle associated with the tangent bundle of $V . R^{*} V$ has the homotopy type of the reduced deleted product of $V,\left(V^{2}-\Delta_{V}\right) / T$, where Δ_{V} is the diagonal and T exchanges coordinates. In $\S 3.2$ we define a pair of spaces $\left(Y^{\prime}, Z^{\prime}\right)$ and a map $\pi_{M}^{\prime}:\left(Y^{\prime}, Z^{\prime}\right) \rightarrow\left(R^{*} V, P V\right)$ such that π_{M}^{\prime} and $\pi_{M}^{\prime} \mid Z^{\prime}$ are both fibrations, and for each e-homotopy $\left\{f_{t}\right\}$ of f we define a specific section of $\pi_{M}{ }^{\prime}, \boldsymbol{\Phi}\left[f_{t}\right]$: $\left(\boldsymbol{R}^{*} V, P V\right) \rightarrow\left(Y^{\prime}, Z^{\prime}\right)$. The function $\phi:[M \subset V]_{f} \rightarrow \operatorname{Sec}\left(\pi_{M}{ }^{\prime}\right)$ which sends each $\left[f_{t}\right]$ to $\left[\Phi\left[f_{t}\right]\right]$, the class containing $\Phi\left[f_{t}\right]$ (where Sec $\left(\pi_{M}{ }^{\prime}\right)$ is the set of homotopy classes of sections of $\pi_{M}{ }^{\prime}$, two sections being homotopic if they are connected by a homotopy of sections) is onto if $2 n \geqq 3(k+1)$ and one-to-one if $2 n>3(k+1)$ (see Theorems 3.3.1 and 3.3.2). The obstruction theory for sections of fibrations of pairs, developed in $\S 2$, can then be applied.

The first obstruction to finding an e-homotopy of f lies in $H^{n}\left(\boldsymbol{R}^{*} V ; \pi_{n-1}\right)$, and higher obstructions lie in $H^{n+i}\left(R^{*} V ; \pi_{n+i-1}\right)$ for $i \geqq 1$, where π_{n+i-1} is a sheaf of Abelian groups over $\boldsymbol{R}^{*} V$ which is not generally even locally a product sheaf, for $i \geqq 0$. (When restricted to either $P V$ or $R^{*} V-P V$, however, π_{n+i-1} is locally trivial, i.e., locally a product sheaf.) The first obstruction to isotopy of two e-homotopies of f lies in $H^{n-1}\left(\boldsymbol{R}^{*} V ; \pi_{n-1}\right)$; higher obstructions lie in $H^{n+i-1}\left(\boldsymbol{R}^{*} V ; \pi_{n+i-1}\right)$ for $i \geqq 1$.

Thus (cf. Theorems 2.5.1 and 3.3.2), $[V \subset M]_{f}$ is in one-to-one correspondence with $H^{2 k}\left(\boldsymbol{R}^{*} V ; \pi_{2 k}\right)$ if $k \geqq 2$ and $n=2 k+1$. This correspondence is canonical if f is an embedding; $[f]$ then corresponds to 0 . Identifying the two sets in that case, we then say that $[V \subset M]_{f}$ is an Abelian group.
1.2. Applications. Suppose now that $V=S^{k}$, for $k \geqq 2$, and $n=$ $2 k+1$. Let $x \in M$ be a basepoint, and let $f: S^{k} \rightarrow M$ be a base-point-preserving embedding. Define $d: \pi_{1}(M, x) \rightarrow Z_{2}$ to be the orientation homomorphism, i.e., the kernel of d is the image of the fundamental group of the orientation covering space of M.

Theorem 1.2.1. $\left[S^{k} \subset M\right]_{f}$ is generated by elements $\langle g\rangle$ for all $g \in \pi_{1}(M, x)$, subject only to the following relations:
(i) $\langle 1\rangle=0$, where 1 is the identity of $\pi_{1}(M, x)$.
(ii) $\left\langle g^{-1}\right\rangle=(-1)^{k+1}(-1)^{d(g)}\langle g\rangle$ for all $g \in \pi_{1}(M, x)$.

The reader can easily verify that if $\pi_{k+1}(M, x)=0$, the evaluation on
the basepoint of $S^{k}, M^{s^{k}} \rightarrow M$, induces an isomorphism $\pi_{1}\left(M^{s^{k}}, f\right)$ $\rightarrow \pi_{1}(M, x)$, provided f is inessential; we identify these groups for convenience.

Theorem 1.2.2. Suppose f is small, i.e., $f\left(\mathrm{~S}^{k}\right)$ is contained in a single chart of M, and $\pi_{k+1}(M)=0$. The action of $\pi_{1}\langle M, x)$ on $\left[S^{k} \subset M\right]_{f}$ is given by $(\langle g\rangle, h) \vdash \rightarrow(-1)^{d(h)}\left\langle h^{-1} g h\right\rangle$ for all g, $h \in \pi_{1}(M, x)$.

In the following applications, 0 will be a small embedding, π_{1} will be the fundamental group of the space into which we are embedding S^{k}.

Theorem 1.2.3 (Hacon [3]). For $k \geqq 2,\left[S^{k} \subset S^{1} \times S^{2 k}\right]_{0}$ is isomorphic to the direct sum of countably many copies of the integers, and the action of $\pi_{1} \cong \mathrm{Z}$ is trivial.

Suppose now that $k \geqq 2$, and P_{r} is a real projective r-space, for $k+2 \leqq r \leqq 2 k+1$. Let $G=\left[S^{k} \subset P_{r} \times R^{2 k-r+1}\right]_{0}$.

Theorem 1.2.4. Case I. If k and r are even, $G \cong Z_{2}$ and the action of π_{1} is trivial. Case II. If k and r are both odd, $G \cong Z_{2}$ and the action of π_{1} is trivial. Case III. If k is even and r is odd, $G \cong Z$ and the action of π_{1} is trivial. Case IV. If k is odd and r is even, $G \cong Z$ and the action of $\pi_{1} \cong Z_{2}$ is nontrivial; the generator of π_{1} takes every element of G to its inverse.

Theorems 1.2.3 and 1.2.4 follow immediately from 1.2.1 and 1.2.2, as the reader may easily verify.
1.3. Embeddings in a Euclidean space. Let V be a compact k dimensional manifold, as before, and let $M=R^{n}$. Our obstruction theory then reduces to a simpler theory. The first obstruction to embedding V in R^{n} lies in $H^{n}\left(\boldsymbol{R}^{*} V ; \mathcal{Z}\right)$, where $\mathcal{Z}=Z$ if n is even and \mathcal{Z} is the twisted integer sheaf (sometimes called Z^{T}) if n is odd. Higher obstructions lie in $H^{n+i}\left(\boldsymbol{R}^{*} V ; \mathcal{Z} \otimes \pi_{i}\right)$ for $i \geqq 1$, where π_{i} is the stable i-stem in the homotopy of spheres. The first obstruction to isotopy of two embeddings lies in $H^{n-1}\left(\boldsymbol{R}^{*} V ; \mathcal{Z}\right)$; higher obstructions lie in $H^{n+i-1}\left(\boldsymbol{R}^{*} V ; \mathbb{Z} \otimes \pi_{i}\right)$ for $i \geqq 1 . V$ embeds in R^{n} if and only if all obstructions vanish, provided $2 n \geqq 3(k+1)$; two embeddings are isotopic if and only if all obstructions vanish, provided $2 n>3(k+1)$ [7], [8].

2. Fibrations of pairs.

2.1. Preliminary definitions. Throughout this section, we let (\dot{K}, L) be an oriented simplicial pair, (Y, Z) another pair of spaces, and $\pi:(Y, Z) \rightarrow(K, L)$ a map of pairs such that π and $\pi \mid Z$ are both fibra-
tions. We say that π is a fibration of pairs over (K, L). If $c:(K, L) \rightarrow$ (Y, Z) is a map of pairs such that $\pi{ }^{\circ} c$ is the identity on K, we say that c is a section of π. We say that two sections of π, c_{0} and c_{1}, are homotopic if there is a homotopy c_{t}, for $0 \leqq t \leqq 1$, of sections of π. For each cell $\boldsymbol{\sigma} \subset K$, let $E_{\sigma}=\pi^{-1} \boldsymbol{\sigma}$ if $\boldsymbol{\sigma} \not \subset L$, and let $E_{\sigma}=$ $\pi^{-1} \boldsymbol{\sigma} \cap \mathrm{Z}$ if $\boldsymbol{\sigma} \subset L$. Let $\pi_{\sigma}: E_{\sigma} \rightarrow \sigma$ be the restriction of π to E_{σ}.

We can immediately pose two questions. First: When does π have a section; and second: When are two sections homotopic? Suppose A is a subcomplex of K, and h is a section of π over A, i.e., a map of pairs $h:(K \cap A, L \cap A) \rightarrow(Y, Z)$ such that $\pi \circ h$ is the identity. The relative versions of our questions are: When can h be extended over K, and when are two such extensions homotopic rel A ?
2.2. The sheaf of homotopy groups. We shall define a sheaf $\pi_{n}=$ $\pi_{n}(\pi)=(\mathcal{G}, p)$ over the space K, which we call the sheaf of nth homotopy groups of π for any $n \geqq 1$, provided that E_{σ} is n-simple for all cells σ. As a set, \mathcal{G} will be defined to be the union, over all cells $\sigma \subset K$, of Int $\sigma \times \pi_{n}(E)$; and $p(x, a)=a$ for all σ, all $x \in \operatorname{Int} \sigma$, and all $a \in \pi_{n}\left(E_{\sigma}\right)$. The stalk of π_{n} over x we identify with $\pi_{n}\left(E_{\sigma}\right)$. In order to describe the topology of \mathcal{G} it is only necessary to describe continuous sections over open stars of cells, where, if $\boldsymbol{\sigma}$ is a cell of K, St σ, the open star of σ, is the union of the interiors of all cells of which σ is a face. We then say that a section $f: \operatorname{St} \sigma \rightarrow \mathcal{G}$ is continuous if for any cell $\tau \supset \sigma$ and any $x \in \operatorname{Int} \tau, f(x)=\left(x, i_{\#} a_{0}\right)$, where $i: E_{\sigma} \rightarrow E_{\sigma}$ is the inclusion, x_{0} is the barycenter of σ, and $a_{0}=f\left(x_{0}\right)$. We can thus immediately identify the group of continuous sections of \mathcal{G} over St σ with $\pi_{n}\left(E_{\sigma}\right)$, by evaluating each section at x_{0}.

For any subcomplex $A \subset K$ (not necessarily L) let $C^{*}=$ $\left(C^{*}\left(K, A ; \pi_{n}\right), \delta\right)$ be the graded differential complex of degree 1 where $C^{k}\left(K, A ; \pi_{n}\right)$ is defined to be the set of all k-cochains, i.e., functions c whose domain is the set of k-cells of K, where $c(\boldsymbol{\sigma}) \in \pi_{n}\left(E_{\sigma}\right)$ for each k-cell σ, and where $c(\sigma)=0$ if $\sigma \subset A$. If $c \in C^{k}\left(K, A ; \pi_{n}\right)$ is any k-cochain, we define $\delta c \in C^{k+1}\left(K, A ; \pi_{n}\right)$ as follows: For any $(k+1)$-cell τ, let $\delta c(\boldsymbol{\tau})=\sum[\boldsymbol{\sigma} ; \boldsymbol{\tau}] c(\boldsymbol{\sigma})$, where the sum is over all k-cells $\sigma \subset \tau$, and where $[\sigma ; \tau]= \pm 1$ is the incidence number. According to Theorem 5.1 of [6], we may identify $H^{*}\left(K, A ; \pi_{n}\right)$ with the homology of the graded complex C^{*}. If A is empty, we write $C^{k}\left(K ; \pi_{n}\right)$ for $C^{k}\left(K, \varnothing ; \pi_{n}\right)$, etc.
2.3. The obstruction cochain. Let $f:\left(\bar{K}^{n}, \bar{L}^{n}\right) \rightarrow(Y, Z)$ be a section of π over $\bar{K}^{n}=K^{n} \cup A$, where K^{n} is the n-skeleton of K. We consider the question of extension of f to the $(n+1)$-skeleton. Let $c^{n+1}=c^{n+1}(f)$, an element of $C^{n+1}\left(K, A ; \pi_{n}\right)$, be defined as fol-
lows: If $\sigma \subset K$ is an $(n+1)$-cell and if $\phi: S^{n} \rightarrow \partial \sigma$ is the standard homeomorphism (whose degree is determined by the orientation of $\boldsymbol{\sigma})$, we let $c^{n+1}(\sigma) \in \pi_{n}\left(E_{\sigma}\right)$ be the homotopy class represented by the composition $f \circ \phi: S^{n} \rightarrow E_{\sigma}$. As in the usual obstruction setting, we have some theorems, which we state without proof (see Hu [5, Chapter 6]).

Theorem 2.3.1. The obstruction cochain $c^{n+1}(f)$ is an invariant of the homotopy class of f rel A, i.e., if $f_{t}:\left(\bar{K}^{n}, \bar{L}^{n}\right) \rightarrow(Y, Z)$, for $0 \leqq t \leqq 1$, is a homotopy of extensions of h, then $c^{n+1}\left(f_{0}\right)=$ $c^{n+1}\left(f_{1}\right)$.

Theorem 2.3.2. An extension of f over \bar{K}^{n+1} exists if and only if $c^{n+1}(f)=0$.

Theorem 2.3.3. $c^{n+1}(f)$ is a cocycle.
We may thus define $\gamma^{n+1}(f) \in H^{n+1}\left(K, A ; \pi_{n}\right)$ to be the cohomology class of $c^{n+1}(f)$.

Theorem 2.3.4. $\gamma^{n+1}(f)=0$ if and only if $f \mid \bar{K}^{n-1}$ can be extended to \bar{K}^{n+1}.
2.4. The difference cochain. Suppose f_{0} and f_{1} are sections of π over \bar{K}^{n} which are extensions of h, and that g_{t}, for $0 \leqq t \leqq 1$, is a homotopy of extensions of h over $\bar{K}^{n-1}, g_{i}=f_{i} \mid \bar{K}^{n-1}$ for $i=0,1$. Let $d^{n}=d^{n}\left(f_{0}, f_{1} ; g_{t}\right) \in C^{n}\left(K, A ; \pi_{n}\right)$ be defined as follows.

Let $\pi \times 1:(Y \times I, Z \times I) \rightarrow(K \times I, L \times I)$ be the obvious fibration pair. We define a section F of $\pi \times 1$ over $\bar{K}^{n} \times \partial I \cup \bar{K}^{n-1} \times I$ as follows:

$$
F(x, t)= \begin{cases}\left(f_{t}(x), t\right) & \text { if } t=0 \text { or } 1, \text { for all } x \in \bar{K}^{n} \\ \left(g_{t}(x), t\right) & \text { if } x \in \bar{K}^{n-1}, \text { for all } t \in I\end{cases}
$$

Now $c^{n+1}(F) \in C^{n+1}\left(K \times I, A \times I \cup K \times \partial I ; \pi_{n}(\pi \times 1)\right)$. But that group is isomorphic in an obvious way to $C^{n}\left(K, A ; \pi_{n}\right)$, since $\pi_{n}(\pi \times 1)$ $=p^{-1} \pi_{n}$, where $p: K \times I \rightarrow K$ is the projection. Let d^{n} be the image of $c^{n+1}(F)$ under that isomorphism. We state without proof analogues of the usual theorems on difference cochains.

Theorem 2.4.1. $\boldsymbol{d}^{n}\left(f_{0}, f_{1} ; g_{t}\right)$ is a homotopy invariant.
Theorem 2.4.2. $\left\{g_{t}\right\}$ can be extended to a homotopy of f_{0} with f_{1} if and only if $d^{n}\left(f_{0}, f_{1} ; g_{t}\right)=0$.

Theorem 2.4.3. $\delta d^{n}\left(f_{0}, f_{1} ; g_{t}\right)=c^{n+1}\left(f_{1}\right)-c^{n+1}\left(f_{0}\right)$.
Thus, if f_{0} and f_{1} can both be extended to $\bar{K}^{n+1}, d^{n}\left(f_{0}, f_{1} ; g_{t}\right)$
is a cocycle; let $\delta^{n}\left(f_{0}, f_{1} ; g_{t}\right) \in H^{n}\left(K, A ; \pi_{n}\right)$ be its cohomology class.

TheOrem 2.4.4. If $k_{t}, 0 \leqq t \leqq 1$, is a homotopy of $f_{1} \mid \bar{K}^{n-1}$ with $f_{2} \mid \bar{K}^{n-1}$, where f_{2} is another extension of h over \bar{K}^{n}, then $d^{n}\left(f_{0}, f_{2} ; r_{t}\right)=d^{n}\left(f_{0}, f_{1} ; g_{t}\right)+d^{n}\left(f_{1}, f_{2} ; k_{t}\right)$, where $r_{t}=g_{2 t}$ if $0 \leqq t \leqq \frac{1}{2}$, $r_{t}=k_{2 t-1}$ if $\frac{1}{2} \leqq t \leqq 1$.

Theorem 2.4.5. If f_{0} and f_{1} can both be extended to \bar{K}^{n+1}, then $g_{t} \mid \bar{K}^{n-2}$ can be extended to a homotopy of f_{0} with f_{1} if and only if $\boldsymbol{\delta}^{n}\left(f_{0}, f_{1} ; g_{t}\right)=0$.

Theorem 2.4.6. For any f_{0} and any homotopy g_{t}, as before, and, for any $d \in C^{n}\left(K, A ; \pi_{n}\right)$, there exists an extension $f_{1}{ }^{\prime}$ of g_{1} such that $d^{n}\left(f_{0}, f_{1}{ }^{\prime} ; g_{t}\right)=d$.
2.5. A classification theorem. Suppose that π is $(n-1)$-connected, i.e., each E_{σ} is connected, and $\pi_{k}=0$ for all $k<n$, for some integer $n \geqq 1$. Suppose also that $\operatorname{dim} K \leqq n$. Let [$K, h ; \pi$] be the set of rel A homotopy classes of extensions of h over K. (If A is empty, write [$K ; \pi$].)

Theorem 2.5.1. [$K, h ; \pi]$ can be put into one-to-one correspondence with $H^{n}\left(K, A ; \pi_{n}\right)$.

Proof. By successive application of Theorem 2.3.2 on the skeleta of K, we can choose a section f_{0} of π such that $f_{0} \mid A=h$. Now let f be any other extension of h over K. By Theorem 2.4.2, $f_{0} \mid \bar{K}^{n-1}$ and $f \mid \bar{K}^{n-1}$ arehomotopic rel A. Pick a homotopy $\left\{g_{t}\right\}$. Let $[f] \in[K, h ; \pi]$, the homotopy class of f, correspond to the difference cohomology class $\delta^{n}\left(f_{0}, f ; g_{t}\right)$. By Theorems 2.4.1, 2.4.2, and 2.4.3, this correspondence is well defined; by Theorem 2.4.5 it is one-to-one, and by 2.4.6 it is onto.

3. Existence of embeddings and isotopies.

3.1. The space $\boldsymbol{R}^{*} M$. Let M be any n-dimensional manifold, for any integer n. Let $S M$ and $P M$ be the total spaces of the sphere bundle and the projective bundle, respectively, associated to the tangent bundle of M. Let $R M=M^{2}-\Delta_{M}$, the deleted product of M, and let $R^{*} M=R M / T$, where T is the map which exchanges coordinates. We call $R^{*} M$ the reduced deleted product of M. Let $\phi: R M \cup S M \rightarrow$ $R^{N} \times R^{N} \times S^{N-1}$ be the map where

$$
\phi(x, y)=(g x, g y,(g x-g y) /\|g x-g y\|)
$$

for all $(x, y) \in R M$, and $\phi(v)=\left(g \pi v, g \pi v, g_{*} v\left\|g_{*} v\right\|^{-1}\right)$ for any unit
tangent vector $v \in S M$, where $g: M \rightarrow R^{N}$ is any distal embedding of M in any Euclidean space, and $\pi: S M \rightarrow M$ is the projection. Let $R M$ be the topological space $(R M \cup S M, \Im)$, where \square is the unique topology which makes ϕ an embedding. $R M$ also has the structure of a differentiable manifold with boundary SM; we leave verification to the reader. Let $T: S M \rightarrow S M$ also denote the antipodal map on each fiber of $\pi ; T$ then acts continuously on $R M$; we define $\boldsymbol{R}^{*} M$ to be the quotient space $R M / T$, also a $2 n$-manifold, with boundary $P M$. We remark that $\boldsymbol{R} M$ and $\boldsymbol{R}^{*} \boldsymbol{M}$ have the same homotopy types as $R M$ and $R^{*} M$, respectively, since if we remove the boundary of any manifold, it does not change the homotopy type.

If V is another manifold and if $f: V \rightarrow M$ is an embedding, maps $R f: R V \rightarrow R M, R^{*} f: R^{*} V \rightarrow R^{*} M, \boldsymbol{R} f: R V \rightarrow \boldsymbol{R} M$, and $\boldsymbol{R}^{*} f: \boldsymbol{R}^{*} V$ $\rightarrow \boldsymbol{R}^{*} M$ are naturally defined. $R f(x, y)=(f x, f y)$, etc.

Let $R^{\infty}=$ the union of R^{N}, for all $N \geqq 1$, with the weak topology. We then define $R\left(M \times R^{\infty}\right), R^{*}\left(M \times R^{\infty}\right), S\left(M \times R^{\infty}\right), P\left(M \times R^{\infty}\right)$, $\boldsymbol{R}\left(M \times R^{\infty}\right)$, and $\boldsymbol{R}^{*}\left(M \times R^{\infty}\right)$, to be the unions of the corresponding constructions on $M \times R^{N}$, over all integers $N \geqq 1$, with the weak topology.
3.2. The obstructions to embedding and isotopy. Let M be an n-dimensional manifold. We replace the inclusion of pairs $\left(\boldsymbol{R}^{*} M, P M\right)$ $\subset\left(\boldsymbol{R}^{*}\left(M \times R^{\infty}\right), P\left(M \times R^{\infty}\right)\right)$ with a fibration of pairs $\pi_{M}:(Y, Z) \rightarrow$ $\left(\boldsymbol{R}^{*}\left(M \times R^{\infty}\right), P\left(M \times R^{\infty}\right)\right)$ of the same homotopy type. Specifically, let $Y=\left\{\alpha \in R^{*}\left(M \times R^{\infty}\right)^{I} \mid \alpha(1) \in R^{*} M\right\}$, and

$$
Z=\left\{\alpha \in Y \mid \alpha(t) \in P\left(M \times R^{\alpha}\right) \text {, all } t\right\},
$$

where $R^{*}\left(M \times R^{\infty}\right)^{I}$ is the space of all paths in $R^{*}\left(M \times R^{\infty}\right)$ with the compact-open topology. We let $\pi_{M}(\alpha)=\alpha(0)$ for all $\alpha \in Y$.

Let V be a compact manifold of dimension k, and $f: V \rightarrow M$ a differentiable map. Choose, once and for all, an embedding $i: V \rightarrow R^{\infty}$. Let $\left(Y^{\prime}, Z^{\prime}\right)$ be the pullback, as in the diagram:

Specifically, we let $Y^{\prime}=\left\{(r, \alpha) \in R^{*} V \times Y \mid R^{*}(f, i)(r)=\alpha(0)\right\}$, and $Z^{\prime}=Y^{\prime} \cap P V \times Z ; \quad \pi_{M}{ }^{\prime}(r, \alpha)=r \quad$ and $\quad p_{2}(r, \alpha)=\alpha$ for all $(\boldsymbol{r}, \boldsymbol{\alpha}) \in Y^{\prime}$.
Now if f is homotopic to an embedding, $\pi_{M}{ }^{\prime}$ has a section; specifically, if $\left\{f_{t}\right\}$ is an e-homotopy of f, let $\Phi\left[f_{t}\right](r)=(r, \alpha) \in Y^{\prime}$
for all $r \in R^{*} V$, where, for any $0 \leqq t \leqq 1, \alpha(t)=\boldsymbol{R}^{*}\left(f_{2 t}, i\right)(r)$ if $0 \leqq t \leqq \frac{1}{2}$, $\boldsymbol{\alpha}(t)=\boldsymbol{R}^{*}\left(f_{1},(2-2 t)\right) \boldsymbol{i}(r)$ if $\frac{1}{2} \leqq t \leqq 1$. If $\left\{f_{t}\right\}$ and $\left\{g_{t}\right\}$ are e homotopies of f which are isotopic, $\boldsymbol{\Phi}\left[f_{t}\right]$ and $\boldsymbol{\Phi}\left[g_{t}\right]$ are homotopic as sections of $\pi_{M}{ }^{\prime}$. The converses of these two statements are true in a suitable metastable range, as we shall see in the next paragraph; the obstructions to finding a section of $\pi_{M}{ }^{\prime}$, and to finding a homotopy of two sections, as defined in $\$ 2$, we call the obstructions to embedding and isotopy, respectively. We let π_{i} denote the sheaf of homotopy groups $\pi_{i}\left(\pi_{M}{ }^{\prime}\right)$ for each integer $i \geqq 1$; the first obstruction to finding an embedding of V in M homotopic to f lies in $H^{n}\left(\boldsymbol{R}^{*} V ; \pi_{n-1}\right)$; higher obstructions lie in $H^{n+i}\left(R^{*} V ; \pi_{n+i-1}\right)$ for $i \geqq 1$. The first obstruction to finding an isotopy of $\left\{f_{t}\right\}$ and $\left\{g_{t}\right\}$ (which can also be thought of as the first obstruction to finding an isotopy of f_{1} with g_{1} which is homotopic to $\left\{r_{t}\right\}$, where $r_{t}=f_{1-2 t}$ if $0 \leqq t \leqq \frac{1}{2}, r_{t}=$ $g_{2 t-1}$ if $\left.\frac{1}{2} \leqq t \leqq 1\right)$ lies in $H^{n-1}\left(\mathrm{R}^{*} V ; \pi_{n-1}\right)$; higher obstructions lie in $H^{n+i-1}\left(\mathrm{R}^{*} \geqslant ; \pi_{n+i-1}\right)$ for $i \geqq 1$.
3.3. The restatement of Haefliger's results.

Theorem 3.3.1. Suppose $2 n \geqq 3(k+1)$. Then f is homotopic to an embedding if and only if $\pi_{M}{ }^{\prime}$ has a section. Furthermore, if Φ is a section of π_{M}, f has an e-homotopy $\left\{f_{t}\right\}$ such that $\Phi\left[f_{t}\right]$ is homotopic to $\boldsymbol{\Phi}$.

Proof. If $\left\{f_{t}\right\}$ is an e-homotopy of $f, \Phi\left[f_{t}\right]$ is the desired section. Suppose $\boldsymbol{\Phi}:\left(\mathbf{R}^{*} V, P V\right) \rightarrow\left(Y^{\prime}, Z^{\prime}\right)$ is a section of $\pi_{M}{ }^{\prime}$. Consider the diagram

where q and q^{\prime} are the quotient maps, $Q=1 \cup \pi: R V \rightarrow V^{2}$, and Q^{\prime} is the composition $\left(p_{1}\right)^{2} \circ(1 \cup \pi)$, where $p_{1}: M \times R^{\infty} \rightarrow M$ is projection to the first factor. The map ϕ^{*} is defined by $\phi^{*}(r, t)=\alpha(t)$ for all $(r, t) \in \boldsymbol{R}^{*} V \times I$, where $\Phi(r)=(r, \alpha) \in Y^{\prime} . G[\Phi]$ and ϕ are the unique maps which make the diagram commute and which satisfy the equation $\phi(r, 0)=\boldsymbol{R}(f, i)(r)$ for all $r \in R V$. Now let $g_{t}: V_{2} \rightarrow M_{2}$, for all $0 \leqq t \leqq 1$, be the homotopy where $g_{t}(x, y)=G[\Phi](x, y, t)$ for all $(x, y) \in V^{2}$. Then $\left\{g_{t}\right\}$ is an equivariant homotopy; that is, $T \circ g_{t}$ $=g_{t} \circ T$ for all t, and g_{1} is isovariant, i.e., $g_{1}{ }^{-1} \Delta_{M}=\Delta_{V}$. According
to Theorem l(a) of Haefliger [4], f is homotopic to an embedding of V into M.

Examining the details of Haefliger's proof, however, we observe that it is possible to construct an e-homotopy $\left\{f_{t}\right\}$ of f and a 2 -parameter homotopy $h_{r, t}: V^{2} \rightarrow M^{2}, 0 \leqq \tau, t \leqq 1$, such that $h_{0, t}=g_{t}$ and $h_{1, t}=f_{t}^{2}$ for all $t ; h_{\tau, 0}=g_{0}$ and $h_{\tau, 1}$ is isovariant for all τ; and $h_{\tau, t}$ is equivariant for all τ, t. Using $\left\{h_{r, t}\right\}$, we may show that Φ is homotopic to $\Phi\left[f_{t}\right]$; we leave the details to the reader.
Theorem 3.3.2. Suppose $2 n>3(k+1)$. Then two e-homotupies of $f,\left\{f_{t}\right\}$ and $\left\{g_{t}\right\}$, are isotopic if and only if $\Phi\left[f_{t}\right]$ is homotopic to $\boldsymbol{\Phi}\left[g_{t}\right]$.

Proof. If $\left\{f_{\tau, t}\right\}$ is an isotopy of $\left\{f_{t}\right\}$ with $\left\{g_{t}\right\}$, then $\left\{\Phi\left[f_{\tau, t}\right\}_{0 \leqq r \leqq 1}\right.$ is a homotopy of $\boldsymbol{\Phi}\left[f_{t}\right]$ with $\boldsymbol{\Phi}\left[g_{t}\right]$. Conversely, suppose $\boldsymbol{\Phi}_{r}$, for $0 \leqq \tau \leqq 1$, is a homotopy of sections of $\pi_{M}{ }^{\prime}$ such that $\Phi_{0}=\Phi\left[f_{t}\right]$ and $\Phi_{1}=\Phi\left[g_{t}\right]$. For each τ, let $G\left[\Phi_{\tau}\right]: V^{2} \times I \rightarrow M^{2}$ be the map as constructed in the proof of 3.3.1. Let $h_{\tau, t}: V^{2} \rightarrow M^{2}$, for $0 \leqq \tau \leqq 1$, be the 2-parameter homotopy where $h_{r, t}(x, y)=G\left[\Phi_{\tau}\right](x, y, t)$ for all (x, y) $\in V^{2}$. Note that $h_{r, 0}=f^{2}$ and $h_{\tau, 1}$ is isovariant for all $\tau ; h_{0, t}=f_{2 t}{ }^{2}$ and $h_{1, t}=g_{2 t}$ for all $0 \leqq t \leqq \frac{1}{2}$, and $h_{0, t}=f_{1}^{2}$ and $h_{1, t}=g_{1}{ }^{2}$ for all $\frac{1}{2} \leqq t \leqq 1$; and $h_{\tau, t}$ is equivariant for all τ, t. Thus $h_{r, 1}$, for $0 \leqq \tau \leqq 1$, is an isovariant homotopy of $f_{1}{ }^{2}$ with $g_{1}{ }^{2}$ which is equivariantly homotopic, rel $f_{1}{ }^{2}$ and $g_{1}{ }^{2}$, to the homotopy $r_{\tau}{ }^{2}: V^{2} \rightarrow M^{2}, 0 \leqq \tau \leqq 1$, where $r_{\tau}=f_{1-2 \tau}$ if $0 \leqq \tau \leqq \frac{1}{2}, g_{2 \tau-1}$ if $\frac{1}{2} \leqq \tau \leqq 1$. Haefliger's construction [4, Theorem 1 (b)] then gives us an isotopy of f_{1} with g_{1} which is homotopic to $\left\{r_{\tau}\right\}$. The construction of the isotopy of $\left\{f_{t}\right\}$ with $\left\{g_{t}\right\}$ is routine, and left to the reader.
3.4. The structure of the sheaf $\pi_{n-1}\left(\pi_{M}\right)$. In this paragraph, we insist that $n \geqq 2$.

Lemma 3.4.1. The inclusion $R\left(M \times R^{\omega}\right) \rightarrow\left(M \times R^{\infty}\right)^{2}$ is a homotopy equivalence.
Proof. Let $h_{t}: R^{\infty} \rightarrow R^{\infty}$, for $0 \leqq t \leqq 1$, be the isotopy where h_{0} is the identity and where, for any integer $m \geqq 1$ and any $(m+1)^{-1}$ $\leqq t \leqq m^{-1}, h_{t}\left(x_{1}, x_{2}, \cdots\right)=\left(y_{1}, y_{2}, \cdots\right)$, where $y_{i}=x_{i}$ for all $1 \leqq i<m, y_{i}=x_{i-1}$ for all $i>m+1$, and $y_{m}=x_{m} \cos \theta$ and $y_{m+1}=x_{m} \sin \theta$, where $\theta=\frac{1}{2} \pi\left(t\left(m^{2}+m\right)-m\right)$. Note that h_{1} is a homeomorphism of R^{∞} to the hyperplane H_{0} of all points in R^{∞} with first coordinate 0 . Let $g_{t}: R^{\infty} \rightarrow R^{\infty}$, for $0 \leqq t \leqq 1$, be the isotopy where $g_{t}\left(x_{1}, x_{2}, \cdots\right)=\left(x_{1}+t, x_{2}, \cdots\right)$, i.e., translation along the x_{1}-axis. We define a homotopy $r_{t}:\left(M \times R^{\infty}\right)^{2} \rightarrow\left(M \times R^{\infty}\right)^{2}$, $0 \leqq t \leqq 1$, as follows:

$$
r_{t}(x, v, y, w)= \begin{cases}\left(x, h_{2 t} v, y, h_{2 t} w\right) & \text { if } 0 \leqq t \leqq \frac{1}{2} \\ \left(x, h_{1} v, y, g_{2 t-1} w\right) & \text { if } \frac{1}{\underline{2}} \leqq t \leqq 1\end{cases}
$$

for all $x, y \in M$ and $v, w \in R^{x}$. Note that r_{0} is the identity, $r_{1}\left(M \times R^{\infty}\right)^{2} \subset R\left(M \times R^{\infty}\right)$, and $r_{t}\left(R\left(M \times R^{x}\right)\right) \subset R\left(M \times R^{x}\right)$ for all t; thus r_{1} is a homotopy inverse of the inclusion, and we are done.

Let $Q=1 \cup \pi: R M \rightarrow M^{2}$ be the quotient map, where $\pi: S M \rightarrow M$ $=\Delta_{M}$ is the projection. Let $e: R \rightarrow M^{2}$ be a fibration replacing Q, i.e., $R=\left\{(r, \alpha) \in R M \times\left(M^{2}\right)^{I} \mid Q \circ \alpha(1)=r\right\}$, and let $e(r, \alpha)=\alpha(0)$. Let $S=\left\{(r, \alpha) \in R \mid p_{1}{ }^{\circ} \alpha\right.$ is constant $\}$, where $p_{1}: M^{2} \rightarrow M$ is projection to the first factor. We pick a basepoint $x \in M$ and a local orientation of M at x, which we represent by a homeomorphism $\omega: S^{n-1} \rightarrow S M_{x}, S M_{x}$ being the set of unit tangents of M at x. For each loop σ of M, we define a map $\chi[\sigma]: S^{n-1} \rightarrow R_{x}$, where $R_{x}=e^{-1}(x, x), \quad$ as follows: $\quad \chi[\sigma](v)=(\omega(v), \alpha), \quad$ where $\quad \alpha(t)=$ $(x, \alpha(t))$, for all $v \in S^{n-1}$. The homotopy class of $\chi[\sigma]$ clearly depends only on the homotopy class of σ, hence if $[\sigma]=g \in \pi_{1}(M, x)$, we define $\chi(g)$ to be the homotopy class of $\chi[\sigma]$.

Lemma 3.4.2. As an Abelian group, $\pi_{n-1}\left(R_{x}\right)$ is freely generated by the set of all $\chi(g)$, for $g \in \pi_{1}(M, x)$.

Proof. Consider the commutative diagram

where $a y=(x, y)$ for all $y \in M, M_{x}{ }^{0}=(M-\{x\}) \cup S M_{x}$, with the topology which makes $b=a \cup \pi$ an embedding, where $U=\{(r, \alpha) \in$ $\left.M_{x}{ }^{0} \times M^{I} \mid q{ }^{\circ} \alpha(1)=r\right\}, \quad$ and $\quad p_{1}(r, \alpha)=r, \quad e(r, \alpha)=\alpha(0), \quad$ and $c(r, \alpha)=(b r, \beta)$ for all $(r, \alpha) \in U$, where $\beta(t)=(x, \alpha(t))$ for all t. Now since $p_{1}: M^{2} \rightarrow M$ and $p_{1} \circ Q$ are both fibrations with fibers M and $M_{x}{ }^{0}$, respectively, and since $p_{1}: U \rightarrow M_{x}{ }^{0}$ and $p_{1}: R \rightarrow R M$ are homotopy equivalences (as the reader can easily check), the inclusion $S \subset R$ is a homotopy equivalence. Also (where $\left.U_{x}=\left(e^{\prime}\right)^{-1} x\right)$, c maps U_{x} homeomorphically to $S_{x}=R_{x} \cap S$, which is of the homotopy type of R_{x}.

Let $\lambda: M \rightarrow M$ be a universal covering of M, and pick $x \in \lambda^{-1} x$.

Let $M_{x}{ }^{0}$ and \boldsymbol{U} be the pullbacks, as in the diagram

\boldsymbol{M} is simply connected. By a Serre spectral sequence argument, we can show that the fiber of e (hence also that of e) is of the homotopy type, through dimension $n-1$, of the loop space of the cofiber of \boldsymbol{q}, which is a wedge of n-spheres, one for each element of $\pi_{1}(M, x)$. We leave the remaining details to the reader.

Lemma 3.4.3. If $\pi_{r}(M)=0$ for all $1<r \leqq m$ for some integer $2 \leqq m \leqq n$, then $\pi_{n+m-2}\left(R_{x}\right)$ is isomorphic to $\pi_{n-1}\left(R_{x}\right) \otimes \pi_{m-1}$, where π_{m-1} is the stable $(m-1)$-stem in the homotopy of spheres.

Proof. Let $\pi_{n-1}\left(R_{x}\right) \otimes \pi_{n-1} \rightarrow \pi_{n+m-2}\left(R_{x}\right)$ be the homomorphism which sends each $g \otimes h$ to $g \circ h$. We refer the reader to the proof of Theorem 3.4.2 above. Since M is m-connected, R_{x} has the homotopy type of the loop space of a wedge of n-spheres up through dimension $n+m-2$; we omit the details.

We henceforth express elements of $\pi_{n-1}\left(R_{x}\right)$ as formal sums of the $\chi(g)$ for values of $g \in \pi_{1}(M, x)$.

Let $\mu: \pi_{n-1}\left(R_{x}\right) \times \pi_{1}\left(M^{2},(x, x)\right) \rightarrow \pi_{n-1}\left(R_{x}\right)$ be the usual (right) action of the fundamental group of a base on the homotopy of a fiber. We shall identify $\pi_{1}\left(M^{2},(x, x)\right)$ with $\pi_{1}(M, x) \oplus \pi_{1}(M, x)$ in the usual way.

Lemma 3.4.4. If $g, h \in \pi_{1}(M, x)$, then $\mu(\chi(g),(h, 1))=\chi\left(h^{-1} g\right)$, where $1 \in \pi_{1}(M, x)$ is the identity.

Proof. Let σ be a loop in M which represents g, and τ a loop which represents h. Consider a map $\nu: S^{n-1} \times I \rightarrow S$ defined as follows: $\nu(v, t)=(\omega(v), \alpha)$ for all $v \in S^{n-1}$ and all $t \in I$, where

$$
\alpha(u)= \begin{cases}(x, \tau(-(t+1) u+t)) & \text { if } 0 \leqq u \leqq t /(t+1) \\ (x, \sigma((t+1) u-t)) & \text { if } t /(t+1) \leqq u \leqq 1\end{cases}
$$

Note that $[\nu(, 0)]=\chi(g), \quad[\nu(, 1)]=\chi\left(h^{-1} g\right), \quad$ and $\quad[\nu(, t)] \in$ $\pi_{n-1}\left(e^{-1}(\tau(t), x)\right)$ for all $t \in I$, and we are done.

Lemma 3.4.5. If $g, h \in \pi_{1}(M, x), \quad \mu(X(g),(1, h))=(-1)^{d(h)} X(g h)$, where d is the orientation homomorphism (cf. 1.2) and μ is the usual action of the fundamental group of the base on the homotopy of the fiber.

Proof. Let $\boldsymbol{\sigma}$ and τ be loops in M representing g and h, respectively. Let $\omega_{t}: S^{n-1} \rightarrow S M_{\tau(t)}$, for $0 \leqq t \leqq 1$, be a homotopy such that $\omega_{0}=\omega$. Note then that $\omega_{1}=\omega^{\circ} \epsilon$, where $\epsilon: S^{n-1} \rightarrow S^{n-1}$ is a map of degree $(-1)^{d(h)}$. We define $\xi: S^{n-1} \times I \rightarrow S$ as follows: $\xi(v, t)=\left(\omega_{t}(v), \alpha\right)$ for all $v \in S^{n-1}$ and $t \in I$, where

$$
\alpha(u)= \begin{cases}(x, \sigma((1+t) u)) & \text { if } 0 \leqq u \leqq(1+t)^{-1} . \\ (x, \tau((1+t) u-1)) & \text { if }(1+t)^{-1} \leqq u \leqq 1 .\end{cases}
$$

Our proof is complete, since $[\xi(, 0)]=\chi(g)$.

$$
[\xi(, 1)]=\chi(g h)[\epsilon]=(-1)^{d(h)} \chi(g h),
$$

and

$$
[\xi(, t)] \in \pi_{n-1}\left(e^{-1}(x, \tau(t))\right) \quad \text { for all } t \in I .
$$

As before, let $T: M^{2} \rightarrow M^{2}$ and $T: \boldsymbol{R} M \rightarrow \boldsymbol{R} M$ be as defined in §3.1. Let T operate on the path space $\left(M^{2}\right)^{I}$ by composition. Now R is an invariant subspace of $R M \times\left(M^{2}\right)^{I}$ under T, but S is not.

Lemma 3.4.6. If $g \in \pi_{1}(M, x), T_{*} X(g)=(-1)^{n}(-1)^{d(g)} X\left(g^{-1}\right)$.
Proof. Let τ be a loop in M which represents g, and let $\omega_{t}: S^{n-1}$ $\rightarrow S M_{\tau(t)}$ be the homotopy as defined in the proof of Lemma 3.4.5 above. Let $\zeta: S^{n-1} \times I \rightarrow R$ be the homotopy where, for all $v \in S^{n-1}$ and $t \in I, \zeta(v, t)=\left(\omega_{t}, \alpha\right)$, where $\alpha(u)=(\tau(u t), \tau(1-u+u t))$ for all $0 \leqq u \leqq 1$. Now $\zeta(v, t) \in R_{x}$ for all (v, t); thus $[\zeta(, 1)]=$ $[\zeta(, 0)]=\chi(g)$, while

$$
\begin{aligned}
{[T \circ \zeta(, 1)] } & =\chi\left(g^{-1}\right)[\epsilon] \\
& =(-1)^{n}(-1)^{d(g)} X\left(g^{-1}\right),
\end{aligned}
$$

where $\epsilon=T \circ \omega_{1} \circ \omega_{0}-1, T$ being the antipodal map on S^{n-1}. We are done.

Let $Q^{\prime}=1 \cup \pi: \boldsymbol{R}\left(M \times R^{\infty}\right) \rightarrow\left(M \times R^{\infty}\right)^{2}$ be the quotient map. Let $W=\left\{(r, r) \in R \times R\left(M \times R^{\infty}\right) \mid e(r)=\left(p_{1}{ }^{2} \circ Q^{\prime}\right) r\right\}$. Since T acts on R, M^{2}, and $R\left(M \times R^{\infty}\right)$, and $T \circ e=e \circ T$ and $T \circ p_{1}{ }^{2} \circ \dot{Q}^{\prime}$ $=p_{1}{ }^{2} \circ Q^{\prime} \circ T, T$ also acts on W. Let $W^{*}=W / T$. Consider diagram (3.4-1) below, in which W is the pullback:

where, for any $\alpha \in Y$, i.e., $\alpha: I \rightarrow R^{*}\left(M \times R^{\infty}\right)$ and $\alpha(1) \in R^{*} M$, we let $\boldsymbol{\alpha}: I \rightarrow \boldsymbol{R}\left(M \times R^{\infty}\right)$ be one of the two paths where $\pi \circ \boldsymbol{\alpha}=\alpha$; we then define $\gamma(\alpha)$ to be the unordered pair

$$
\left(\left(\boldsymbol{\alpha}(1), p_{1}^{2} \circ Q^{\prime} \circ \boldsymbol{\alpha}\right), \boldsymbol{\alpha}(0)\right),\left(\left(T \circ \boldsymbol{\alpha}(1), T \circ p_{1}^{2} \circ Q^{\prime} \circ \boldsymbol{\alpha}\right), T \circ \boldsymbol{\alpha}(0)\right) \in W^{*} .
$$

Since by Lemma 3.4.1, $p_{1}{ }^{2} \circ Q^{\prime}$ is a homotopy equivalence, γ is a homotopy equivalence.

Pick $v \in S\left(M \times R^{\infty}\right)$ to be a unit vector at $(x, 0) \in M \times R^{\infty}$. Let $v^{*}=\{v,-v\} \in P\left(M \times R^{\infty}\right)$, and let $Y_{v}=\pi_{M}^{-1} v^{*} \subset Y$. Let $W_{v}=$ $\left(p_{2}\right)^{-1} v \subset W$ and $W_{v}{ }^{*}=\left(p_{2}\right)^{-1} v^{*} \subset W^{*}$. Now $\left(p_{1}{ }^{\circ} \pi^{-1 \circ} \gamma\right)$: $Y_{v} \rightarrow R_{x}$ is a homotopy equivalence; we define $\mathrm{Y}(\mathrm{g})=$ $\left(p_{1} \circ \pi^{-1} \circ \gamma\right)_{\#}^{-1} \mathrm{X}(g)$ for all $g \in \pi_{1}(M, x) ; \pi_{n-1}\left(Y_{v}\right)$ is freely generated by the $\mathrm{Y}(\mathrm{g})$.

Let $U_{v}=U \cap Y_{v}$. We let $\theta: S^{n-1} \times I \rightarrow S\left(M \times R^{\infty}\right)_{(x, 0)}$ be any map such that $\theta(w, 0)=v$ and $\theta(w, 1)=\omega(w)$ for all $w \in \mathrm{~S}^{n-1}$, and let $\eta: S^{n-1} \rightarrow U_{v}$ be the map where, for all $w \in S^{n-1}, \eta(w)=\alpha$ with $\alpha(t)=\pi \circ \theta(w, t)$ for all $0 \leqq t \leqq 1$, where $\pi: S\left(M \times R^{\infty}\right) \rightarrow P\left(M \times R^{\infty}\right)$ is the covering map. Since $S\left(M \times R^{\infty}\right)_{(x, 0)} \cong S^{\infty}, \theta$ exists and is unique up to homotopy rel $S^{n-1} \times \partial I$, hence η exists and is unique up to homotopy. Let $\psi \in \pi_{n-1}\left(U_{v}\right)$ be the class containing η.

Lemma 3.4.7. $\pi_{n-1}\left(U_{z}\right) \cong Z$ and is generated by ψ.
Proof. Let $U^{\prime}=\left\{\alpha \in P\left(M \times R^{\infty}\right)_{(x, 0)}^{I} \mid \alpha(1) \in P M_{x}\right\}$, and consider the commutative diagram

where each map labeled " i " is an inclusion and $b(\alpha)=\alpha(1)$ for all
$\alpha \in U$. Now b and $b \mid U^{\prime}$ are both homotopy equivalences, $P M_{x}$ and $P\left(M \times R^{\infty}\right)_{(x, 0)}$ (which are, respectively, homeomorphic to real projective spaces P_{n-1} and P_{∞}) are the fibers of π and $p_{1}{ }^{\circ} \pi$, respectively; thus the inclusion $U^{\prime} \subset U_{v}$ is a homotopy equivalence. U^{\prime} is of the homotopy type of S^{n-1}, the fiber of the inclusion $P_{n-1} \subset P_{\infty}$; and $\eta: S^{n-1} \rightarrow U^{\prime}$ is a homotopy equivalence. The result follows.

TheOrem 3.4.8. (i) $\quad\left(p_{1} \circ \pi^{-1} \circ \gamma\right)_{\#}: \pi_{n-1}\left(U_{v}\right) \rightarrow \pi_{n-1}\left(R_{x}\right)$ maps ψ to $\chi(1)$, where $1 \in \pi_{1}(M, x)$ is the identity.
(ii) $\boldsymbol{\gamma}_{\#}(\psi)=\Upsilon(1)$.

Proof. (i) We routinely verify that $p_{1} \circ \pi^{-1} \circ \gamma^{\circ} \eta=\chi[0]$, where 0 is the trivial loop at $x \in M$. Part (ii) follows immediately from (i).

Define functions $\rho: \pi_{1}\left(\boldsymbol{R}^{*}\left(M \times R^{\infty}\right), \quad v^{*}\right) \rightarrow \pi_{1}(M, x) \otimes \pi_{1}(M, x)$ and $\delta: \pi_{1}\left(\boldsymbol{R}^{*}\left(M \times R^{\infty}\right), v^{*}\right) \rightarrow Z_{2}$, as follows: If

$$
g \in \pi_{1}\left(\boldsymbol{R}^{*}\left(M \times R^{\infty}\right), v^{*}\right)
$$

pick a loop $\boldsymbol{\sigma}$ representing g and let τ be the path in $\boldsymbol{R}\left(M \times R^{\infty}\right)$ such that $\tau(0)=v$ and $\pi \circ \tau=\sigma$. Let $\delta(g)=0$ if $\tau(1)=v, 1$ if $\tau(1)=-v$. Now $Q^{\prime} v=Q^{\prime}(-v)=(x, 0)$, so $p_{1}{ }^{2} \circ Q^{\prime} \circ \tau$ is a loop in M^{2}; let $\rho(g)$ be the homotopy element represented by that loop.

We remark that δ is a homomorphism but ρ is not; in fact, if $g, h \in \pi_{1}\left(R^{*}\left(M \times R^{\infty}\right), \quad v^{*}\right), \quad \rho(g h)=\rho(g)\left(T^{\delta(g)} \rho(h)\right), \quad$ where T exchanges coordinates.

Let $G[M]$ be the local system of Abelian groups (i.e., locally trivial sheaf) over $\boldsymbol{R}^{*}\left(M \times R^{\infty}\right)$ such that for each $r \in \boldsymbol{R}^{*}\left(M \times R^{\infty}\right), G[M]_{r}=$ $\pi_{n-1}\left(\pi_{M}^{-1} r\right)$. Let $G=G[M]_{v^{*}}$, and let $\mu: G \times \pi_{1}\left(\boldsymbol{R}^{*}\left(M \times R^{\infty}\right), v^{*}\right)$ $\rightarrow G$ be the usual (right) action of the fundamental group of a space on the stalk of a local system at the basepoint. We summarize the results of §3.4 in the following theorem.

Theorem 3.4.9. (i) G is freely generated by $\left\{\Upsilon(g) \mid g \in \pi_{1}(M, x)\right\}$. (ii) If $g \in \pi_{1}(M, x)$ and $h \in \pi_{1}\left(\boldsymbol{R}^{*}\left(M \times R^{\infty}\right)\right.$, $\left.v^{*}\right)$, let $\rho(h)=\left(h_{1}, h_{2}\right)$. Then

$$
\mu(\Upsilon(g), h)= \begin{cases}(-1)^{d\left(h_{2}\right.} \Upsilon\left(h_{1}^{-1} g h_{2}\right) & \text { if } \delta(h)=0, \\ (-1)^{d\left(g h_{2}\right)}(-1)^{n} \Upsilon\left(h_{2}^{-1} g^{-1} h_{1}\right) & \text { if } \delta(h)=1 .\end{cases}
$$

(iii) $\pi_{n-1}\left(\pi_{M}\right)$ is the unique subsheaf of $G[M]$ such that $\pi_{n-1}\left(\pi_{M}\right)_{r}$ $=G[M]_{r}$ if $r \notin P\left(M \times R^{\infty}\right), \quad \pi_{n-1}\left(\pi_{M}\right)_{v^{*}}$ is the subgroup of G generated by $\Upsilon(1)$, and $\pi_{n-1}\left(\pi_{M}\right) \mid P\left(M \times R^{\infty}\right)$ is locally trivial, i.e., locally a product sheaf (isomorphic to Z), provided M is connected. (iv) If, for some integer $2 \leqq r \leqq n-2, \pi_{i}(M, x)=0$ for all $2 \leqq i \leqq r$,
$\pi_{n+r-2}\left(\pi_{M}\right) \cong \pi_{n-1}\left(\pi_{M}\right) \otimes \pi_{r-1}$, where π_{r-1} is the stable $(r-1)$-stem in the homotopy of spheres.
3.5. Action of $\pi_{1}\left(M^{V}, f\right)$. Let us reconsider diagram (3.2-1). Suppose that $\left\{f_{t}\right\}$ is a differentiable self-homotopy of f, i.e., $f_{0}=$ $f_{1}=f$, and each f_{t} is differentiable. We define a map of pairs $\Gamma\left[f_{t}\right]:\left(Y^{\prime}, Z^{\prime}\right) \rightarrow\left(Y^{\prime}, Z^{\prime}\right)$ such that $\pi_{M}{ }^{\prime} \circ \Gamma\left[f_{t}\right]=\pi_{M}^{\prime}$ as follows. If $(r, \boldsymbol{\alpha}) \in Y^{\prime}$, where $r \in \boldsymbol{R}^{*} V$ and $\boldsymbol{\alpha}: I \rightarrow \boldsymbol{R}^{*}\left(M \times \boldsymbol{R}^{\infty}\right)$ is a path such that $\boldsymbol{\alpha}(0)=\boldsymbol{R}^{*}(f, i)(r) \quad$ and $\quad \alpha(1) \in \boldsymbol{R}^{*} M \quad$ (cf. §3.2), let $\Gamma\left[f_{t}\right](r, \alpha)=$ (r, β), where $\boldsymbol{\beta}(t)=\boldsymbol{R}^{*}\left(f_{1-2 t}, i\right)(r)$ if $0 \leqq t \leqq \frac{1}{2}$ and $\beta(t)=\alpha(2 t-1)$ if $\frac{1}{9} \leqq t \leqq 1$.
We say that two maps $\Gamma_{0}, \Gamma_{1}:\left(Y^{\prime}, Z^{\prime}\right) \rightarrow\left(Y^{\prime}, Z^{\prime}\right)$ such that $\pi_{M}{ }^{\prime} \circ \Gamma_{i}$ $=\pi_{M}^{\prime}$ for $i=0,1$ are homotopic if we can find a homotopy Γ_{t} : $\left(Y^{\prime}, Z^{\prime}\right) \rightarrow\left(Y^{\prime}, Z^{\prime}\right)$, for $0 \leqq t \leqq 1$, such that $\pi_{M}{ }^{\prime} \circ \Gamma_{t}=\pi_{M}{ }^{\prime}$ for all t. The proofs of the following remarks are routine homotopy arguments, which we omit.

Remark 3.5.1. If $\left\{f_{t}{ }^{\prime}\right\}$ is another differentiable self-homotopy of f which is homotopic to $\left\{f_{t}\right\}$ rel $f, \Gamma\left[f_{t}^{\prime}\right]$ is homotopic to $\Gamma\left[f_{t}\right]$.

Remark 3.5.2. If $\left\{g_{t}\right\}$ is another differentiable self-homotopy of f and if $\left\{h_{t}\right\}$ is the self-homotopy such that $h_{t}=f_{2 t}$ if $0 \leqq t \leqq \frac{1}{2}$ and $h_{t}=g_{2 t-1}$ if $\frac{1}{2} \leqq t \leqq 1$, then $\Gamma\left[h_{t}\right]$ is homotopic to $\Gamma\left[g_{t}\right] \circ \Gamma\left[f_{t}\right]$.

Remark 3.5.3. If $f_{t}=f$ for all t, then $\Gamma\left[f_{t}\right]$ is homotopic to the identity.

We can thus define a right action $\gamma: \operatorname{Sec}\left(\pi_{M}{ }^{\prime}\right) \times \pi_{1}\left(M^{V}, f\right) \rightarrow$ $\operatorname{Sec}\left(\pi_{M}{ }^{\prime}\right)$ as follows: $\gamma\left([c],\left[f_{t}\right]\right)=\left[\Gamma\left[f_{t}\right] \circ c\right]$ for any section c of $\pi_{M}{ }^{\prime}$ and any differentiable self-homotopy $\left\{f_{t}\right\}$ of f, where $\left[f_{t}\right]$ is the corresponding element of the fundamental group of M^{V}. Let $\pi_{i}=\pi_{i}\left(\pi_{M}{ }^{\prime}\right)$ for any integer $i \geqq 1$. We have a right action of $\pi_{1}\left(M^{V}, f\right)$ on the sheaf π_{i}, namely $\gamma_{*}: \pi_{i} \times \pi_{I}\left(M^{V}, f\right) \rightarrow \pi_{i}$ where, for any $r \in \boldsymbol{R}^{*} V$ and $g=\left[f_{t}\right] \in \pi_{1}\left(M^{V}, f\right), \quad \gamma_{*}(, g)$ is the automorphism $\Gamma\left[f_{t}\right] \#$ on the stalk $\pi_{i}\left(\pi_{M}{ }^{\prime}\right)_{r} . \quad$ We also let $\gamma_{*}: H^{*}\left(\boldsymbol{R}^{*} V ; \pi_{i}\right) \times \pi_{1}\left(M^{V}, f\right) \rightarrow$ $H^{*}\left(\boldsymbol{R}^{*} V ; \pi_{i}\right)$ be the action obtained by applying γ_{*} to the coefficient sheaf.

The following remark follows immediately from a simple naturality argument:

Remark 3.5.4. If $g \in \pi_{1}\left(M^{V}, f\right)$ and if c_{0}, c_{1} are sections of $\pi_{M}{ }^{\prime}$ over $\left(R^{*} V\right)^{m}$, the m-skeleton of $R^{*} V$, for some $m \geqq 0$, and if h_{τ} for $0 \leqq \tau \leqq 1$ is a homotopy of sections of π_{M}^{\prime} over $\left(R^{*} V\right)^{m-1}$ such that $h_{i}=$ $c_{i} \mid\left(\boldsymbol{R}^{*} V\right)^{m-1}$ for $i=0$ and 1 , then

$$
\gamma^{*}\left(d^{m}\left(c_{0}, c_{1} ; h_{\tau}\right), g\right)=d^{m}\left(\Gamma\left[f_{t}\right] \circ c_{0}, \Gamma\left[f_{t}\right] \circ c_{1} ; \Gamma\left[f_{t}\right] \circ h_{\tau}\right)
$$

where $\left\{f_{t}\right\}$ is any self-homotopy of f which represents g.

Now let $\gamma_{\#}:[V \subset M]_{f} \times \pi_{1}\left(M^{V}, f\right) \rightarrow[V \subset M]_{f}$ be the right action defined as follows: If $\left\{g_{t}\right\}$ is any differentiable self-homotopy of f and if $\left\{f_{t}\right\}$ is any e-homotopy of f, let $\gamma_{\#}\left(\left[f_{t}\right],\left[g_{t}\right]\right)=\left[h_{t}\right]$, where $\left\{h_{t}\right\}$ is the e-homotopy: $h_{t}=g_{1-2 t}$ if $0 \leqq t \leqq \frac{1}{2}, h_{t}=$ $f_{2 t-1}$ if $\frac{1}{2} \leqq t \leqq 1$. The actions γ_{*} and $\gamma \#$ are consistent, i.e., if $\phi:[V \subset M]_{f} \rightarrow \operatorname{Sec}\left(\pi_{M}^{\prime}\right)$ is the function defined in $\S 1.1, \gamma \neq(\phi e, g)=$ $\phi\left(\gamma_{*}(e, g)\right)$ for all $e \in[V \subset M]_{f}, g \in \pi_{1}\left(M^{V}, f\right)$.

Definition 3.5.1. Let G be a group and A an Abelian group. We say a function $\alpha: A \times G \rightarrow A$ is a right affine action of G on A if
(i) for all $a \in A$ and $g, h \in G, \alpha(a, g h)=\alpha(\alpha(a, g), h)$;
(ii) for all $a \in A, \alpha(a, 1)=a$, where $l \in G$ is the identity;
(iii) for all $a, b \in A$ and $g \in G, \alpha(a+b, g)=\alpha(a, g)+\alpha(b, g)-$ $\boldsymbol{\alpha}(0, g)$.

Suppose now that $k \geqq 2$ and $n=2 k+1$, and f is an embedding. By Theorem 2.5.1, we may identify $[V \subset M]_{f}$ with $H^{2 k}\left(\boldsymbol{R}^{*} V ; \pi_{2 k}\right)$, where $[f]$ corresponds to 0 . The following theorem follows immediately from 2.5.1 and 3.5.4:

Theorem 3.5.5. If f is an embedding and $n=2 k+1$, then $\gamma_{\#}:[M \subset V]_{f} \times \pi_{1}\left(M^{V}, f\right) \rightarrow[M \subset V]_{f}$ is a right affine action.

In general (without any dimensional restriction on V and M) let $\Delta:[V \subset M]_{f} \rightarrow[V \subset M]$ be the function which takes $\left[f_{t}\right]$ to $\left[f_{1}\right]$ for each e-homotopy [f_{t}] of f, as defined in §1.1.

Theorem 3.5.6. If $h: V \rightarrow M$ is an embedding homotopic to f, $\Delta^{-1}[h]$ is precisely an orbit of $[V \subset M]_{f}$ under the action $\gamma \#$.

Proof. Choose an e-homotopy $\left\{f_{t}\right\}$ of f such that $f_{1}=h$. Suppose that $\left\{g_{t}\right\}$ is a differentiable self-homotopy of f. Then $\boldsymbol{\gamma} \#\left(\left[f_{t}\right],\left[g_{t}\right]\right)$ $=\left[k_{t}\right]$, where $k_{t}=g_{1-2 t}$ if $0 \leqq t \leqq \frac{1}{2}$ and $k_{t}=f_{2 t-1}$ if $\frac{1}{2} \leqq t \leqq 1$. $\Delta\left[k_{t}\right]=\left[k_{1}\right]=[h]$. Conversely, suppose that $\left\{r_{t}\right\}$ is another e homotopy of f such that $r_{1}=h$. Let $\left\{s_{t}\right\}$ be the self-homotopy of f where $s_{t}=r_{2 t}$ if $0 \leqq t \leqq \frac{1}{2}$ and $s_{t}=f_{2-2 t}$ if $\frac{1}{2} \leqq t \leqq 1$. Then $\boldsymbol{\gamma}_{\#}\left(\left[f_{t}\right],\left[s_{t}\right]\right)=\left[r_{t}\right]$.
3.6. Embeddings of S^{k} in $M^{2 k+1}$. Suppose now that S^{k} is the k sphere, for $k \geqq 2$, and that M is a connected manifold of dimension $n=2 k+1$. The space $R S^{k}$ is of the homotopy type of S^{k}, while $\boldsymbol{R}^{*} S^{k}$ has the homotopy type of real projective k-space, P_{k}.

Definition 3.6.1. If \mathcal{G} is any sheaf over $\boldsymbol{R}^{*} \boldsymbol{S}^{k}$, let $\mathcal{G}^{0} \subset \mathcal{G}$ be the subsheaf where $\mathcal{G}_{r}^{0}=0$ if $r \notin P S^{k}$, and $\mathcal{G}_{r}^{0}=\mathcal{G}_{r}$ if $r \notin P S^{k}$. We remark that $H^{*}\left(\boldsymbol{R}^{*} S^{k} ; \mathcal{G}^{0}\right)=H^{*}\left(\boldsymbol{R}^{*} S^{k}, P S^{k} ; \mathcal{G}\right)$ [2].

Definition 3.6.2. If A is an Abelian group and $\phi: A \rightarrow A$ is an automorphism such that $\phi^{2}=1$, the identity, let $[A, \phi]$ be the sheaf
over $\boldsymbol{R}^{*} \mathbf{S}^{k}$ obtained from the product sheaf $\boldsymbol{R} \boldsymbol{S}^{k} \times A$ by identifying (r, a) with $(T r, \phi a)$ for all $r \in R S^{k}$ and $a \in A$.

Let $E: Z \oplus Z \rightarrow Z \oplus Z$ be the "exchange" automorphism, i.e., $E(x, y)=(y, x)$ for all $x, y \in Z$.

Consider the sheaf $\pi_{n-1}=\pi_{n-1}\left(\pi_{M}{ }^{\prime}\right)=\left(R^{*}(f, i)\right)^{-1} \pi_{n-1}\left(\pi_{M}{ }^{\prime}\right)$ over $R^{*} S^{k}$, where $f: S^{k} \rightarrow M$ is any differentiable map, and $i: S^{k}$ $\rightarrow M$ is any embedding. We shall assume that S^{k} and M have basepoints s_{0} and m_{0}, respectively, and $f\left(s_{0}\right)=m_{0}$.
$\boldsymbol{R} \mathbf{S}^{k}$ is simply connected, so π_{n-1} breaks up as a direct sum (cf. Theorem 3.4.9); in fact $\pi_{n-1} \cong Z \oplus \sum_{g \neq 1} Z^{0}$, where Z is the trivial integer sheaf, and the sum is over all $g \in \pi_{1}=\pi_{1}\left(M, m_{0}\right)$ not equal to the identity. We define sets $A \subset \pi_{1}$ and $B \subset \pi_{1}$ as follows: A consists of all $g \in \pi_{1}$ such that $g \neq 1, g^{2}=1$, and $d(g)=0$, and B consists of all $g \in \pi_{1}$ such that $g^{2}=1$ and $d(g)=1$, where $d: \pi_{1} \rightarrow$ Z_{2} is the orientation homomorphism. Let Θ and Λ be the sets of unordered pairs in π_{1} as follows: Θ consists of all unordered pairs $\left\{g, g^{-1}\right\}$ such that $g^{2} \neq 1$ and $d(g)=0$, and Λ consists of all $\left\{g, g^{-1}\right\}$ such that $g^{2} \neq 1$ and $d(g)=1$. Using the action of $\pi_{1}\left(\boldsymbol{R}^{*} S^{k}\right) \cong Z_{2}$ on the stalk of π_{n-1}, we obtain directly, from Theorem 3.4.9,

Lemma 3.6.1. $\pi_{n-1} \cong[Z,-1] \oplus \sum_{A}[Z,-1]^{0} \oplus \sum_{B} Z^{0} \oplus$ $\sum_{\ominus}[Z \oplus Z,-E]^{0} \oplus \sum_{\Lambda}[Z \oplus Z, E]^{0}$.

It is sufficient to compute the cohomology of $\boldsymbol{R}^{*} \mathbf{S}^{k}$ with coefficients in each of the direct summands.

Lemma 3.6.2. $H^{2 k}\left(\boldsymbol{R}^{*} S^{k} ;[Z,-1]\right)=0$.
Proof. $\boldsymbol{R}^{*} \mathbf{S}^{k}$ is of the homotopy type of a complex of dimension $k<2 k$, and $[Z,-1]$ is a local system.

Lemma 3.6.3. $H^{2 k}\left(R^{*} S^{k} ;[Z,-1]^{0}\right)$ is isomorphic to Z if k is odd Z_{2} if k is even.

Proof. $\quad H^{2 k}\left(\boldsymbol{R}^{*} S^{k} ; \quad[Z,-1]^{0}\right)=H^{2 k}\left(\boldsymbol{R}^{*} S^{k}, \quad P S^{k} ; \quad[Z,-1]\right)$. Now $R^{*} S^{k}$ is a $2 k$-manifold with boundary $P S^{k}$, which is oriented if k is even and unoriented if k is odd. In the even case, the generator of $H^{2 k}\left(\boldsymbol{R}^{*} S^{k} ;[Z,-1]^{0}\right)$ may be taken to be the top class.

Lemma 3.6.4. $H^{2 k}\left(R^{*} S^{k} ; Z^{0}\right)$ is isomorphic to Z if k is even, Z_{2} if k is odd.

Proof. The proof is similar to that of Lemma 3.6.3, above. We leave the details to the reader.

Lemma 3.6.5. $H^{2 k}\left(\boldsymbol{R}^{*} S^{k} ;[Z \oplus Z, E]^{0}\right) \cong Z$.

Proof. We consider two cases; k even and k odd. We have exact sequences of sheaves

$$
\begin{aligned}
& e_{1}: 0 \rightarrow Z=[Z, 1] \xrightarrow{\alpha}[Z \oplus Z, E] \xrightarrow{\beta}[Z,-1] \rightarrow 0, \\
& e_{2}: 0 \rightarrow[Z,-1] \xrightarrow{\gamma}[Z \oplus Z, E] \rightarrow Z=[Z, 1] \rightarrow 0,
\end{aligned}
$$

where the maps α, β, γ, and ϵ can be defined on the underlying groups as follows: $\alpha x=(x, x)$ and $\gamma x=(x,-x)$ for all $x \in Z$, and $\beta(x, y)=x-y$ and $\epsilon(x, y)=x+y$ for all $x, y \in Z$. (Note that α, β, γ, and ϵ all respect the appropriate actions; i.e., $E \circ \gamma=$ $\gamma^{\circ}(-1)$, etc.) Note that $\epsilon \circ \alpha$ is multiplication by 2. Corresponding to e_{1} and e_{2}, we have exact sequences in cohomology, where δ_{1} and δ_{2} are the Bokstein homomorphisms

$$
\begin{aligned}
& \left(e_{1}\right)_{*}: \xrightarrow[\rightarrow]{\delta_{1}} Z \xrightarrow{\alpha_{*}} H^{2 k}\left(R^{*} S^{k}, P S^{k} ;[Z \oplus Z, E]\right) \xrightarrow{\beta_{*}} Z_{2} \rightarrow 0, \\
& \left(e_{2}\right)_{*}: \xrightarrow[\rightarrow]{\delta_{3}} Z_{2} \xrightarrow{\gamma_{*}} H^{2 k}\left(\boldsymbol{R}^{*} S^{k}, P S^{k} ;[Z \oplus Z, E]\right) \xrightarrow{\epsilon_{*}} Z \rightarrow 0,
\end{aligned}
$$

where $\boldsymbol{\epsilon}_{*}{ }^{\circ} \boldsymbol{\alpha}_{*}$ is multiplication by 2 . General algebraic considerations show that ϵ_{*} must be an isomorphism, and we are done. If k is odd, the proof is the same with the roles of the sequences e_{1} and e_{2} reversed.

Lemma 3.6.6. $H^{2 k}\left(\boldsymbol{R}^{*} S^{k} ;[Z \oplus Z,-E]^{0}\right) \cong Z$.
Proof. Analogous to e_{1} and e_{2} in the proof of Lemma 3.6.5, above, $[Z \oplus Z,-E]$ may be expressed both as an extension of Z by $[Z,-1]$ and as an extension of $[Z,-1]$ by Z. We proceed as above.

From Lemmas 3.6.1 through 3.6.6, we immediately obtain
Theorem 3.6.7. $\left[S^{k} \subset M\right]_{f}$ is isomorphic to $\sum_{A} Z \oplus \sum_{B} Z_{2} \oplus \sum_{\Theta \cup \Lambda} Z$ if k is odd, and to $\sum_{A} Z_{2} \oplus \sum_{B} Z \oplus \sum_{\ominus \cup \Lambda} Z$ if k is even.
3.7. Explicit geometric construction of $\left[S^{k} \subset M\right]_{f}$. We retain the notation of $\S 3.5$, and assume that $f: S^{k} \rightarrow M$ is an embedding, where $f\left(s_{0}\right)=x ; s_{0}$ is the basepoint of S^{k}. Recall that we let $v \in S\left(M \times R^{\infty}\right)$ such that $\pi v=(x, 0)$. We can insist that $i: S^{k} \rightarrow R$ be an embedding where $\boldsymbol{i}\left(s_{0}\right)=0$.
Let $\boldsymbol{\sigma}$ be a $2 k$-cell of $\boldsymbol{R}^{*} \mathbf{S}^{k}$ such that, for some $w^{*} \in P S^{k}, w^{*} \in \partial \boldsymbol{\sigma}$ and $\boldsymbol{R}^{*}(f, i)\left(w^{*}\right)=v^{*}=\{v,-v\} \in P\left(M \times R^{\infty}\right)$. Pick a cell $\tau \subset \boldsymbol{R S}^{k}$ such that $\pi \tau=\sigma$ and $w \in \partial \tau$ such that $\pi w=w^{*}$. Choose any ordered pair $\left(s_{1}, s_{2}\right) \in \operatorname{Int} \tau$, and let N_{1} and N_{2} be closed ball-shaped neighborhoods of s_{1} and s_{2}, respectively, such that $N_{1} \times N_{1} \subset \operatorname{Int} \tau$. Let $\alpha: I \rightarrow \boldsymbol{\tau}$ be a path such that $\alpha(0)=\left(s_{1}, s_{2}\right), \alpha(1)=w$, and $\alpha(t) \in \operatorname{Int} \tau$ for all $t<1$. Then, for all $0 \leqq t \leqq 1, \alpha(t)=\left(\alpha_{1}(t)\right.$,
$\left.\alpha_{2}(t)\right)$, where $\alpha_{i}: I \rightarrow S^{k}$ is any path from s_{i} to s_{0}, for $i=1$ and 2. Pick any $g \in \pi_{1}=\pi_{1}(M, x)$. Let $\beta: I \rightarrow M$ be a simple smooth path such that $\beta(0)=f\left(s_{2}\right), \quad \beta(1)=f\left(s_{1}\right), \quad$ and the loop $\left(f \circ s_{2}-1\right)$ - $\boldsymbol{\beta}\left(f \circ s_{1}^{-1}\right)$ represents g. Let B be a neighborhood of $\boldsymbol{\beta}(I)$ homeomorphic to a $(2 k+1)$-ball such that $B \cap f\left(S^{k}\right)=f\left(N_{1}\right) \cup f\left(N_{2}\right)$. Let $f_{t}: S^{k} \rightarrow M$, for $0 \leqq t \leqq 1$, be any homotopy of differentiable maps such that $f_{0}=f, f_{t}\left|\left(S^{k}-N_{2}\right)=f\right|\left(S^{k}-N_{2}\right)$ for all t, and $f_{t}\left(N_{2}\right) \subset B$ for all t, and where the map $F: S^{k} \times I \rightarrow M \times I$, where $F(s, t)=f_{t}(s)$ for all $s \in S^{k}$ and $0 \leqq t \leqq 1$, has just one double point; namely $F\left(s_{1}, \frac{1}{2}\right)=F\left(s_{2}, \frac{1}{2}\right)$, and $F\left(S^{k} \times I\right)$ meets itself transversely at $\left(f\left(s_{1}\right), \frac{1}{2}\right)$.

The liftings $\boldsymbol{\Phi}\left[f_{t}\right]$ and $\Phi[f]$ are certainly homotopic on the $(2 k-1)$-skeleton of $R^{*} S^{k}$; in fact we may define $g_{u}:\left(\left(R^{*} S^{k}\right)^{2 k-1}\right.$, $\left.P S^{k}\right) \rightarrow\left(Y^{\prime}, Z^{\prime}\right)$ for $0 \leqq u \leqq 1$, explicitly, using the homotopy $\left\{f_{t}\right\}$ (we omit the details; $\left\{g_{u}\right\}$ is essentially the Φ-construction (cf. $3.2)$ restricted to the $(2 k-1)$-skeleton). Now consider the difference class:

$$
d^{2 k}=d^{2 k}\left(\Phi[f], \Phi\left[f_{t}\right] ; g_{u}\right) \in C^{2 k}\left(\boldsymbol{R}^{*} S^{k} ; \pi_{2 k}\right)
$$

We can identify the stalk of $\pi_{2 k}$ over w^{*} with that of $\pi_{2 k}\left(\pi_{M}\right)$ over v^{*}, and we have

Lemma 3.7.1. $d^{2 k}(\sigma)= \pm Y(g)$ and $d^{2 k}\left(\sigma^{\prime}\right)=0$ for any $2 k$-cell $\boldsymbol{\sigma}^{\prime} \neq \sigma$. Furthermore, we may insist $d^{2 k}(\boldsymbol{\sigma})=\Upsilon(g)$, by redefining $\left\{f_{t}\right\}$ if necessary.

Proof. Using the Φ-construction, we may extend the homotopy $\left\{g_{u}\right\}$ over $\boldsymbol{\sigma}^{\prime}$ for any $\boldsymbol{\sigma}^{\prime} \neq \boldsymbol{\sigma}$, hence $d^{2 k}\left(\boldsymbol{\sigma}^{\prime}\right)=0$. Now (cf. 2.4) $d^{2 k}(\boldsymbol{\sigma})$ is represented by a map $h: \partial(\sigma \times I) \rightarrow Y$ such that, for all $(a, t) \in \partial(\sigma \times I)$ and all $0 \leqq u \leqq 1$,

$$
h(a, t)= \begin{cases}\boldsymbol{R}^{*}\left(f_{2 t u}(a), i\right) & \text { if } 0 \leqq u \leqq \frac{1}{2} \\ \boldsymbol{R}^{*}\left(f_{t}(a),(2-2 u) \boldsymbol{i}\right) & \text { if } \frac{1}{2} \leqq u \leqq 1\end{cases}
$$

whose composition with $p_{1}{ }^{\circ} \pi^{-1} \circ \gamma$ (as in diagram 3.4-1) is homotopic to $\pm \Upsilon(g)$. The sign is ambiguous, because there are essentially two ways an r-manifold can intersect itself transversely in a $2 r$ manifold. Both ways are possible in this case, hence we are done.

We now define $\langle g\rangle \in\left[S^{k} \subset M\right]_{f}$ to be $\left[f_{t}\right]$, where $\left\{f_{t}\right\}$ is described above. Theorem 1.2.1 then follows immediately from Theorem 3.6.7.
3.8. Free isotopy classes. In this paragraph, we assume that $f: S^{k} \rightarrow M$ is a small embedding, i.e., $\bar{f}\left(\mathrm{~S}^{k}\right)$ lies in a single chart of M. Again, we assume that $k \geqq 2$ and $n=2 k+1$. We now investi-
gate the affine action of $\pi_{1}\left(M^{S^{k}}, f\right)$ on $\left[S^{k} \subset M\right]_{f}$. Let $s_{0} \in S^{k}$ and $m_{0} \in M$ be basepoints, and assume that f is basepoint-preserving.

Definition 3.8.1. Let $\left\{f_{t}\right\}$ be a differentiable self-homotopy of f. We say that $\left\{f_{t}\right\}$ is small if $f_{t}\left(\mathbf{S}^{k}\right)$ lies in a single chart of M for each t, and we say that $\left\{f_{t}\right\}$ is large if $f_{t}\left(s_{0}\right)=m_{0}$ for all t.

We remark that the subsets L_{f} and S_{f} of $\pi_{1}\left(M^{s^{k}}, f\right)$ represented by large and small self-homotopies of f, respectively, are subgroups, and that $L_{f} \cong \pi_{k+1}\left(M, m_{0}\right) \quad$ and $\quad S_{f} \cong \pi_{1}\left(M, m_{0}\right) . \quad L_{f}$ is normal, and $\pi_{1}\left(M s^{k}, f\right)$ is a semidirect product of L_{f} with S_{f}; we leave this fact as an exercise.

Theorem 3.8.1. If $x \in \pi_{1}\left(M^{s^{k}}, f\right)$ is represented by a small selfhomotopy $\left\{f_{t}\right\}$, then $\gamma(\langle g\rangle, x)=(-1)^{d(h)}\left\langle h^{-1} g h\right\rangle$ for all $g \in \pi_{1}\left(M, m_{0}\right)$, where h is the element of $\pi_{1}\left(M, m_{0}\right)$ represented by the loop $\left\{f_{t}\left(s_{0}\right)\right\}$.

Proof. $\langle g\rangle$ is represented by a homotopy which extends a pseudopod out from $f\left(S^{k}\right)$, around a loop σ representing g, then linking $f\left(\mathbf{S}^{k}\right)$ with linking number 1 . The action of x drags the entire image $f\left(\mathbf{S}^{k}\right)$ around the loop α, where $\alpha(t)=f_{t}\left(s_{0}\right)$ for all t; the pseudopod is now forced to follow the loop $\boldsymbol{\alpha}^{-1} \boldsymbol{\sigma} \boldsymbol{\alpha}$ and link with linking number $(-1)^{d(h)}$.

Theorem 3.8.2. If $x \in L_{f}$, then $\gamma(\langle g\rangle, x)=\langle g\rangle+\gamma(0, x)$ for all $g \in \pi_{1}\left(M, m_{0}\right)$.

Proof. Since x is represented by a large self-homotopy $\left\{f_{t}\right\}$, we may assume that $\left\{f_{t}\right\}$ leaves a neighborhood of s_{0}, N, fixed; we can insist that $N=B \cap \bigcup_{t} f_{t}\left(S^{k}\right)$, where B is the $(2 k+1)$-ball used to construct $\langle g\rangle$ in $\S 3.7$. Our theorem follows, because the difference cochain may be evaluated separately on N and $S^{k}-N$, and the results added.

Theorem 1.2.2 follows directly from Theorem 3.8.1; we may extend this result slightly, using 3.8.2, as follows:

Theorem 3.8.3. If $f: \mathrm{S}^{k} \rightarrow M$ is a basepoint-preserving small embedding, then the subset of $\left[S^{k} \subset M\right]$ consisting of those isotopy classes homotopic to f can be put into one-to-one correspondence with the set of orbits of the cokernel of a homomorphism $\Xi: \pi_{k+1}\left(M, m_{0}\right) \rightarrow\left[S^{k} \subset M\right]_{f}$ by a right action of $\pi_{1}\left(M, m_{0}\right) ;$ provided $k \geqq 2$ and $\operatorname{dim} M=2 k+1$.

Proof. Let $\iota: \pi_{k+1}\left(M, m_{0}\right) \rightarrow \pi_{1}\left(M^{s^{k}}, f\right)$ be the monomorphism onto L_{f} induced by the map $S^{k+1} \rightarrow \Omega S^{k}$, and let Ξ be defined by:
$\Xi(x)=\gamma\left(0_{\imath}(x)\right)$. By Theorem 3.8.2, \boldsymbol{E} is a homomorphism. We can easily check that the action of $\mathrm{S}_{f} \cong \pi_{1}\left(M, m_{0}\right)$ on $\left[\mathrm{S}^{k} \subset M\right]_{f}$ is consistent with the usual right action of the fundamental group of a space on a higher homotopy group, via Ξ. We leave the details to the reader.

Biblography

1. J. C. Becker, Cohomology and the classification of liftings, Trans. Amer. Math. Soc. 133 (1968), 447-475. MR 38 \#5217.
2. G. E. Bredon, Sheaf theory, McGraw-Hill, New York, 1967. MR 36 \#4552.
3. D. D. J. Hacon, Embeddings of S^{p} in $\mathrm{S}^{1} \times \mathrm{S}^{q}$ in the metastable range, Topology 7 (1968), 1-10. MR 36 \#5953.
4. A. Haefliger, Plongements différentiables dans le domaine stable, Comment. Math. Helv. 37 (1962/63), 155-176. MR 28 \#625.
5. S. T. Hu, Homotopy theory, Pure and Appl. Math., vol. 8, Academic Press, New York, 1959. MR 21 \#5186.
6. L. L. Larmore, The first obstruction to embedding a 1-complex in a 2-manifold, Illinois J. Math. 14 (1970), 1-11. MR 40 \#4955.
7. A. Shapiro, Obstructions to the imbedding of a complex in a euclidean space. I. The first obstruction, Ann. of Math. (2) 66 (1957), 256-269. MR 19, 671.
8. W. T. Wu, A theory of imbedding, immersion and isotopy of polytopes in a euclidean space, Science Press, Peking, 1965. MR 35 \#6146.

California State College, Dominguez Hills, California 90246

