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OF SEVERAL FORMULAE OF RAMANUJAN 

BRUCE C. BERNDT 

1. In [7], the author presented a new method for deriving the 
transformation formulae of a large class of functions that includes the 
Dedekind eta-function r)(z). Here, and in the sequel, a transformation 
shall mean a modular transformation Vz = V(z) = (az + b)l(cz + d), 
where a, b, c and d are rational integers with c > 0 and ad — be = 1. 
The general theorem [7, Theorem 2] was shown to contain as special 
cases transformation formulae established by several other authors. 
In [9], we generalized the results of [7] ; furthermore, one should 
consult [9] for a complete proof of the main theorems of [7] and [9]. 
Arising in the transformation formulae are various types of Dedekind 
sums, all of which may be shown to satisfy reciprocity theorems by the 
use of the transformation formulae. 

In [8] and [11] we considered character analogues of the afore
mentioned classes of functions. Thus, transformation formulae were 
developed for a wide class of functions involving characters including 
the natural character generalizations of log r)(z). The transformation 
formulae involve character generalizations of Dedekind sums which 
can be shown to obey reciprocity theorems by the employment of the 
transformation formulae. The results of these papers [8], [11] appear 
to be new. However, there is some overlap with papers of Katayama 
[31], [32]. 

We wish to show in this paper that the very general theorems of [7] 
and [11] contain many other interesting results as special cases. These 
results give the values of several interesting series and yield intriguing 
relations between various series. It is shown that a large mass of such 
results found in the literature can be deduced quite simply from a few 
general theorems given below. 

One of the most interesting corollaries of Theorem 2 of [7] is 
Ramanujan's formula for £(2n + 1 ) , n § l , a very interesting and 
striking formula found in his Notebooks [54] and proved by A. P. 
Guinand [22], E. Grosswald [20], [21], and others. In fact, Euler's 
formula for f(2n), n i ? 1, and Ramanujan's formula for f(2n + 1) are 
both consequences of the same general theorem. Ramanujan's formula 
for £(2n + 1) contains a finite sum of products of 2 Bernoulli numbers. 
Ramanujan [54] also discovered a similar type of relation involving a 
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finite sum of products of 2 Euler numbers. 
For a = Re(s) > 0, let 

(1.1) L(s)= f ( - 1 ) * ( 2 * + 1 ) - . 
fc=0 

L(s) is, in fact, an example of a Dirichlet L-function. Nothing arith
metically is known about L(2n), n = 1, but Ramanujan's Notebooks 
contain an interesting formula for L(2n), similar to that for £(2n + 1). 
We give a proof of this formula here, but, in fact, Katayama [30] and 
the author [11] have proven "Ramanujan formulas" for arbitrary 
Dirichlet L-functions. 

From the principal theorems of [7] and [11], many other formulae 
of Ramanujan shall be deduced. Almost all of these can be found in 
his Notebooks, and some can be found in Ramanujan's letters to G. H. 
Hardy [53]. Many of these very peculiar formulae have been proved 
by S. L. Malurkar [44], Nanjundiah [47], M. B. Rao and M. V. Aiyar 
[55], S. Chowla [16], J. W. L. Glaisher [19], G. H. Hardy [24], G. N, 
Watson [67], H.F. Sandham [59], Grosswald [21] and others. How
ever, a number of them have never been heretofore proved in print. 
Furthermore, many of Ramanujan's formulas are generalized here. Let 
us cite just 2 examples. 

One of Ramanujan's most beautiful theorems, which, in fact, pre
dates Ramanujan, is the representation (Proposition 2.7 below), 

k2n~l Bo 
(L2)

 fc?1e-^-l = l^\ 
where n > 1 is an odd, positive integer and Bj denotes the j - th Ber
noulli number. We shall show that if V is an elliptic transformation 
with fixed point X G Ji = {z : lm(z) > 0}, then (Theorem 2.9 below) 

(1.3) S 
k = l 

fc2"-1
 = B2n 

provided that n > 1 and (cy + d)2n ^ 1. Since Vz = — Hz has i as a 
fixed point, (1.2) is a special case of (1.3). 

Another curious result found in Ramanujan's Notebooks is (Proposi
tion 4.8 below): 

- ( - l ) » ( 2 f c + l ) * - ' 
^ !

 k% cosh{(2fc + 1V2} 
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where n is a positive integer. We shall show that if 0 ^ r < 1 
(Proposition 4.20 below), 

^ (-l)k(2k + l)2M-1cos{(2fc + 1 W 2 ) 
~ 0 cosh{(2fc + l)rr/2} 

- ( + l)*(2fc + l)g"-'cosh{(2fc + 1 M 2 } = 0 

^ ' à cosh{(2fc + l>r/2} 

where M is a positive integer. Thus, if r = 0 and M = 2n, the above 
reduces to (1.4). 

By no means, is the work which follows exhaustive. We have chosen 
those examples which we think are the most interesting, the most 
striking, and perhaps the most surprising. General results have been 
stated in such a way that the interested reader may simply specify 
certain transformations and/or parameters to produce further identities 
with almost no further calculation or manipulation. For the most part, 
our examples arise from the modular transformation Vz = — 1/z. We 
have also derived specific examples for the transformation Vz = 
— (z + 1)1 z. Additional formulae may be obtained by differentiation. 
Except for a few instances, we have not emphasized this. Further
more, we have not given any series relations arising from the more 
general theorem in [9], other than those which can be derived from 
[7]. Those examples arising from [9] appear to be not quite as in
teresting or elegant as most of the others given here. 

In comparing some of our results with the formulations given in 
Ramanujan's Notebooks, one should keep in mind that the conven
tions used by Ramanujan for the Bernoulli and Euler numbers are not 
those customarily used today. We employ the even suffix notations, 
used in [ 1], for example. Furthermore, some of our formulations, like 
that of Ramanujan's formula for £(2n + 1 ) , for example, are equivalent 
to those found in the Notebooks after very elementary manipulation. 
Lastly, as was customary in his time, Ramanujan used the notation Sn 

for £(n), n g 2. 
In the following, we choose that branch of log z with — IT ^ arg z 

<7T. 

2. We shall first formulate Theorem 2 of [7] when s = — m, where 
m is an integer. To do this, we must introduce some notation and 
make a few definitions. If z G <=H and rx and r2 are real, let [7, p. 496]. 

H(z, -m, ru r2) = A(z, - m , rx, r2) 
(2.1) 

+ ( - l )mA(z, - m , - r 2 , - r 2 ) , 
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where 

00 

(2.2) A(z9-m,rl9r2) = J ) S k-m-1e2nik(nz+riz+r^ . 
n>-rx k = l 

Let a be real and let \(a) denote the characteristic function of the in
tegers. Define for a real and a > 1, 

(2.3) £(*,«)= S (n+ «)-* = £(*, {a} + k(a))9 
n>—a 

where here, and in the sequel, we denote the fractional part of a by 
{a}. Of course, £(s, {a} + À (a)) denotes the Hurwitz zeta-function 
which has an analytic continuation to the full complex s-plane. Define 
Rx = arl + cr2 and R2 = brl + dr2. Let 

g(z9-m9rl,r2) = lim {-Afa^ârt)" '^ + d)-I»(£(5, r2) 
.s-*—m 

(2.4) 

+ e*^(s, - r 2 ) ) + X(fl1)(2jri)-»r(»)(t(s, - B a ) + e-*«*, R2))}. 

Furthermore, Bn(x) denotes the n-th Bernoulli polynomial, Bn(x) = 
Bn({x}), and Bn = Bn(0) denotes the n-th Bernoulli number, where 
0 g n < oo. Ifp = {R2}c - {Rrfd, let 

(2.5) h(z,-m,r1,r2) 

- i "fi-»-* (^&>K.M ( j f ^ ) i ^ f ^ -
j=i fc=o \ c / \ c / Ac!(m + 2 — fe)! 

where if m 4- 2 < 0, we shall understand that h(z, — m9rl9r2) = 0. 

THEOREM 2.1 [7, p. 498]. For z G J / and an arbitrary integer m, 
we have 

(cz + d)mH(Vz, - m , fx, r2) = ff(z, - m , Rl5 R2) 

(2.6) 
+ g(z, - m , * ^ ) + (27Ti)m + ih(z, -m9rl9r2). 

We next specialize Theorem 2.1 by setting rx = r2 = 0. To calcu
late g(z, — m) = g(z9 — m, 0,0), we must separate the case m = 0. 
From (2.3), £(s, 0) = £(s), where £(s) designates the Riemann zeta-
function. From the functional equation of £(s) [68, p. 269], 
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lim (1 + é ^ ) r » £ ( s ) = lim (2TT- )^ / 2 £(1 - s) 
s-+—m s-*—m 

= (27r)-me-7rimi'2C(l + m), 

provided that m jt 0. Thus, from (2.4) for m / 0 , 

(2.7) g(z, - m ) = {1 - ( - cz - d)mK(m + !)• 

Since r(s) has a simple pole at s = 0 with residue 1, we find that 

l i m l » ( l - e^'icz + d)~s) = log(cz 4- d) - ni. 
s-*0 

Since {(0) = - 1 / 2 [68, p. 268], we deduce from the above and (2.4) 
that 

(2.8) g(z, 0) = ni - log(cz + d). 

Put H(z, - r a ) = H(z, - r a , 0,0). From (2.1) and (2.2), we see that 

k-rn-l 
(2.9) tf(z,-m)=(l+ ( - ! ) - ) £ 

fc = l ° -1 

Furthermore, suppose that Vz = — 1/z or Vz = — (z + l)/z, so that in 
either instance c = 1 and d = 0. We then deduce from Theorem 2.1 
the following result. 

THEOREM 2.2. For z G <=#, m integral, and Vz = — 1/z or Vz = 
— (z + l)lz,wehave 

L-m-l 
2?»(1 + (-1)™) 2 

(2.10) - (1 +(-!)-) f ^ + g(«, -m) 

+ r27Tlim + 1 "V B f c ^ Bm + 2-k , )k_l 

+ (2M) à fc! (m + 2 - * ) ! ( Z) ' 
where g(z, — m) is giüen fot/ (2.7) and (2.8). 

Many consequences of Theorem 2.2 will now be deduced. 
THEOREM 2.3 (EULER'S FORMULA FOR £(2N)). Let N be a positive 

integer. Then 

C ( 2 N ) 2(22V)! 2N-
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PROOF. Let m = 2N - 1 in (2.10). Trivially, from (2.9), H(z, -2N 
+ 1) = 0. Using (2.7), we see that (2.10) reduces to 

(1 + z*"-i)C(2A0 = [ }
 {2N)\ (B^B™ ~ B™B^N~% 

where we have used the fact that B2fc+i = 0, fc è 1. Since #i(l) = 1/2 
and Bx = —1/2, Euler's formula now follows. 

Note that if we set rx = r2 = 0 and m = 2N - 1, N > 0, in (2.6), we 
obtain an infinitude of formulas for £(2N). 

THEOREM 2.4 (RAMANUJAN'S FORMULA FOR £(2N -I- 1)). Le£ a and/3 
foe positive numbers such that oß = 7T2. Le£ N be a positive integer. 
Then, 

k-2N-l 
«-» {(i/2)£(2N + i) + ^ j s r r i } 

(2.11) = (-/8)-N{(W2)C(2N + I) + 2.S^zr\ } 

N+i n D 
_ £2xV V ( — I ) * 2fc " 2 ^ + 2-2^ aN+1-kßk 

k=0 (2fc)! (2N + 2 - 2fc)! 

PROOF. In (2.10), let m = 2N, where N is ant/ integer except 0. Also, 
let Vz = — 1/z and z = inlet. Since ir2la = ß, we obtain upon the use of 
(2-7), 

* L-2N-1 

2(-l)>/«P2 ^ 3 3 

= 2 S l S + U - (-1)N(W«PK(2N+ 1) 
(2.12) 

+ (27r)2w + 1 ( - l ) N + 1 y ' ( -1)* - ^ - — B a w + a - 2 * — (w/a)2*-1. V ' V ; *.o (2fc)! (2N + 2 - 2*)! ^ ; 

Multiplying both sides of (2.12) by (-ß)~Nl2, we arrive at (2.11). 

Theorem 2.4 is quite remarkable. First, we see that this formula is 
the natural complement of Euler's formula for £(2N) in that both 



MODULAR TRANSFORMATIONS 153 

formulae are instances of the application of the transformation Vz = 
— Hz to the function H(z, — m). Secondly, appearing in the summands 
of the infinite series of (2.11) are generating functions for the Bernoulli 
numbers: 

Thus, Ramanujan's formula gives a formula for f(2N + 1) involving a 
finite sum of Bernoulli numbers and two doubly infinite series involv
ing Bernoulli numbers. If a is a rational multiple of ir, we see, es
pecially from (2.12), that £(2N + 1) is a rational multiple of 7T2N + 1 plus 
two very rapidly convergent series. 

If N is even and a = ß = ir, equation (2.11) yields no information on 
£(2N + 1). If N is odd and a = ß = TT, (2.11) or (2.12) reduces to 

£(2N + 1) 

^ ' N+l R R °° h-2N-l 
= (Zar)™- V f - n * + l 2k D2N+2-2k _ £ Y -

( ' à( } (2*)!(2N + 2 - 2 f c ) ! 2 £ * « - l " 

Formula (2.13) has an analogue for even N which can be gotten by 
differentiating (2.10), as we shall see later. 

Theorem 2.4 has an interesting history. Formula (2.11) is stated 
twice by Ramanujan in his Notebooks [54, vol. I, p. 259, no. 15; vol. 
II, p. 177, no. 21]. However, the special case (2.13) appears to have 
been first proven by Lerch [38]. The first published proof of Ramanu-
jan's formula (2.11) appears to have been given by S. L. Malurkar [44]. 
Grosswald has given a proof of (2.13) [20] and the more general for
mula (2.11) [21]. These two papers [20], [21] of Grosswald brought 
Ramanujan's formula to light long after it had apparently been for
gotten. Smart [65] has recently proved (2.13), and Katayama [29], 
[32] and Riesel [57] have recently established (2.11). 

Theorem 2.2 in the case Vz = — Hz and m = 2N with N > 0 was 
first proven by Guinand [22] and the resulting formula for £(2N + 1) 
is explicitly stated by him. In another paper [23], Guinand discusses 
his results again and gives an equivalent formulation of (2.13). Chand-
rasekharan and Narasimhan [15, pp. 15-17] have also given a proof of 
Guinand's result. Theorem 2.1 in the case rl = r2 = 0 and m = 2N > 
0 was first proven by Apostol [3], but due to a miscalculation the term 
involving £(2N 4- 1) was omitted, and hence a formula for £(2N 4- 1) 
was not ascertained. Many years later, Apostol [5] and the present 
author independently realized that Ramanujan's formula could be 
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deduced from a corrected version of Apostol's theorem [3] or from 
the author's result [7, equation (30)]. A corrected version of Apostoli 
result was first given by Mikolâs [45] and shortly thereafter by Iseki 
[28]. Bodendiek [12] and Bodendiek and Halbritter [13] have also 
given proofs. Guinand's result is a special case of more general results 
of Mikolâs [45] and Glaeske [17], [18]. Essentially then, several 
proofs of Ramanujan's formula have been given in the literature, al
though at the time most of the authors did not realize that they were 
giving proofs of Ramanjan's formula. 

In fact, Ramanujan's formula for £(2N + 1) is but one of an infinite 
class of such formulas, as we can see by setting rY = r2 — 0 and m = 
2N in Theorem 2.1. The most elegant formulae arise by letting V be 
an elliptic transformation and then letting z be a fixed point of V. We 
give one additional example, which is indicated by Smart [65], to 
illustrate this. Let p = ( — 1 + iV3)/2. We also use p in another sense 
in this paper (See the sentence prior to Theorem 2.1.), but there 
should not be any cause for confusion in the sequel. 

PROPOSITION 2.5. If N is a positive integer, then 

(1 - p^WN + 1) = 2(p*N - 1) f t ~ 2 N ~ ' 
k % (-\)ke*k^- 1 

+ /-lyv/O-yJN + U N \ l B%k B2N + 2-2k 2k-l 

+ ( 1) (to) I ^ {2k)l {2N + 2_2kyP • 

PROOF. In Theorem 2.2, let Vz = — (z 4- 1)1 z and z = p which is a 
fixed point of V. If m = 2N, where N is any integer except 0, we get 
upon the use of (2.7), 

- 2 N - 1 

(2.14) 

2(p2» -- D 2 71 

(2TT)2N + Ì(-1)N + H 

-1)*^*^-

N+Ì 

E 
k=0 

- 1 " 

#2* 

(2*)! 

= (1 - p 2 " 

&2N + 2 

(2N+2-

)£(2N+D 

- 2 k rt?.k-] 

-2fc) ! P 

The proposition now follows. 
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If we use the relation 

(2.15) — i — = (1/2) coth(x/2) - 1/2, 
ex — 1 

Ramanujan's formula (2.11) may be transformed into 

- coth(ofc) = - coth(ftfc) 
" Zu JL2N + 1 v **) £j T.2N+1 

k=\ * fe=l * 

- 02N+1 V 1 / IN* B2k B2N+2-2k ^j+l-kok 

èo (2fc)J (22V + 2 - 2 * ) r * ' 

where aß = TT2 and N = 1. Proofs of the above have been given by 
Nanjundiah [47] and Riesel [57]. In particular, if a = ß = n and N 
is odd, we get from the above, or alternatively, from (2.13), 

y cothfrfc) = y 1 / -.yc + i J k . B2y+2-2fc 
^ fc2N + i ^ Z ^ v y (2fc)! (2N + 2 - 2fc)I ' 

The last result in the case n = 3 was communicated by Ramanujan in 
the first of his now famous letters to Hardy [53, p. xxvi]. The cases 
n = 1 and n = 3 can also be found in Ramanujan's Notebooks [54, 
vol. II, p. 180, ex. i, ii]. However, in fact, the general result was 
initially established by Lerch [38] in 1901. Sandham [58] proved the 
case given in Ramanujan's letter. Lerch's result has also been proven 
by Watson [67], Sandham [59], Smart [65], and Say er [60]. 

If we use (2.15) in Proposition 2.5, we find that for N â 1 and N =̂  0 
(mod 3) 

- cothjHkp) = (2*)*< + l ( - m N^ B^ B2N+2_2k 2k_ 

£i k'2N + ì p 2 " - 1 ~ 0 (2fc)! (2N + 2 - 2k)\P 

In fact, let V be any elliptic transformation with fixed point y G Ji. 
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Then, unless (cy + d)2N = 1, Theorem 2.1, in the case rY = r2 = 0, 
enables us to find in closed form the value of 

^ coth(7rifcy) 
^ L2N +1 ' 
k = i K 

where N is a positive integer. In this connection, see also another 
paper of Lerch [39]. 

By the use of (2.15), other results in the sequel may be transformed, 
but we shall not specifically mention this. 

As the proofs show, Theorem 2.4 and Proposition 2.5 are valid for 
any non-zero integer N. We would like now, however, to examine the 
results for N < 0 in more detail. 

PROPOSITION 2.6. Let a and ß be positive numbers with aß = n2. Ij 
n> lis an integer, then 

(2.16) * = i e - l *=i e - l 

= {a- - (-/3)»}B2n/4n. 

PROOF. In (2.12) let N = —n, where n > 1. The finite sum on the 
right side of (2.12) is then empty. Multiply both sides of (2.12) by 
( -ß)nl2 and use the fact that [68, p. 268] 

(2.17) J(l - 2n) = - BJ2n (n > 0). 

Proposition 2.6 then follows forthwith. 

PROPOSITION 2.7. For n > 1 and odd, 

_ '2n 

^ e** - 1 4n " 

PROOF. Set a = ß = IT in (2.16). 

The latter two results were also stated by Ramanujan in his Note
books. Proposition 2.6 is found in [54, vol. I, p. 259, no. 14] and 
Proposition 2.7 is found in [54, vol. II, p. 171, Cor. iv]. Proposition 2.6 
is also found in [52, p. 269] or [53, p. 190], but no proof is indicated. 
Proposition 2.7, however, was first established by Glaisher [19] in 
1889. Proofs of the more general Proposition 2.6 have been given by 
S. L. Malurkar [44], B. M. Rao and M. V. Aiyar [55], Hardy [24], 
[25, pp. 537-539], Nanjundiah [47], Lagrange [36], and Grosswald 
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[21]. The special case n = 7 of Proposition 2.7 was stated in a letter of 
Ramanujan to Hardy, dated January 16, 1913 [53, p. xxvi]. A proof of 
Proposition 2.7 has been given by Watson [67]. Sandham [58] proved 
the special case communicated in the letter to Hardy and later [59] 
proved the general result. Special cases of Proposition 2.6 were also 
proved by Aiyar [2]. 

Propositions 2.6 and 2.7 arise also in the following way. As usual, 
let <rv (n) = ^d\n dv. Then, for y = 0 and n > 1, we shall see shortly 
that Proposition 2.6 is equivalent to 

S "2»- i (*)e- a* ' 
k=i 

(2.18) 

# 2 n 
= ( - l ) " t r 2 n S "2»-i(*)e-2"*/" + 1 T { 1 - (-1)"?/-2"}. 

For any v, 

(2.19) 2 ^(fc)«-**" = S 2 fre-^v = f d" 
* = 1 r = l d = l d = l e -1 

If we use (2.19) in (2.18), let t/ = aln, and suppose that aß = 772 with 
a, ß > 0, we obtain Proposition 2.6 once more. 

It is difficult to say who first proved (2.18). It, at least, predates 
Hurwitz's thesis [26] in 1881. Koshliakov [34] in 1928, the same year 
as Hardy's proof of Proposition 2.6 and Watson's proof of Proposition 
2.7, gives (2.18). There are also proofs of (2.18) by Guinand [22] and 
Chandrasekharan and Narasimhan [ 15, pp. 15-17]. 

PROPOSITION 2.8. Let n> 1 he an integer such that n ^ 0(mod 3). 
Then 

- k2N-l = B2n 

^ (- i)*e»*V3_ 1 4n ' 

PROOF. In (2.14) let N = ~ n, where n > 1. Employing (2.17), we 
are done. 

Proposition 2.8 was first established by Rao and Aiyar [55], [56]. 
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In fact, Propositions 2.7 and 2.8 are special cases of a considerably 
more general theorem. 

THEOREM 2.9. Let V be an elliptic transformation with fixed point 
y E. J/, and letn> 1 be an integer. Then if(cy + d)2n^l, 

- fc2"-1 _ B 2 n 

^ e~27Tiky — 1 4 n ' 

PROOF. In Theorem 2.1 set rx = r2 = 0 and m = — 2n, where n > 1. 
Then h(z, 2n, 0,0) = 0 by (2.5). Using (2.7) we find that (2.6) becomes 

(cz + d)~2nH(Vz,2n) = H(z,2n) + {1 - (cz + d)~2n}Ç(l - 2n). 

Setting z = y in the formula above and using (2.9) and (2.17), we de
duce Theorem 2.9 at once. 

COROLLARY 2.10. Let S denote the set of all the fixed points in Ji of 
all the elliptic modular transformations. Then S does not have a limit 
point in J/. 

PROOF. Fix an integer n > 1 and consider 

/<*)= S 
k2»-i B2n 

k = l e-2*** - 1 An' 

Clearly,/(z) is analytic on J/. By Theorem 2.9,/(z) has a zero at each 
fixed point y G J / . Since the zeros of an analytic function are isolated, 
Corollary 2.10 follows. 

Corollary 2.10 is a well-known result and can be found in [64, p. 
9], 

The foregoing results required that n > 1. We next examine the 
case n = 1. 

PROPOSITION 2.11. Leto^ß > 0 with aß = ir2. Then 

« « i ish +ß i ^n - =£« - J-
PROOF. In (2.12), put N = — 1. The result now follows upon the use 

of (2.17) for n = 1. 

If we set a = ß = 7r in (2.20), we deduce the following proposition. 

PROPOSITION 2.12. We have 
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00 k 1 1 
(2,21) ,5 e**- 1 = 24 ~ ~&T* 

Formulas (2.20) and (2.21) also appear in Ramanujan's Notebooks 
[54, vol. I, p. 257, no. 9; vol. II, p. 170, Cor. 1]. Proposition 2.12 is also 
stated by Ramanujan as a problem in [50], [53, p. 326]. Ramanujan 
gave a proof of (2.21) in [53, p. 34], [51, p. 361] that depends upon 
formulae from the theory of elliptic functions. However, in fact, (2.20) 
and (2.21) appear to have been first proved by O. Schlömilch [61], 
[62, p. 157]. Proofs of (2.21) have also been given by Watson [67], 
Sandham [58], Lewittes [40], [41], and Grosswald [21]. Malurkar 
[44], Rao and Aiyar [55], Lagrange [36], and Grosswald [21] have 
also given proofs of the more general result (2.20). The general trans
formation formulae for A(z, 2) were first proven by Hurwitz [26], [27], 
and so the latter author had also essentially established the last two 
propositions before Ramanujan. Another proof of the transformation 
formula for A(z, 2) in the case Vz = — Hz has been given by Guinand 
[22]. 

PROPOSITION 2.13. We have 

( 2 ' 2 2 ) J ( -1)V*V3_ i = 2 4 " 4TTV3 ' 

PROOF. Put N= — 1 in (2.14), and (2.22) easily follows after an 
elementary calculation. 

Proposition 2.13 has also been proved by Rao and Aiyar [55] and 
Lewittes [40]. 

Propositions 2.12 and 2.13 are, in fact, special cases of a much more 
general theorem. 

THEOREM 2.14. Let Vbe an elliptic transformation with fixed point 
y G J/. Then 

^ k _ 1 + c 
~ L e-^y - 1 24 4ni{(cy + d) - (oy + d)~1} ' 

PROOF. In Theorem 2.1, set rx = r2— 0 and m = — 2. From (2.5), 

h(z, 2, 0,0) = - J (cz 4- d)~l = -cl(cz + d). 
J = I 

Thus, with the aid of (2.7), (2.9), (2.17), and the above, we find that for 
Z = y, 
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{1 - (cy + rf)-2} c 
12 2;ri(c7 + d) ' 

The theorem now easily follows. 

Next, we examine Theorem 2.2 in the case m = 0. This gives the 
transformation formulae of log i)(z) for the two transformations — 1/z 
and — (z + 1)/%. 

PROPOSITION 2.15. Leta,ß > 0 u;i£/i a/3 = 7r2. Then 

" | , k(e»> - 1) " ï '"S" + f ' 
PROOF. Using (2.5), (2.8), and (2.9) in (2.6) with m = 0, we get 

fe ̂  k(e-^kVz - 1) fcfi fc^"2"** - 1) 

I t 77"f , . -, , x . 7TÌ 

- 2 l o g z " ^ ( * + 1/*) + J-
Setting Vz = — Hz and z = nila in (2.24), we arrive at (2.23) after 
simple manipulation. 

The last result, of course, is just a consequence of the transformation 
formulae of log7j(z) [6, pp. 167-168], and so it is difficult to attach any 
priority to it. Proposition 2.15 is found in Ramanujan's Notebooks [54, 
vol. I, p. 255, no. 8]. Nanjundiah [47] and Grosswald [21] have also 
proven Proposition 2.15. 

Many interesting results will now be obtained from the differentia
tion of (2.6) and (2.10). 

THEOREM 2.16. For z G J/, m integral, and Vz — —llz or Vz = 
- ( z + l)/z, 

mzm-l(l + (~l)m ) S p-ZràkVz _ 1 
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PROPOSITION 2.19. Let N ^ 0 be an integer. Then 

4Np»- { (1/2)£(2N + 1) + J (_1 ) î e
2L'_ ! } 

(2.29) + «-i(l - p2^-2) S —^2N 

k-i sin2(irkp) 

PROOF. In (2.25), let Vz = — (z + l)/z, and set z = p which is fixed 
by V. 

For N > 0, Proposition 2.17 is the analogue of Theorem 2.4, and 
Proposition 2.18 is analogous to formula (2.13). Equation (2.28), in 
fact, includes (2.13), for if we let N be an odd, positive integer in (2.28), 
we get (2.13) after some manipulation. Proposition 2.19 is, of course, 
analogous to Proposition 2.5 for N > 0 and is more general than the 
latter proposition which is vacuous for N = 0(mod 3). The first proof 
of (2.28) for N > 0 appears to be by Grosswald [20]. Further formulae 
for f(2N + 1) may be achieved by further differentiations of (2.6) or 
(2.10). The formulas for £(3) and £(5) that one gets after two differen
tiations of (2.10) were discovered by A. Terras [66] in a completely 
different way. A similar type of formula for £(3) was established by 
Koshliakov [35]. 

We now examine in detail some interesting special cases of the 
previous three results. First, we suppose that N = — n, where n > 1. 

PROPOSITION 2.20. For n > 0 and even, 

00 k2n~l ir ^ k2n _ B2n 

- - 2 j~Y e2irk — 1 In jf^{ sinh2(7r/c) An ' 

PROOF. In (2.28), set N = — n, where n > 0 is even, and then use 
(2.17). 
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h — mg — 2rfik Vz 

(2.25) * ' 

-ari(i + (-i)-) St ( e : J1_ 1 ) 2+ g'(*,-™) 

m+2 D / 1 \ D 

-(2.t)-' E ^ — f 7 ^ ( f c - i ) ( - ^ - 2 

^_n A:! (m + 2 — /e)! fc=0 

(2.26) g'fc - » ) = {(_-l)*" + ^ * " - ' ^ + 1), « ^ 0, 

PROOF. Differentiate (2.10) with respect to z. Note that for each V, 
V'(z) = Hz2. Use (2.7) and (2.8) to determine g '(z, - m ) . 

If m is odd, no new information is obtained from (2.25). Thus, we 
shall assume that m is even and put m = 2N. 

THEOREM 2.17. Let a,ß > 0 with aß = ir2. Le N be a non-zero 
integer. Then 

k-2N-l 
(1/2)£(2N+1)+ £ ; b — y } 

( - Ô ) - N + 1 Y — 
^ sinh2(ofc) v Pl £ sinh2(ßk) 

(2.27) + «-"•' S - ^ - r r - (~fi)'^ S -7 , . 

N + l D D 
= 02N + 1 V / — n f c + 1 2fe D2N + 2-2k (Oh — i)fyN + l~kRk 

À (2fc)!(2ZV + 2-2fc)! (2fc ^ * ' 

PROOF. Apply Theorem 2.16 with Vz = — 1/z, and set z = nil a. 
The final form is gotten after multiplying both sides of the resulting 
equation by ( - l)Nia~ 1/2/3~N +1/2. 

The next proposition is obtained by setting a = ß = TT in the pre
vious theorem. 

PROPOSITION 2.18. Let N ^ Obean integer. Then 

(i/2)£(2N + i) + 1 -^rr\ ) 
k = l 
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Proposition 2.20 then is the natural complement of Proposition 2.7. 
In fact, if we set N = — n, where n > 1 is odd, in (2.28), Proposition 
2.7 is achieved again. Proposition 2.20 can be found in Ramanujan's 
Notebooks [54, vol. II, p. 269, no. 5] and is stated in a letter from 
to be by Rao and Aiyar [55]. Other proofs have been given by Gross-
wald [21] and C. T. Preece [48]. 

PROPOSITION 2.21. Let n > 1 be integral. Then 

00 £ 2 n - l ffi °° £2n ß2n 
( 2 , 3 0 ) £ ( - I N V I T I + ^ (p-1 - p - 2 n + 1 ) fcS s i n2 ( 7 r f c p ) = ^ -

PROOF. In (2.29), let N = - n , n > 1, and use (2.17). 

COROLLARY 2.22. Let n > 0 and n = 0 (mod 3). Then 

" fc2"-' TTV3 - fc2" = B2n 

fcTi ( - l ) V ^ - l 4n ^ sin2(7rfcp) 4n * 

Thus, Corollary 2.22 is complementary to Proposition 2.8. If n = 
l(mod 3), Proposition 2.21 reduces to Proposition 2.8. However, if 
n = 2(mod 3), since sin2(7rfcp) is real, we deduce the following sur
prising fact from (2.30). 

COROLLARY 2.23. Let n > 1 with n = 2(mod 3). Then 

h2n 

Y — = o. 
^ sin2(7rfcp) 

In analogy with Theorem 2.9, one could easily state a general propo
sition that would include Propositions 2.20 and 2.21 as special cases. 
Merely, set m = 2n, n > 1, in (2.6), differentiate both sides of (2.6) 
with respect to z, and then let z = y. 

We consider now the case N= — 1. Putting N= — 1 in (2.28) 
simply gives another verification of Proposition 2.12. 

PROPOSITION 2.24. We have 

(2.31) 2 k2lsin2(7rkp) = l/6rr2. 
fc = i 

PROOF. In Proposition 2.19 let N = — 1. Employing (2.17), we find 
that 
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If we equate imaginary parts in (2.32), we arrive at (2.31). 

If we equate real parts in (2.32) and use (2.31), we deduce Proposi
tion 2.13 again. 

W e return to Theorem 2.16 to discern some very striking results for 
m = 0. Rewrit ing (2.25) for m = 0, we have, by the use of (2.26), 

y — 
(2.33) 

= z2 
Znikz iZ z2 I 

^ /„-Znikz _ 1\2 A~ OA 
k^ (e-^kz - l ) 2 4TT 24 24 ' 

PROPOSITION 2.25. Leta,ß > 0 with aß = IT2. Then 

00 00 

(2.34) a ]T csch2(afc) + ß £ csch2(ßk) = - 1 + (a + j8)/8. 
fc=i fc=i 

PROOF. In (2.33) let Vz = — 1/z and then pu t z = 7ri/a. Equat ion 
(2.34) is then obtained very easily. 

PROPOSITION 2.26. We have 

00 

2 csch2(7rfc) = 1/6 - 1/2TT. 
k = l 

PROOF. Set a = 0 = ir in (2.34). 

PROPOSITION 2.27. We /im;e 

00 

S csc2(7rkp) = 1/TTV3 - 1/6. 

* = i 

PROOF. In (2.33) let Vz = - ( z + l) /s , and then let % = p . Elemen
tary manipulat ion then yields the desired result. 

Equat ion (2.34) appears to have been first stated by Lagrange [36] . 
Proposition 2.26 was evidently first proved by Nanjundiah [47] , how
ever. It was later stated as a problem by Shafer [63] . Muckenhoupt 
[46] , Kiyek and Schmidt [33] , and Ling [42] have also given proofs. 
Kiyek and Schmidt [33] and Ling [42] , [43] have further summed 
higher powers of csch(7rfc). 

It is clear that one could produce further identities and summations 
of the types described above by successive differentiations of (2.6) and 
(2.10), but we shall not pursue the matter further. 
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3. In this section, several fascinating relations, some analogous and 
some generalizing those in § 2, will be derived from Theorem 2.1 when 
fj = 0 and 0 < r2 = r < 1. Define for k and m integral and w com
plex, 

/ 0 , v rt j x f 2i sin(27rkw), m odd, 
(3.1) f(k,-m,w)= «J /„ _ / v ; •/v ' ; 12 cos(27rfcu>), m even. 

Then from (2.1) and (2.2), we find that for z G 4 

/ o ^ rr/ ^ x ^ k-m-lf(k,-m,r) 

(3.2) H(%, - m , 0 , r) - £ ^ t L ' , ^ . 
For l m u ) § 0 andò* > 1, define 

oo 

(3.3) <p(w, s) = 2 eairtnwn-Ä# 

n = l 

If Im u> > 0, then s may be an arbitrary complex number in the defini
tion (3.3). Then, from (2.1), (2.2) and (3.3), for z E J/, 

H(z, — m, r, 0) 

00 00 00 00 

( 3 4 ) s= y V ^-m-1^27rtfc(n+r)z + ( — l ) m V V ]^-m-\e^rik(n-r)z 

" k-m-lf(K-m,rz) 

Leta < 0. Then by Hurwitz's formula for £(s, a) [68, p. 269], 

r » { £ ( s , r ) + e*£(s,-r)} 

= (2w)' r " sin(27rnr + TTS/2) 

sin(7rs) l^T, n1-* 
(3.5) 

n=l n * J 

= ( 2 T T Ì ) V ( T , 1 - 5). 

This provides the analytic continuation of <p(w, s), when w is real, into 
the whole complex «-plane. From (3.3) and (3.5), we deduce that 
(p(w, s), for each w with Im to ^ 0, is an entire function of s. 

If Ri is not an integer, we find from (2.4) and (3.5) that 

(3.6) g(z, - m, 0, r) = ( - l)m + »(cz + d ) " V ( - r , m + 1). 
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Suppose that Vz = —llz or Vz = —(z+ l)/z. In either case, RY 

= r, R2 = 0 andp = 0. Thus, from (2.5) we find that 

(3.7) »<*-*M-g ,VV^:V-. ) >- . 
THEOREM 3.1. For zG. <=H and an arbitrary integer m, we have 

m - fc-*-y(fc,-m,r) = * k-™-lf(k,-m,rz) 
ZJ „-2mikVz _ 1 2LI p-2rfikz _ 1 

(3.8) + <p(rz,m + 1) + (-l)m 4-1zm<^(-r, m + 1) 

( ° à « (m + 2-fc)!* " 
PROOF. Use (3.2), (3.4), (3.6), and (3.7) in Theorem 2.2. Then em

ploy the property [ l , p . 804] Bk(l - r) = (-l)*Bfc(r). 

We give together the proofs of the next two theorems. Quite re
markably, the first shows that the Fourier series of the Bernoulli poly
nomials are easily deduced from Theorem 3.1. 

THEOREM 3.2. Let N be an integer and let 0 < r < 1. Then, for 
N g O , 

2(2N+ 1)!(-1)* + 1 - sin(27Tw) 

for N ^ 1, 

(3.9) B2N+l(r) - ^ ^ £ n2N + i 

2(2N)\(-1)N + Ì ^ cos(27rnr) / Q i m D , v zziv;i - i r " v COS^TT; 
(3.10) B2N(r) = — X — 

THEOREM 3.3. Le£ N be an integer, let 0 < r < 1, and Ze£ a,/3 > 0 
witfi aß = TT2. 77ien if N è 0, 

L k=l K k=l e l J 

«an, - ( - ^ { a^J /p^ f * -"^T"} 

fc.o (2fc)! (2N + 2 - 21k)! P ' 



MODULAR TRANSFORMATIONS 167 

ifN â 1, 

«--<^f,^\f/linlT>} 
,3.12) .(-1,*-».« { m j ç - i * - y y n 

_ 02N-1 V /_ l \ f c B 2fc + l ( f ) g2N-2fc ^-fcflJc 

fcTo ' (2fc + 1)! (2N - 2fc)! P ' 

PROOFS. In Theorem 3.1 let Vz = — Hz and put z = nila. Then 

/ •/ ,m V fc"m-]/(fc>-^r) - fc-*-y(fc,-m,irîr/a) 

W 2. —^rri— = 2, ^fc^x 
fc-i e i k = ì e L 

(3.13) + ^(77-ir/o, m + 1) + ( - l )m + 1 (77-ila)m<p(-r, m + l) 

"(2,Tl)
 fc?0 fc! (m + 2 - *)1 M a ) * 

First, suppose that m is even and put m = 2N. Using (3.1) and 
multiplying both sides of (3.13) by (—ß)~N, we get 

_N - fc-^-icos(arfcr) _ N ^ fc-^-^cosh(^r) 
Z t t Z 2afc _ 1 ~ ^ ^ 2J e2ßk _ 1 

00 

+ ( - £ ) " " S Jfc-2w-1e-8',*r - a-N<p(-r, 2N + 1) 
fc = i 

(3.14) 
2N + 2 D /*.\ D 

_ 02N + 1 V jfc J M H D2N+2-k ^v + i_fc/2ofc/2 

fcto *! (2N+2-fc)r * • 
Let N ̂  0. Equating real parts in (3.14), we arrive at (3.11). Equating 
imaginary parts in (3.14), we deduce (3.9). 

Secondly, suppose that m is odd and put m = 2N — 1. Using (3.1) 
and multiplying both sides of (3.13) by ( - 1 ) ^ 3 - ^ + 1/2̂  w e obtain 

- k-^sin(2nkr) 

(3.15) = 2 ( - l ) - , - ™ i * - * y W 
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oo 

+ (-lyß-N + W £ k-2Ne-2ßkr _ i a -N + l /2^(_r )2iV) 
fc = l 

2N+1 D / r \ D 

À kl (2N+l-k)r P • 

If we equate real parts in (3.15), we get (3.12), and if we equate 
imaginary parts in (3.15), we get (3.10). 

Let us examine in detail (3.11) when JV = 0. Putting N = 0 in (3.11), 
for aß = 77-2 we arrive at 

(3.16) 

" cos(27rfer) - cosh(2fffcr) ^ e~^kr 

- E V " ^ - «/6 + ß2(r)ß. 
Now 

°° <~-2/3fcr 

* 

fc = l 

and 

X - r - = - log(l - e"2'3') = ßr - log{2 sinh(ßr)} 

" cos(27j-fcr) , , „ . . , , 
S V " ^ = - log{2sin(^r)}. 
* = i k 

Since also B2(r) = r2 — r + 1/6, (3.16) becomes 

- cos(2n*r) _ ^ cosh(2fffcr) 

~ , fc(e2°* - 1) Ä fc(e2"* - 1) 
(3.17) 

-•* —+** + h«{^,} 
We will put (3.17) in a slightly different form. Replace a by a2 and 
ß by ß2, and let r = v\lß in the new notation for ß. We then obtain 
the following version of (3.17) which evinces more symmetry. 

PROPOSITION 3.4. Let a,ß > 0 with aß = TT. Suppose that 0 < 
arj < n. Then 

- cos(2qqfc) _ » cosh(2ßrik) 
^xk{e^k- 1) £ fc(e2*«k- 1) 

(3.18) 
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Formula (3.18) is found in Ramanujan's Notebooks [54, vol. I, p. 257, 
no. 12; vol. II, p. 169, no. 8 (ii)]. A proof of (3.18) has been given by 
Lagrange [36]. 

If we put a = ß = ir and r = 1/2 in either (3.16) or (3.17), we get 

Theorems 3.2 and 3.3 are generalizations of Theorems 2.3 and 2.4. 
In fact, if we let r tend to 0 in (3.10) and (3.12), we obtain Euler's 
formula again in each case. Letting r tend to 0 in (3.11), we get 
Ramanujan's formula (2.11) once more. Formulas (3.11) and (3.12) are 
natural generalizations of (2.11) and may be considered as "Ramanujan 
formulas" for 

* cos(27rkr) ~ sin(27rfcr) 
2 , k2N + i a n d 2. p^ > 
fc=i * k=i K 

respectively. 
Putting r = 1/4 in (3.9), using the fact that [ 1, p. 806] 

(3.19) Bn(l/4) = - n 4 - % _ ! ( n ^ 1), 

where Ej is thej-th Euler number, and using (1.1), we have 

(2ir)2N + l(— \)N + i 

L ( 2 N + 1 ) = 2(2N+1)! W 1 / 4 ) 

_ J T T / 2 ) ^ + I ( - 1 ) N 

2(2N)! 

which, of course, is well-known [ 1, p. 807]. 

PROPOSITION 3.5. Let N s= 1 be integral, and let a, ß > 0 with aß = 
TT2. Then 

«-»+»* { (1/2)L(2N) + | ( ffff+.V} 

(3.20) =(-l)Nß-N + i'2 J sech(ySfc/2) 
t - i ^ 

E>2k ^2N-2i + 2!"" l?<-1>"(#<2i^W^W ' 
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PROOF. Put r = 1/4 in (3.12) and use (1.1) and (3.19). After simplifi
cation we get (3.20). 

Equation (3.20) is also in Ramanujan's Notebooks [54, vol. I, p. 274; 
vol. II, pp. 177-178, no. 21 (iii)]. The first proof of (3.20) was given by 
Chowla [16]. 

PROPOSITION 3.6. Let N i^ 1 be integral, and let a,ß > 0 with aß = 
ir2. Then 

( 1 / 2 ) ( 2-2N _ m 2 N + 1) + £ ( > j 
k=i e J- J k = l 

(3.21) = ( M X - « - » f s g f f l 

- 2™ I <-1«2'-i*- « (fe (J^-*2*)!°""^ 
PROOF. Put r = 1/2 in (3.11). Recall that for cr > 1 

2 ( - i y * - s = ( 2 ' - - i ) £ « 

and that [ l ,p.805] 

(3.22) B2k(ll2) = ( 2 ' - » - l)B2fc. 

After some simplification, (3.21) is readily achieved. 

By putting a = ß = n in (3.14) and (3.15), we easily deduce the next 
proposition. 

PROPOSITION 3.7. Let N be any integer and let 0 < r < 1. Then 

" fc-^-icos(arfcr) = » fc-^-*cosh(arfcr) 

00 

(3.23) + ( - 1 ) " 2 fc-2w-1«-**' - Re{<p(-r,2N + 1)} 

à (2fc)! ( 2 N + 2 - 2 f c ) ! 

and 
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- fc-^sin(arfcf) = ^ k-2»sinh(2nkr) 

(3.24) + ( - 1 ) " J ) k~2Ne-^kr+ lm{ip(-r,2N)} 
fc = l 

- ( 2 , p y ( _ 1 ) f c ^ ± i W _ Ì 2 0 L _ 4 
fcTo (2fc + 1)! (22V - 2k)\ 

If N < 0, Re{<p( —r, 2N 4- 1)} 7nat/ foe replaced by <p( — r, 2N + 1) and 
lm{<p( — r,2N)} may be replaced by — i<p( — r, 2N) in £/ie above 
formulas. 

Interesting consequences will now be deduced from the preceding 
formulas when N § 0 . Some facts about Eulerian numbers will be 
needed. For A ^ 1, the Eulerian numbers H n [ A ] , n ^ 0 , may be 
defined by 

1 - A »a» j^ì - 2, "-W fi-
where |x| is sufficiently small. Apostol [4, p. 164] has calculated 
<p( — r, — n), where n is a non-negative integer. Rewriting his findings 
in terms of Eulerian numbers, we find that 

<^> W - r . - . ) - ' - 1 ^ - ^ . 

PROPOSITION 3.8. Let 0 < r < 1 and let n be an integer. If n > 1, 
then 

(3.27) 

- ( - 1 ) « V fc2n-lg-2^ = * * 2 n - L * J . 

fc = l ^ X 

if n ê 1, then 

- fc2"sin(arfcf) - fc^sinh(27rfcr) 
2 Z . « « 1 + 2 ( - " 1 ) n Z « _ i 

(3.28) 

- ( - 1 ) " V fc2ne-^r=_f " f a i 8 J , 
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PROOF. Put N= - n in (3.23) and (3.24) and use (3.26) to obtain 
(3.27) and (3.28), respectively. 

PROPOSITION 3.9. Ifn > lis integral, then 

2 S 2 j _ 1 ("I)" E ^-»cschfr*) 
k = l e 1 k = l 

= (22" - l)B2n 

2n 

PROOF. Put r = 1/2 and N = - n in (3.27) and use the fact that 
[ H p. 257] 

tfn-i[-l] = 2(1 - 2»)Bn/n ( n i l ) . 

An equivalent formulation of Proposition 3.9 has been given by 
Glaisher [19]. 

PROPOSITION 3.10. Let 0 < r < 1 and a,/3 > 0 with aß = TT2. Then 

" kcos(2nkr) " kcosh(2ßkr) 

« 2 ^ _ ! + ß S ^ _ ! 
(3 29) 

= -1 /4 + (l/8)(acsc2(7rr) - 0 csch2(/3r)). 

PROOF. In (3.14) put N = — 1. An elementary calculation shows that 

]£ fce-2^fcr = (1/4) csch
2(j3r). 

k = l 

From (3.25), H{ [A] = -1 / (1 - A). Hence, from (3.26), 

<p(-r,-l)= -(l/4)csc2(7rr). 

With these calculations, (3.29) is now immediate. 

Proposition 3.10 is due originally to Schlömilch [61], [62, p. 157]. 
The special case when a = ß = TT is given by Watson [67]. Formula 
(3.29) may be written in a slightly more symmetric form by employing 
the device used to produce (3.18). 

COROLLARY 3.11. We have 

S 4 ï F r 7 + <1/2) 2 k csch(Trfc) = 1/8 - 114a. 

PROOF. Put a = ß = ir and r = 1/2 in (3.29). 
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PROPOSITION 3.12. LetO < r < 1 and a,ß > 0 with aß = n2. Then 

ll9 A sm(2wkr) » smh(2ßkr) 
" ?, e^-1 P f. e^k - 1 

(3.30) 
= (l/4)(/31/2coth(/3r) - a1'2 cot(irr)) - (l/2)r)81/2. 

PROOF. Put N = 0 in (3.15). From (3.26), 

^ - r > ° ) = glSTITi = -(l/2)»cot( f fr) - 1/2. 

Of course, 

1 
E ß -2ßkr = 

,,2/îr _ V 
fc = l ^ X 

Putting the above values in (3.15), we obtain (3.30) after a little sim
plification. 

The first proof of Proposition 3.12 is due to Schlömilch [61], [62, p. 
156]. Another proof has been given by Lagrange [36]. 

Formula (3.30) takes a somewhat more symmetric shape if we re
place a by a2, ß by /32, and let r = r)lß. Then for aß — n and 0 < 
off) < TT, (3.30) is transformed into 

- sjn(2aiyfc) ~ sinh(2ßrik) 

(3.31) 
= (1/4)0 cothOSij) - (l/4)acot(arj) - (1/2>|. 

In the latter form, (3.31) is found in Ramanujan's Notebooks [54, vol. I, 
p. 257,259, no. 13; vol. II, p. 169, no. 8(i)]. 

We have only proven identities in this section in the case Vz = 
— Hz. Theorem 3.1, of course, can be also used to generate identities 
involving p. Further identities may be achieved by differentiating 
(3.8). Lastly, we mention that beautiful identities may also be ob
tained from Theorem 2.1 when 0 < r{, r2 < 1. 

4. In this section we derive many interesting series relations in
volving characters. For one particular character, that character as
sociated with L(s), the results are largely due to Ramanujan and can 
be found in his Notebooks. We shall confine our results to the case 

First, we introduce some definitions and notation in order to state a 
result of [11] in the case Vz = — Hz. As before, let rY and r2 be real. 
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Let Xi and X2 be primitive characters, each of modulus k. Extend the 
definition of Xx to the set of all real numbers by defining Xi(r) = 0 if r 
is not an integer. For z G J / and m integral, define 

H(z, -m;X 1 ,X 2 ; r 1 , r 2 ) = A(z, -m;Xl,X2;rl,r2) 

+ X 1 ( - l )X 2 ( - l ) ( - l ) m A(z , -m;X l 7X 2 ; -rl9 - r 2 ) , 

where 

A(z, - r a i X ^ ; ^ , r2) 

(4 2) 

Let G(z, X) denote the Gaussian sum, 

G(z,X) = k^[X{j)^'k, 

and put G(1,X) = G(X). For primitive characters, we have the funda
mental result [6, p. 313] 

(4.3) G(X)G(X) = X(-l)fc. 

The generalized Bernoulli polynomials Bn(x, X), n ^ 0, are defined 

by 

(4.4) Bn(x, X) = * - ' *2 X0')Bn ( ^ ) ' 

and the generalized Bernoulli numbers Bn(X), n = 0, are defined by 
Bn(X) = B„(0, X). In the sequel, without explicitly saying so, we shall 
repeatedly use the facts that for j ^ 0 [ 10], 

B2, + i(X) = 0 (Xeven) 
and 

B2 j(X)=0 (Xodd). 

THEOREM 4.1. Let z G J / and let m be an integer. Suppose that 

Xi(fi) = Jfefo) = °- Then 

(-zkl2wi)mG(X2)H(-llz, -n»;Xi,X2; n , r2) 

= Xi(-l)(-*/2jrOmG(Xi)H(«. -m;X2;Xi;r2, -r{) 
(4.5) 

+ X 1 ( - l ) X 2 ( - l ) ( - l ) m 2 w i - " y 2 B / ~ r 2 ' X 2 ) Bm^-jC-n.X!) 
/To J'' (m + 2 - j ) ! 
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PROOF. In Theorem l(i) of [11], let s = — ra and Vz = — 1/z. Using 
(4.4) in the calculation of f(z, —m; rur2;j, fi, v) in (3.2) of [11], we 
obtain (4.5). 

THEOREM 4.2. Let m be an integer and suppose that 
Xi( - l )X 2 ( - l ) ( - l ) m = 1. ThenforzGJJ, 

(4.6) . « - I X - t t f M W J M f c ^ 
V = 1 

+ 7n £ j! (m + 2-;)! ( *' • 

PROOF. In (4.5), let rx = r2 = 0. Letting /i = rfc + A , 0 ^ r < o o 5 

0 = î £ = î fc - 1, and using the hypothesis X 1 ( -1)X 2 ( -1) ( ~ l ) m = 1, 
we find from (4.1) and (4.2) that for z G J/, 

H(z, - m; X1? X2; 0,0) = 2A(z, - m; Xl5 X2; 0,0) 

oo fc-1 oo 

= 2 5) X^)*'"™-1 $) X^e2""1*'* ^ e2**»* 
v=l i=l r=0 

= 2 y X2(y)y-"'-1G(yz,X1) 

Using the above calculation in (4.5), we conclude (4.6) upon the 
realization from (4.4) that B0(X) = 0. 

Let us further specialize by setting X = Xi = X2. Hence, m is now 
even, and so we write m = 2N. Let z = irilka, where a > 0, and 
determine ß > 0 by the relation aß = 7r2/fc2. Thus, we deduce the 
following theorem. 

THEOREM 4.3. Let N be an integer. Let a,ß > 0 satisfy the relation 
oß = 7T2/fc2. Then 
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„-„G^l^-Wak^X) 

(4.7) = X ( - l ) ( - / 3 ) - " G ( X ) £ 

1 — e~'2ak" 

X(v)v-^-iG(ißkvh,X) 
1 _ e-wu 

-22Nk 2yl (-i)i Bffl B™+z-iW oF+i-jii&n 
£ K y j\ (2N+2-j)l " ' 

THEOREM 4.4. Let N be an integer such that X(—l)(—l)N = — 1. 
Then 

(4.8) 

A X(v)v-2N-lG(iv,X) 

= -(l/4)(2Wfcr + 'X(-l)G(X) Yi-iy^f- {^
Nl22-))\ 

(_l)(n-l) /2 ; 

o, 

(_ 1 ) ( n
2 - lV8 

o, 

n odd, 
n even, 

nodd, 
n even. 

PROOF. Let a = ß = IT Ik in Theorem 4.3 and employ (4.3). 

We now examine some examples of the above results for certain 
characters. Throughout the remainder of the paper, X!,X2,X3, and X4 

shall denote the following primitive characters. First, 

and 

X2(n)= { 

Next, X3(n) = (f) and X4(n) = (f), where (f) and (-f) denote 
Legendre symbols. Xx andX3 are odd while X2 andX4 are even. 

First, we discuss the implications of our results for X^ We have 
G ^ X i ) = e-2n*H _ g-ftrx/4 _ 2e-**sinh(7rx/2) and G(XX) = 2i. From 
(4.4), for odd j , 

(4.9) Bjfa) = 4>-'{B,(l/4) - 3,(3/4)} = - j E ^ / 2 , 

where we have used (3.19) and the fact that 8,(1/4) = -B,-(3/4) [1, p. 
806]. 

PROPOSITION 4.5. Let a,ß > 0 with aß = 7T2/16. Then if N is any 
integer, 
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(4.10) + ( -0) -" 
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(-1)" 
J
0 {2v + l) 2 i V + 1cosh{2(2i^ + l)a} 

( -1 ) -
, . o (2" + l) 2 N + 1eosh{2(2» + 1)0} 

&K r(2j)\(2N-2j)\* >*' 

PROOF. In (4.7), let X = X^ Use (4.9) and the calculations im
mediately prior to (4.9). 

Formula (4.10) is also found in Ramanujan's Notebooks [54, vol. I, 
p. 279; vol. II, p. 177, no. 21 (ii)]. The first published proof of (4.10) is 
due to Malurkar [44]. Nanjundiah [47] has also proven (4.10). For
mula (4.10) may be considered as an analogue of (2.11). 

PROPOSITION 4.6. Let M be any integer. Then 

(4.11) 

V (~1)'*ech{(2y + 1W2} 
„ti (2*+!)•«'+' 

2M FF 
- ( 1 , 4 ) ( W 2 ) — £ ( - V ( ^ _ > M = ! _ . 

PROOF. In (4.10), put N = 2M, where M is an integer, and set a = 
ß = IT74. Formula (4.11) follows forthwith. 

For M > 0, Watson [67], Sandham [59], and Riesel [57] have also 
given proofs of (4.11 ). 

PROPOSITION 4.7. Let a, ß > 0 with aß = 7T2/16. If n is any positive 
integer, then 

- (-1X2*+1)»-' ^ ( - m 2 y + l ) * . - i _ 

„tó cosh{2(2»' + l)o} V P! „tj, cosh{2(2v + 1)0} 

PROOF. Let N = - n in (4.10). 

This last result is stated explicitly in Ramanujan's Notebooks [54, 
vol. I, p. 276; vol. II, p. 172, no. 14]. 

PROPOSITION 4.8. Let n be any positive integer. Then 

- ( _ m 2 y + ! ) * . - ! = 

„ t i cosh {(2*+ i y / 2 } 

PROOF. Put M = - n in (4.11). 
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Proposition 4.8 was stated as a problem by Ramanujan in [49]. It 
is also stated in Ramanujan's Notebooks [54, vol. II, p. 172, Cor. to no. 
14]. Besides the proof of Malurkar [44], proofs have also been given 
by Chowla [16], Nanjundiah [47], Sandham [59], and Riesel [57]. 

PROPOSITION 4.9. Let a,ß > 0 with aß = TT2/16. Then 

~ (-l)"sech{2(2^ + l)q} 

h 2» + i 
- (-l)-sech{2(2*+ lfr} _ 

\?o ^ -W4 

PROOF. Put N = 0 in (4.10). 

This last result is found in Ramanujan's Notebooks [54, vol. I, p. 
277]. 

Secondly, we examine examples involving X2. 

PROPOSITION 4.10. Let M be any integer. Then 

" ( - l )^+P/2 s i n h{(2i ,+ iy /4} 

,=o (2" + l)4M+3cosh{(2i'+ l)jr/2} 

(4.12) 

K ' Â (2j)! ( 4 M + 4 - 2 / ) ! -

PROOF. We have 

G(ÌX,X2) = e - 7 r X / 4 - e-3»*/4 _ e-57Tx/4 + 0-7^/4 

= 2e"7rX{cosh(37TJc/4) - cosh(7rx/4)}, 

and G(X2) = 23/2. Apply Theorem 4.4 and note that N must be odd. 
Thus, set N = 2M 4- 1. Since 

G(ix,X2) sinh(7Tx/4) 
1 - e-2^ cosh(7Tx/2) ' 

formula (4.12) follows. 

An equivalent formulation of Proposition 4.10 is due to Chowla [16]. 

PROPOSITION 4.11. Let n he any positive integer. Then 

» (-l)^+lV2(2y + l)4n-3s inh{(2^ + l>r/4} = 

u% cosh{(2i>+l>/2} 



MODULAR TRANSFORMATIONS 179 

PROOF. Put M = —n, where n > 0, in (4.12). 

PROPOSITION 4.12. We have 

y ( - l ) ^ + 1 ^ i n h { ( 2 , + lW4} = 

„to (2* + l)*x>sh{(2i> + l>r/2} ' 

PROOF. From (4.4), B2(X2) = 2. Apply (4.12) with M = 0. 

Thirdly, we apply our theorem to X3. 

PROPOSITION 4.13. Let a,ß > 0 with aß = 7T2/9. Then if N is any 
integer, 

a-N V (iL) _ s i n h M ^ 
~ \ 3 / v v=l .„ , .2iV+1sinh(3ai') 

s i n h ^ ) 
(4.13) + (-»-« ? ( | ) - ^ 

sinh(3/3»') 

(2 , /VJ) 2 j ( ^ (2;. + 1 } ! ( 2 N + l - 2;)! ^ ^ 

PROOF. Apply Theorem 4.3. Note that G(X3) = iV3, and G(ix,X3) = 
2e_,rtrsinh(fl-x/3). Formula (4.13) then readily follows. 

PROPOSITION 4.14. Let M be any integer. Then 

- /»A sinhfryfl) 
£. \ 3 / p**+isuùk(vv) 

(4.14) 
V3(2W3)^+' "f Bg,+1(x3) B4M+i-a,(x3) 

4 i-o (2-/ + ! ) ! (4M + 1 - 2/)! * 

PROOF. Let N = 2M and a = ß = ir/3 in (4.13). 

PROPOSITION 4.15. Let n be any positive integer. Then 

- (3» + l)4"-'sinh{(3t' + l>r/3} 

v% s inh{ (3^+ lV} 

" (3v + 2)4"-1sinh{(3^ + 2>r/3} 

~ „ f 0 sinh{(3v+2)ir} 

PROOF. Let M = -n, n > 0, in (4.14). 
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PROPOSITION 4.16. We have 

sinh(7T^/3) 

PROOF. From (4.4), BX(X3) = - 1 / 3 . Now let M = 0 in (4.14). 

Lastly, we consider identities forX4. 

PROPOSITION 4.17. Let M be any integer. Then 

.?. G) 
cosh(37T*>/5) — cosh(7T /̂5) 

v = l w ^4M+3sinh(7T^) 

= V5(2;r/5)^+3 2M + 1 B -̂(X4) g4M-2; + 4(X4) 

4 i- i (%')! ( 4 ^ - 2/ + 4)! ' 

PROOF. Apply Theorem 4.4. Here G(X4) = V5 and G(ix,X4) = 
2e~7T*{cosh(37rx/5) — cosh(7Tx/5)}. The result now follows easily. 

In analogy with our work in § 2, we can obtain further formulae 
from differentiating (4.6) with respect to z. For example, one can ob
tain a general formula for X( —1)( —1)N = ± 1 that includes Theorem 
4 . 4 w h e n X ( - l ) ( - l ) N = - 1 . 

Next, series relations will be derived when rx = 0 and 0 < r2 = r < 
1 in Theorem 4.1. Using (4.1) and (4.2) and letting /x = rk + I, 0 ^ 
r < o o , 0 ^ £ ^ f c — 1, we easily deduce that for z G J / , 

(4.15) 

and 

(4.16) 

H(z, -m;X,X;0, r) 

^ X(y)y-m- '/(»>, - m , r/fc)G(yz, X) 

H(z, -m;X,X;r ,0) 

~ X{v)v-m-{f{v, -m,rzlk)G(vz,X) 

where f(v, — m, w) is defined by (3.1). 

THEOREM 4.18. Let m be any integer, ct,ß > 0 with aß = ir2lk2, 
and0< r< 1. 77ien 
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_m/2 y X(v)y-m-y(y, -m,rlk)G(ùJa>hr,X) 
a L 1 - e***» 

• i 

V = 1 

(4.17) 

- 2m + 1 GM "V2 lì ^ ' ^ Bm + 2-j(X) ,m+2_mßj/2 
W À il (m + 2-j)! P ' 

PROOF. In Theorem 4.1, put X = Xt = X2, I"! = 0, r2 = r, and z = 
jrt/ofc. From [10], 

Bj(-r,X) = X ( - 1 ) ( - iyBj(r,X) (/ ̂  0). 

Using the above, multiplying the equation resulting from (4.5) by 
(-2a1/2)m/G(X), a n ( j t n e n using (4.3), we arrive at (4.17). 

If we put a = ß = ir Ik in (4.17), we derive the following theorem. 

THEOREM 4.19. Let m be any integer and suppose that 0 < r < 1. 
Then 

" X(p)p-m~lf(p9 -m,rlk)G(iv,X) 
2J 1 _ p-2arv 

(4.18) = X(-l)e->* i ^>-m-^-^nlk)GiiV,X) 

- csxw I » *f- ̂ fâfir 
If we let m be even and let r tend to 0 in (4.17) and (4.18), we obtain 

(4.7) and (4.8), respectively. 
We now consider a couple of examples to illustrate the two previous 

theorems. 
From (4.4), 

(4.19) mx,Xx) = 4/"HBi((x + l)/4) - Bj((x + 3)/4)}, 

Furthermore, if Ej(x), j = 0, denotes the j - th Euler polynomial, we 
know that [ l , p . 806] 

(4.20) Ej^ix) = 2-{Bj((x + 1)12) - Bj(xl2)} (j § 1). 
J 

From (4.19) and (4.20), we deduce that 
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(4.21) .B,(*,Xl) = - 2 * - ^ _ , ( ( x + l)/2) (j^l). 

PROPOSITION 4.20. Let N be an arbitrary integer and let a, ß > 0 
with aß = 7T2/16. Then 

_N - ( - l ) - c o s { ( 2 ^ + l M 2 } 
a „_o (2" + l)2N+1cosh{2(2K + l)o} 

(422) +(-B)-" f (-V^Wv+Dßr} 
K' ' y P! , = o ( 2 l ' + 1)m+lcosh{2(2»>+ 1)8} 

À ' (2;)! (22V-2»! " 

and 

„-N + 1/2 V ( - l ) " s i n{ (2^+ iy r /2} 
„ t i (2» + l)2wcosh{2(2v + 1)«} 

(423) - ( - 1 ) N « - N + I , 2 f ( -D-s inh{2(2,+ l ) ^ } 
V ; V ' P v% (2v+ l)2NCosh{2(2y + 1)0} 

= _ 2 2 N - 2 y f-iV22J Ey-^r + 1 ) / 2 ) ^ " - ^ qN-J + mßi 
£ / r ( 2 / - 1 ) ! ( 2 N - 2 ; ) r ^ 

PROOF. In (4.17), let X = Xp Use the calculations prior to Proposi
tion 4.5. Using also (4.9) and (4.21), we find that ~ 

-m/2 V ( - l ) ' / ( 2 * + l , - m , r / 4 ) 
" „ t i (2" + 1 )m + 'cosh {2(2v + l)a} 

/ .« .x -,7« „ ^ ( - l ) f ( 2 f + 1, -m,rßilrr) 
/4 24Ì = — g-ir»"/2fl-m/2 V" —i ü_i : L_tU—i— 
v ' ; p „ t 0 ( 2 f + l ) m + 'cosh {2(2*+1)8} 

- ' Y 1 »J + »2m+> EÌ~l^r + 1^2^ £™ + W „(m+2-7)/2o//2 
À ( i - l ) I ( m + l - ; ) ! ^ • 

Consider first the case when m is even. Put m = 2N in (4.24), use (3.1), 
and in the finite sum on the right side of (4.24) replace j by 2/ 4- 1. 
Formula (4.22) then follows forthwith. If m is odd, put m = 2N — 1 
in (4.24), use (3.1), and in the finite sum on the right side of (4.24) 
replace j by 2/. We then get (4.23). 
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If we let r tend to 0 in (4.22), we obtain Proposition 4.5 again, since 
[l ,p.804] 

(4.25) Ej=2iEj(ll2) ( / = 0 ) -

The preceding formulas assume a somewhat more symmetric shape 
if we change variables in a manner similar to what we have done 
before. For example, let us examine (4.23). Replace a by a2/4, ß by 
/32/4, and, in the new notation, let r = 2citr. Thus, for aß = w and 
a < CT72, we now have 

(-l)"sin{(2i;+ l)q} 
a 

-2N + 1 

(4.26) - ( - i j A p - a v + i J) 

y 
„tó (2f + l)2Ncosh{(2»> + l)a2/2} 

(- l )ysinh{(2y+ l)ß} 
% (2v + l)2^cosh{(2v + l)j82/2} 

jf, ' (2 / - -1)! (2N-2/-)! a " • 

If we let N = 0 in (4.26), we obtain 

^ ( - l )"sin{(2i;+l)a} " (-l)-sinh{(2^ + l)j3} 
a

r t o cosh{(2v+l)a2/2} P „to cosh{(2* + l)02/2} ' 

which may be found in Ramanujan's Notebooks [54, 
vol. I, p. 276; vol. II, p. 171, no. 12]. 

We shall not write out explicitly any more examples to illustrate 
Proposition 4.20. However, the cases of (4.22) and (4.23) when N S O 
are especially striking. If we let a = ß = ir/4 in (4.22), let r tend to 0, 
and use (4.25), we obtain Proposition 4.6 if N is even. 

PROPOSITION 4.21. Let N be any integer. Then 

" (-l)-"-+1"2cos{(2y + l>rr/4}sinh{(2t'+ l > / 4 } 
„ti {2v + l)2iV+1cosh{(2«' + l> /2} 

(4.27) -(-iy S ,<,.... i x« , + . 
(-l)-<"+1>^cosh{(2t'+ iyr/4}sinh{(2^+ l>r/4} 

(2v + l)2'v+'cosh{(2»' + i y / 2 } 

K ' ~ / r (2/)! ( 2 I V + 2 - 2 J ) ! 

and 
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" (-1)"<"+I>'2sin{(2y + l)wr/4}sinh{(2y + l>r/4} 
„ t i (2v + l)2"cosh{(2«; + 1V/2} 

^ (-1)'<"+I>'2sinh{(2g + l>r/4}sinh{(2*'+ i y / 4 } 
( ' „ t i (2v+ l)2"cosh{(2* + 1V/2} 

= V2 (TT/4)2W " f * ( - 1 ' ' + ') B ^ + l ( f , X 2 ) B 2 i V-2 j ( X 2 ) 
V2W4) 2- ( ; ( 2 , + 1 ) , ( 2 N - 2 / ) ! -

=0 

PROOF. Apply Theorem 4.19 and use the calculations from the proof 
of Proposition 4.10. 

If we let N be odd and let r tend to 0 in (4.27), we get Proposition 
4.10. 

We shall conclude the paper with some examples of another class of 
series identities involving primitive characters. As usual, let L(s,X) 
denote the Dirichlet L-function associated with X. In [11, Theorem 4], 
we proved the following theorem. Special cases were first proved by 
Chowla [16]. See also the papers of Katayama [30], [31]. 

THEOREM 4.22. Let N be any integer. IfX is even, then 

00 Giiv X)p~2N~l 

L(2N + 1,X) = (2/fc)(-l)"G(X) £ V - _** 

^ X(v)i>-'2N-1 

+ (2M S (-iy + it(2j)L(2N + 2 - 2/,X); 
j=o 

ifX is odd, then 

L(2N,x)=(2t/fc)(-i)^+'G(x) s ; : ;_^ 
y = 1 

(4-29) - 2 E 5^T 

+ (2/TT) £ ( - i y + '£(2/)L(2N + 1 - 2j,X). 
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We shall work out a few beautiful examples that can be deduced 
from this theorem when N = 0. 

PROPOSITION 4.23. Let nbea positive integer. Then 

(430) E , = ( - 1 ) - y — ^ 4 y ( - i K f r + D * 
(4.3Ü) h2n ( 1) 2 , c o s h ( 7 r J , / 2 )

 4 Z o ^ ( 2 , + 1 ) _ x • 

PROOF. Apply (4.29) with X = X1? and let N = - n with n > 0. Use 
the calculations prior to the proof of Proposition 4.5. If j is a positive 
integer, then [10, § 4] , [37] 

(4.31) L ( 1 - 7 , X ) = -Bj{X)lj, 

and so by (4.31) and (4.9), L ( - 2 n , Xx) = E2n/2. Formula (4.30) now 
follows immediately. 

An alternative proof of (4.30) may be obtained by putting a = ß = 
IT and r = 1/4 in (3.15) and observing that <p(—1/4, — 2n) = 
— iL( — 2n,Xi). Formula (4.30) was first shown by Chowla [16]. 

PROPOSITION 4.24. Ifn is any positive integer, then 

• (-1)^+l)/2(2„+ 1)2»-1 
^ e2n(2v+l) _ I 

(-1)" + 1V2 " sinh(7rW4)^-1
 = B2w(X2) 

4 , t i cosh(iriV2) 4n 

PROOF. Apply (4.28) with X = X2, let N = - n with n > 0, use the 
calculations from the proof of Proposition 4.10, and employ (4.31). 

PROPOSITION 4.25. If n is any positive integer, then 

V (L\ p2n . ( - 1 ) " * 1 y sinh(7rW3)^" = B2n+1(X3) 
~ \ 3 / e^' - 1 V3 , ~ sinh(TT )̂ 2(2n + 1) * v=l 

PROOF. Apply (4.29) withX = X3, and use (4.31). 
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In [11, Theorem 5] we also derived formulae for L(2N + 1,X), 
where X is even, and L(2N, X), where X is odd, involving p = 
( —1 + iV3)/2. Formulae, analogous to those of the three preceding 
propositions but involving p, may be easily deduced from this 
theorem. Further formulae may be derived from Theorem 3 of [ 11]. 

This paper was prepared and written while the author held visiting 
positions at the University of Oslo and at Tel-Aviv University. The 
author thanks both universities for their hospitality and support. 
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