
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 9, Number 2, Spring 1979

DIFFERENTIABLE POINTS OF THE
GENERALIZED CANTOR FUNCTION

THOMAS P. DENCE

ABSTRACT. The generalized Cantor function 0y has a derivative
equal to 1/(1 — y) at almost every point in the set Cy. This was es-
tablished by Darst [1] who then posed the problem of characterizing
those points which are not differentiable. The differentiability of
points in Cy is determined by the spacing of the O's and 2's in a ter-
nary-like expansion. Points that are interval endpoints have one-
sided derivatives from both sides.

1. Introduction. To describe a generalized Cantor set, denoted by
Cy, and the corresponding Cantor function @v, first choose a number y
satisfying 0 < y < 1. The usual Cantor set is obtained when y = 1.
The set Cy is obtained in the same manner as the standard Cantor set
by deleting a sequence {(aiy b^}f-± of pairwise disjoint segments from
the interior of the unit interval. In general, the fc-th step consists of re-
moving an open interval of length y/3fc from the middle of each of the
2k~l closed intervals, thereby leaving 2k closed intervals of equal
length. This length is in fact equal to (1 — yfc)/2fc, where yk = y[l —
(2/3)*]. The process continues, and Cy is defined to be the set of points
in [0, 1] which fail to be removed. The measure of Cy is positive and
equals 1 — y. The corresponding Cantor function is defined analo-
gously to the standard Cantor function. The function Sy is a non-
negative, nondecreasing continuous function. In addition, Darst estab-
lished that &y(x) = 1/(1 - y) for almost all x in Cy. Characterizing
the set of points in [0, 1] at which 0V is not differentiable is the prob-
lem this paper concerns itself with.

2. Derivatives at Endpoints. In establishing 0v'(x) = 1/(1 - y) for
almost all x in Cy, Darst showed that

y - * i - y
for all x, y in [0, 1] with x =£ y. Our first result is that all right (left)
hand interval endpoints have derivatives from the right (left) which
equal 1/(1 — y). A geometric approach will be used and a sketch of
the proof given. To proceed, let x be an arbitrary right endpoint,
where the length of the removed interval is y/3* and k is some positive
integer. For each integer n > k, let Jn = (un, t>J be the removed in-
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terval of length y/3n closest to x on the right. Consequently, for each
integer n > k, we have x < un+l < vn+l < un < vn, vn - un =
y/3n and un — x — (1 — yn)/2

n. We will define the sequence {ft} by

ft = 1/(1 - Yi+1 + y(2/3)^1).

This sequence is increasing, ft < 1/(1 — yj < ft+1, and converges to
1/(1 — y). Using this fact and Darst's inequality, if we can show that
for each integer n > k,

9v(y) - 0v(x) >

y-X

for each y such that vn+l = y = un, it will follow that 0y is differen-
tiable at x from the right. Consider the following diagram.

Figure 1.

In outlining a possible approach, one considers the three disjoint
cases,

(i) y G [uif uj for some i > k

(ii) t/ E (c.+1, ui)\Cv for some i > fc

(iii) t/ E (t?i+1, ttj n Cv for some i > fc.



GENERALIZED CANTOR FUNCTION 241

In parts (i) and (ii) one makes use of the nature of {/2J and the fact
that the graph of ®y lies above the proper piecing of the dotted-line
graph. One completes part (iii) by choosing an appropriate sequence
(rj of right hand endpoints converging upward to y with r^ = x and
such that

It is important to note in the diagram that there will be 2m-1 dotted
lines connecting a pair of right endpoints on the graph of 0y with
slope equal to Pn+m> This fact helps to complete part (ii).

The above result on one-sided derivatives can also be obtained with-
out this geometric approach and employing instead an analytic method
making use of Lemmas 1 and 2 from the next section.

3. Derivatives at Nonendpoints. Now let x G Cy where x is not an
interval endpoint. There exist endpoints as close as you want to x, and
on either side of it. One's intuition might lead one to believe that x
should therefore have right and left hand derivatives with both equal-
ling 1/(1 — Y)- This is not the case, primarily because some members
of Cy are "closer to an endpoint" than others. The idea to be used in
the following is that, in computing the right hand derivative of x, the
worst possible case would be to choose a sequence [hn}\J) such that x
+ hn are right hand endpoints. This is "worst" in the sense that if we
want the difference quotient to converge to something other than
1/(1 — y), then this should do it.

One of the first difficulties in dealing with this problem is the in-
ability to get a handle on the members of Cy. For this we introduce a
code system, very similar to base 3. Let x G[0, 1], and write x — .x±x2

• • - (code) with xi G (0, 1, 2} where these three digits denote the rela-
tive position of

i - r/3 - 1

0 1 1 1 1 1
.00 • • • (code) .02 • • • (code) .12 • • • (code) .21 • • • (code)

x at the f-th step in the construction of Cy. It follows that x G Cy if
and only if x = .xlx2x3 - - • (code) with xi G (0, 2} for all i, and con-
sequently 0v(jt) = .(x1/2)(x2/2) • • • (base 2). The number x = .202020
• • • (code) is in Cy but is not an endpoint for any of the intervals re-
moved in the construction of Cy. Note that if x G Cy, then x is a right
(left) endpoint for some interval if, after a certain stage in the expan-
sion (preference is given to the expansion involving O's and 2's) of x, all
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the digits are O's (2's). In general, the expansion .00 • • • OxfciO
0 • • • Qxk 0 • • • (code) with xk = 2 represents the number

2 r a - TO/**'+?/3*' i«1=1 •- j
This fact helps us verify that addition of two code expansions of mem-
bers of Cy can be computed as in base 3 arithmetic, provided the 2's
don't overlap. For example, if x = .202020 • • • (code) and y —
.02000200000 • • • (code) then x + y = .222022202020 • • • (code). In
addition, if x = .x^x2 • • • xnOOO • • • (code) and y = .00 • • • Qyn+lyn+2

• • • (code) with xl E (0, 2} and yi E (0, 1, 2} then x + y = .x^x2

' ' ' xn!/n+il/n+2 " ' " (c°de). The following lemma will prove useful.

LEMMA 1. Let x{ E (0, 1} with xl — 1. Then

.00 • • • Qxlx2x3 • • • (base 2)

.00 • • • 0(2^)(2x2) • • • (code)

converges to 1/(1 — y), and the convergence is uniform for all choices

qfW-
PROOF. Let Ak = .x^2 - • • x^OOO • • • (base 2) and Bk = .(ZxJ • • •

(2xfc)000 • • • (code). Then Ak/Bk ^ Ak+l/Bk+l and in addition

1 .00 • • • 01000 • • • (base 2)
1 - y[l - (4/3)(2/3)n] " .00 - • • 02000 • • • (code)

< .0 • • • Qlx2 • • • XfcOO • • • (base 2)
= .0 • • • 02(2x2) • • • (2xk)0 • • • (code)

and this last expression is bounded by 1/(1 — y) because it is equal to
[Qy(y + h) - 0v(y)]/h where h = .00 • • - 02(2*2) • • • (2x^)000 • • •
(code) and y — .2000 • • • (code). The sequence therefore converges to
the desired limit.

Since every monotonic function has a derivative almost everywhere,
the following will re-establish that 0v'(x) = !/(!— y) for almost all x
inCr

LEMMA 2. Let x G Cy be a nonleft endpoint. Then there exists a se-
quence of numbers [hn}\0 such that [&y(x + hn) - Sy(x)]/hn con-
verges to 1/(1 — y).

PROOF. Let x = .22 • • • 2xfc 2 • • • 2xk2 • • • (code) with xki = 0 for
all i. Define {hn} by hn = .00'• • • OhkQhk^Q - - • (code) with hk^ = 2
for all i ^ n. Then
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ev(* + hn) ~ Qv(*) _ .00 • • • 010 • • • 010 • • • 010 • • • (base 2)
hn ~~ .00 • • • 020 • • - 020 • • • 020 • • - (code)

1
~* 1 - y

Before proceeding, recall that the expansion of left hand interval
endpoints, using only O's and 2's, is characterized by the fact that after
a certain stage all the digits are 2's. It follows that if x G Cy with x =
•Xix2x3 ' ' ' *n0222 • • • (code), then x is the left endpoint for an interval
of length Y/3n+1. Now suppose x E Cy is not an endpoint. The code
expansion for x contains infinitely many O's and infinitely many 2's, and
we write

x - .22 • • • 2xk2 • • • 2xk2 • - - 2xk2 • - • (code)

with xk = 0 for i = 1, 2, • • •. Define a sequence {fcn}\0 by

i Jfc l

hn = .000 "*• 020 • • • 020 • • • 020 • • • (code) + y/3*-.

A pictorial representation is given below.

Figure 2. x + \\
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Then

_ 0y(.22 • • • 2xk2 • • • 2xk222 • - - (code) + y/3*n) _ Qy(x)

~ ' *~K
_ 0V(.22 - - 2xk 2 • - 2xk 222 • - (code)) - 0y(.22 • • 2xk 2 • • (code))
" ' " \

_ .00 • • • 010 • • • 010 • • • 010 • • • (base 2) _
~ .00 • • • 020 • • • 020 • • • 020 • • • (code) + y/3*» '

t _ If _ JKn+l

This last expression is of the form an/(bn + cn) where we know that
ajbn converges to 1/(1 — y). Consequently

«„ 1
\ + cn 1 - Y

<

a
6

I

n

n

an an

\ + Cn *>„

1

1 + (bn/cn)

°n 1

bn 1 - Y

1
bn 1 - Y'

The expression bn/cn is the major determinant concerning the differen-
tiability of 0y at x. The following theorems result from its in-
vestigation.

THEOREM 2. Let x E Cy not fog an interval endpoint, and let kn de-
note the position of the n-th zero (two) in the code expansion of x. If

v *wihm sup - ™ — >
2

0V /affe fo have a derivative at x from the right (left}.

PROOF. There exists a number L > In 3/ln 2 and a sequence [kn]
such that £„/&„_! ^ L. As before, choose {Ji,-}\0 by

*ft,. = .000 • • • 020 • • • 020 • • • 020 • • • (code) +

Then

0V(* + ft,) - ev(g)
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,
.00 • • • 010 • • • 010 • • • (base 2) _

" .00 • • • 020 • - • 020 • • • (code) + y/3V1

< 2(1/2)*',

Y/3S-1

^ — (3/2L)*vi

So this particular sequence of difference quotients converges to zero.
From Lemma 2 there exists another sequence of difference quotients
that converges to 1/(1 — y). Hence &y is not differentiable at x from
the right. The parenthetical case follows by symmetry.

One notices that for such x's as described above, the number of 2's in
the code expansion far exceeds the number of O's. Recalling the expan-
sion for left interval endpoints, we can say that the x's from above are,
in a sense, close to left endpoints. In fact, they are too close, and that
is why a sequence of difference quotients converging to zero can be
found. A similar result follows for members of Cy that are close to right
endpoints.

Usually it is harder to show that the derivative exists at a point than
to show it doesn't. It was no exception with 0V. The feeling is that if x
G Cy and its code expansion contains a "decent" proportion of O's and
2's arranged in a "decent" manner then it should be a point of differen-
tiability. A typical candidate would be x = .02020202 - - • (code). The
analog to Theorem 2 follows.

THEOREM 3. Let x G Cy not be an interval endpoint, and let kn de-
note the position of the n-th zero (two) in the code expansion of x. If

r kn+l ^ In 3lim sup — ™ — < — _
kn In 2

then &y has a derivative at x from the right (left] equal to 1/(1 — y).

PROOF. There exists a number L < In 3/ln 2 such that kn+l/kn ^ L
for all but a finite number of choices of n. Define a sequence of real
numbers {hn}\0 by

hn = .000 • • • 020 • • • 020 • • • 020 • • • (code) + y/3*».
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Then

i - v \
Qv(* + fen - Y/3*-) - e»

^
* ^n+1 1

.000 • • • 010 • • - 010 • • • 010 • • • (base 2)
~ .000 • • • 020 • • • 020 • • • 020 • • • (code) + y/3fc»

and this last expression tends to 1/(1 — y) because, for all except
finitely many n,

foZL_ .00 • • • Q2Q • • • 020 • • • (code)

^ " Y/3fc»

> .00 • • • Q1QOOQO • • • (code)
=

1 — Y

which tends to infinity. So the sequence of slopes {(®v(x + hn) —
®y(x))/hn] of secant lines drawn from x to the right hand endpoints of
certain "plateaus" of 0y, located to the right of x, converges to 1/(1 —
y). This is enough to guarantee that every sequence of difference
quotients from the right of x also converges to 1/(1 — Y)- To see this,
we proceed as in [2].

The only difficulty that could occur would be when x + h is exterior
to all intervals of length y/3fcn. So we first let

ln = X + hn ~ Y/3*" and rn = * + hn

and notice that any hn where 0 < hn < ln_l —rn it follows that ©v(rn

+ hj = 0y(rn) + 0y( hn). Then, for rn < x + h < ln_v we have

h) - 9V(»)
h

&^* + ' » - * + - 0

'n - * +

e>j- 0» +
^n - ^ + ̂ n

= x + h - rj
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Figure 3.

Since [0v(rJ - Sy(x)]/(rn - *) converges to 1/(1 - y) and ®y(hn}/hn

also converges to 1/(1 — y) it follows that the above combination also
converges to 1/(1 — y). Thus

1 — y

[rn - X]

1
1 - y

and we already know that

> ev(* + h) - ev(«)
= nm — - - - —— ,

1 — y h^o h 1 — y
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consequently the derivative from the right exists and equals 1/(1 — y).
The parenthetical case again follows by symmetry.

For example, if x = .202202220222202222202 • • • (code) then Qy'(x)
= 1/(1 — y). The remaining situation is when

ln 3
—

and one should suspect that differentiability may or may not occur in
this case. The following result, done in collaboration with Professor
Darst, establishes this.

THEOREM 4. Let x E Cy not be an interval endpoint, and let kn de-
note the position of the n-th zero (two) in the code expansion of x. If

In 3
lim sup

then &y may or may not have a derivative at x from the right (left).

PROOF. We first shall exhibit an x E Cy satisfying the above condi-
tions and which is differentiable from the right. From the proof of The-
orem 3, it suffices to construct an increasing sequence [kn] of positive
integers satisfying kn -* oo, kn+l/kn -> In 3/ln 2, kn+l/kn < In 3/ln 2
and 3fc»/2fcn+1 — > oo. Initiate the sequence with k± = 100 and recur-
sively define

_ 1" ( In3- W) 1
n+1 ~ L to2 J *»

where the brackets denote the greatest integer function. Then

(In 3- I/O _ i < k < (In 3 -n n+l ~
In 2 n n+l ~ In 2

so kn —> oo, kn+l/kn -* In 3/ln 2 and kn+l/kn < In 3/ln 2. Con-
sequently kn+l/kn S (In 3 - l/fcn

1/2)/ln 2, so exp(fcj/2) ^ 3*»2-*"+i
and thus 3fc»/2fcn+1 —* oo.

To exhibit an x E Cy satisfying the main condition and which is not
differentiable from the right, we examine the proof of Theorem 2. In
this case it suffices to construct an increasing sequence {kn} of positive
integers satisfying kn -* oo, kn+l/kn —> In 3/ln 2, kn+l/kn > In 3/ln 2
and 3k»/2k»+* —> 0. Again let fcx = 100 and define

_ f (In 3 + 1/Q ]
«+1 — I i « " I n ' 'L In 2 J

then a similar argument to the one above completes the proof.
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These results are "measure-theoretically adequate" in the sense that
the measure of the set (x G Cy: lim sup kn+l/kn — In 3/ln 2} is zero.
Letting S denote this set, we apply [3, p. 107, no. 13b] with g = 0y

and E = [®y(x): x G S) and conclude that the measure of S is zero.
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