
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 15, Number 2, Spring 1985 

THE DISTRIBUTION OF RATIONAL POINTS ON 
A CURVE DEFINED MODULO Q 

R. A. SMITH 

1. Introduction. L e t / b e a polynomial defined over Z in two variables 
of total degree d ^ 2, and let Vp = {xe Cp: f(x) = 0 mod p} for each 
prime p, where Cp = {(x, y) e Z2: 0 ^ x, y < p}. For each subset B in 
Cj, let Np(B) = card (5 fi ^ ) and A^ = card Vp. If £ is a box in Cp, that 
is, 

B = {(x,y) eCp'.h < x ^ h + H,k < y ^ k + K}, 

where 0^h<h + H^p and 0<zk<k + K<:P> it is known that 
(cf. [2], [12]) 

(0 AW-lgp* , ^ 4 In2/? max |S,(u)|, 

where C$ = Cp — {0} and ^ ( u ) is the exponential sum defined by 

(2) S » = S e,(u . x), 

with ep{t) = exp(2n it Ip). For simplicity, we shall assume that / is abso
lutely irreducible modulo p for all sufficiently large /?, and so, by Weil's 
well-known result [14], 

(3) Np=p+ typ1'2). 

Furthermore, we know, by Bombieri [1] (or Chalk and Smith [4]), that 

(4) |S,(u)| ^ (</2 + 2d - 3)pM + d* 

for each u e Cf. If we substitute these results into (1), we obtain 

(5) Np(B) « J*L + 0(pM In2/?), 

for all sufficiently large p. (All O-terms are independent of/?, though the 
inherent constant depends upon d; the same holds for the Vinogradov 
symbols < and >.) This result shows that the zeros of f(x,y) modulo p 
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are uniformly distributed among boxes B in Cp for large p, provided that 
the cardinality of B is > pV2 log2 p. 

The purpose of this paper is to show that if certain incomplete ex
ponential sums related to (2) satisfy their "expected" bounds, then (i) 
the measure of uniformity of the distribution of the points of Vp in Cp, 
as given by (5), can be substantially improved (cf., Theorem 1); and (ii) 
that the range of uniformity of certain asymptotic expansions in analytic 
number theory can be extended over what is presently known (cf., The
orems 2 and 3). 

The idea of using incomplete exponential sums to study certain ques
tions in number theory can already be found in Estermann's 1931 paper 
[5]. Recently, Iwaniec [9] pointed out that Hooley's Hypothesis R, (cf., 
[6, p. 75] and (11)) for incomplete Ramanujan sums leads to smaller solu
tions of the quadratic congruence X2 4- Y2 = a mod /?, (a, p) = 1, than 
can be obtained from (5) alone (cf., Theorem 3). (This suggestion moti
vated our study of the more general question and led to Theorem 1.) 
Iwaniec's main idea is that by integrating the sum 

(6) S an 
n=a mod q 

over an interval against the invariant measure dzjz on R+, for certain 
arithmetic functions {an}, can lead to a very attractive formulation of the 
error term of (6) in terms of incomplete Ramanujan sums. In the case of 
the divisor function d(n) and the circle function r(n), we know that the 
asymptotic expansions of both 

(7) D(x;a,q)= £ d(n) 
n=a mod q 

and 

R(x; a,q) = 2 r(n) 
w=ß mod q 

involve Kloosterman sums when q is not fixed. It is somewhat surprising 
that by smoothing both (7) and (8) analytically against the invariant meas
ure dzjz leads to a corresponding "arithmetic smoothing" which certainly 
does not happen if we integrate against the non-invariant measure dz. 
As a result of this arithmetic smoothing, by which we mean that the error 
term in the asymptotic expansions of (7) and (8) can be expressed in terms 
of incomplete Ramanujan sums rather than complete Kloosterman sums, 
it follows that if Hypothesis R is correct, the range of uniformity in q 
of the asymptotic expansions of these sums can be extended all the way 
up to Ar(3/4)~e rather than only up to X2/3, which is the best we can pre
sently do unconditionally (cf. Hooley [6] and Smith [11]). 
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2. Statement of results. Our first result depends upon the following 
hypothesis for each polynomial / in two variables over Z which is ab
solutely irreducible modulo p for all sufficiently large primes p. 

HYPOTHESIS Ef. For each prime p, the incomplete exponential sum 
(cf., (2)) 

Sp(B*;a)= 2 ep(ay), 
h<x^h+H 

0<y<p 
f(x,y)~0(mod p) 

where B* is the 'vertical strip' defined by 

£* = {(x, y)eZ2 :h < x ^ h + H, 0 < y ^ p} 

satisfies 

(9) Sp(B*;a) « / /1 / 2 , 
for all integers a, h and //with (a,p) = 1 and p(1/®+£ < H < p. (To avoid 
possible confusion, we are assuming that the constant inherent in < is 
independent of a, A, H and p.) 

We will now show that Hypothesis Ef is true on average. For, we clearly 
have 

(10) L I S ep{ay)\*=p £ 2 1 
0<a^p h<x<h+H h<x<h+H h<x'^h+H 

O^y^p 0<y^p f (x ', y) = 0 mod p 
f (x, y) = 0 mod p f (x, y) —0 mod p 

(11) <dpNp(B*). 

Moreover, the inner sum on the right hand side of (10) is ^ d since, for 
each y = 1, 2, . . . , p, f(X,Y) cannot vanish identically modulo p as a 
polynomial in X if p is large enough and f(X, Y) is irreducible modulo p. 
This verifies the inequality in (11). In order to determine a respectable 
upper bound for Np(B*)> we appeal to the following well-known result 
(cf. Vinogradov [13, chap. V, exercise 12(A)]). 

LEMMA l. If F is a complex valued function defined on the residue classes 
modulo p, then 

2 F(x)— •—- 2 J F(X) ^ 2 In/? max 2 J F(x)ep(ax) 
h<x£h+H P 0<x<p 

In the application of this lemma, we take u = (0, a) in (2) and 

F(x) = S i . 
f(x,y)=0 mod /> 

from which we deduce 

*i -
/> 

NP(B*) - iL NJ ^ 2 In p max |S,(u) |. 
0 ' l<a<p 
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Hence, by (3) and (4), we immediately obtain 

(12) NP(B*) = H + 0(pV2 In p) « //, 

i f / / > / ? ( 1 / 2 ) + £ . Combining this result with (11) therefore implies that 
Hypothesis Ef is true on average, as asserted. (Moreover, this argument 
even proves that there exists at least one integer a with (a,p) = 1 satisfying 
(9)0 

If we now take f(X, Y) = XY - 1 in (9), which clearly is absolutely 
irreducible modulo p for all p, it is easily seen that Hypothesis Ef (for 
this special choice of/) is "essentially" identical with Hooley's Hypothesis 
R, when q — p (a stronger version is given in [8, p. 44]): 

HYPOTHESIS R. For all positive integers q the incomplete Ramanujan 
sum satisfies 

£ e lax) « HW»+'(a, q)1/2, 
h<x^h+H 

whenever q1/A < H < q. 

Here, of course, the presence of an e in the exponent on H is to account 
for the divisors of q. 

THEOREM 1. Let f be a non-linear polynomial in two variables over Z 
such that it is absolutely irreducible modulo p for all sufficiently large primes 
p. If B is any box in Cp with diameter d(B) ^ ^(1/2)+^ for any ^ > 0, then 
Hypothesis Ef implies that 

Np(B)= ±^+0(Vdm\np). 

An immediate consequence of this result is 

COROLLARY 1. Hypothesis Ef implies that every square box B with \B\ 
> /?4/3 In p contains a point of Vpfor all sufficiently large p. In particular, 
Hypothesis Ef implies that there exists integers x,y e Z with max (|x|, 
1̂ 1) < p2n In p satisfying f(x,y) = 0 mod p,for all sufficiently large p. 

To illustrate this result, i(f(X,Y) = XY -a and q = p, then Hypoth
esis Ef and Hypothesis R are essentially equivalent, and imply that there 
exist integers x and y with max(|x|, \y\) </? ( 2 / 3 ) + £ which satisfy xy = a 
mod p for any sufficiently large prime p with (a,p) = 1. As a second ex
ample, if f(X,Y) = X2 + Y2 - a, then Hypothesis Ef implies that there 
exist integers x and y with max(|x|, \y\) < p^/Z)+e which satisfy x2+y2 = 
a mod p. What is rather surprising is that this also follows from Hypoth
esis R (cf., Corollary 2), even though Hypothesis Ef and R are apparently 
unrelated. 
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THEOREM 2. If a and q are relatively prime integers with q positive, then 
Hypothesis R implies that 

L d(n)ln£ 
n-a mod q 

= ^ V j N n ; r + 2( r - 1 - ? 4 r y V ) + o(* ( 1 / 4 ) + f i + q~lX^^ 

as X -> oo, where y is Euler's constant, (j) is the Euler phi-function and 
$'(<?) = Hd\Q(ju(d)ld)\n à. Moreover, this asymptotic expansion holds uni
formly in q g X(3/i)-£, for any fixed e > 0. 

THEOREM 3. If a and q are relatively prime integers with q positive, then 
Hypothesis R implies that 

Z r(/i)ln— = - ~ - Ff f * - X^P) ) + (X^+z + <?-iA
r(i/2)+«) 

«ÊX
 n q p\q\ p J 

n 'amoòq 

as X -^ co where %± is the non-principal character modulo 4. Moreover, 
this asymptotic expansion holds uniformly in q ^ X(3/4) ~£,for any fixed e>0. 

COROLLARY 2. If a and q are relatively prime integers with q positive, then 
Hypothesis R implies that there exist integers x and y with max(|x|, \y\) 
< <7(2/3)+£ such that x2 + y2 = a mod q. 

By a standard unsmoothing argument, Theorems 2 and 3 lead to corres
ponding results for these sums without the weighting factor In(Xjn). 
Moreover, because the proofs of Theorems 2 and 3 are so similar, we 
will only prove the former, which is slightly simpler to handle. 

Finally, the result of Corollary 2 suggests that we should look for a 
similar result for Corollary 1. Indeed, this can be done by a straight-for
ward extension of Hypothesis Ef for square-free q, since the "expected" 
bound for the corresponding incomplete exponential sum can be obtained 
as in (11). On the other hand, if q is arbitrary, we do not have a good 
upper bound for Nq (except, for example, when / has no singular zeros 
in the finite field F^, for each p\q; cf., Chalk [3], p. 58) and so we cannot 
yet anticipate what the "expected" size of such incomplete exponential 
sums should be. Moreover, if we had an analogue of Theorem 2 in [10] 
of Loxton and Smith for polynomials in two variables, we could then 
formulate Hypothesis Ef quite generally for arbitrary q and arbitrary 
polynomials/containing no linear factors. Such a result would perhaps 
lead to a further generalization of Theorem 1, though it is by no means 
certain. The first step in this direction would be to obtain an analogue of 
Corollary 2 for/(T, Y) = XY - a, without recourse to Hypothesis R. 
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3. Proof of Theorem 1. If the sums over x in Lemma 1 are replaced by 
their corresponding sums over y, and if we take 

F(y) = S i , 
h<x^h+H 

f (x, y) =0 mod p 

we then obtain 

Np(B) - ^Np(B*)\ ^2\np max \SP(B*9 a% 
P \ l^aiip 

where SP(B*; a) is the incomplete exponential sum defined in (9). If we 
now assume that Hypothesis Ef holds, and if we apply the result in (12), 
we then obtain 

(13) Np(B) = J^L + <9((//1/2 4- p~l/*K)\np). 

Moreover, if we perform the summation in deriving (13) in the other order, 
we would then obtain 

Np(B) = M + 0((tfi'2 + p~1/2H)lnpl 

and this, or (13), implies that 

Np(B) = J^L + 0(msx(H, K)V*lnp) 

from which the theorem follows. 

4. Proof of Theorem 2. By a standard geometrical argument, together 
with elementary arithmetic considerations, we have 

(14) D(z;a,q) = 2 2 * £ 1 - £ * £ 1, 
^=<zv mod g A=av mod 9 

where 2J* means that we sum only over those v's that are relatively prime 
to q, and for each such v, we define v by vv = 1 mod #. For any 0 < v 
^ Jf1/2 and relatively prime to q, and for any 0 < U ^ X/v, we have 

(l5) S'-^HfH-K^T 
^=<2V mod ç 

where 0(x) = x — [x] — (1/2), [x] denoting the largest integer ^ x. 
Consequently, the main contribution in the asymptotic expansion of 

(16) 2 d(n)ln£{X = D(z;a,q)^-, 
«=a mod § 

a s l n - oo, is given by 
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4 J l â w \ v ) z 

H d\Q J 1 \ « V ẑl/2/rf ^ / 

(fa) 2 ^ ^ ^ + 2(7-- i - < ? ^ f ^j + oOr1*^), 

after some routine calculations. 
In view of (14) and (15), the remaining terms in the expansion of (16) 

are given by 

respectively, say. In 5j, we interchange the order of summation and in-
tegeration to obtain 

s1 = 2* f V 1 ^ 
vt iv2 J V2r \ <7 

#y W z 

If we replace the integration variable z by vz, and observe that the dzjz 
is invariant under this change of variable, we then obtain 

Sl = i]* rv^E.)!. 
v^xvz J » \ q / z 

Finally, we change the order of summation and integration once again 
to obtain 

Si = f* L * <P 
J 1 vs£min(z, X/z) 

z — av\dz 

q 

Thus, all three integrals S{ are of the form 

j x _ . ./ V(z) - av\dz Z* 4> 
i v<u(z) \ q 

where U = U(z) and V = V(z) are non-negative continuous functions 
of z with 1 ^ z ^ X, and where K(z) is independent of v. In order to 
bound the integrals in (18), we now use Estermann's Fourier expansion 
of (j) given in [5, Hilfsatz 3]. 

LEMMA 2. For any 0 < à < 1/4, there exists a pair of Fourier series A 
and B such that for all x, 

\cfj(x) - A(x)\ g 9J 4- B(x), 

where 
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and 

B(x) = 2 bne2*inx 

with 

0 £ K S 2 J 1_ 
\n\ ' An* 

for n 7e 0. 

Thus, Lemma 2 implies that 

(,7, +rIs>"Am^Yf 
If 2« + 

<7 

V(z) — av\dz 
q Z !' 

from which it is clear that in order to bound the last two integrals in (17), 
it suffices to examine 

\dz 
_ ^ - an») (18) I i L * eq{-anv) 

By chopping up the sum in (18) into pieces of length q, plus an extra bit 
at the end, we find that ( 18) is 

(19) ^ - i k , ( « ) | f X [ / ( z ) f - + T | 2 eq{-anv) 
Jl Z J l \vŒl(q,z) 

dl 
Z ' 

where cq(n) is the Ramanujan sum and I(q, z)is the interval of length <q 
defined by 

I(q, z) = {x: q[q-i[U(z)]] <x^ U(z)}. 

Since U(z) is either z1/2 or min (z, X/z) in the application, the first term 
in (19) is 

<q-i\cq(n)\XW. 

Finally, we are left with the second term in (19), which involves incomplete 
Ramanujan sums over ranges of length < q. The contribution to this term 
from the set of z e [1, X], for which \I(q, z)\ ^ q1/A, is trivially 

<<: fV /4Ç«4£^1/4, 
since we may assume q ^ X without loss of generality. For the remaining 
part of the integral, we apply Hypothesis R and find that the contribution 
is 
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« (/i, qyzq' fX | F(q9 z) \l'zfj « (/i, $r)i'2 4* f* C / C z ) 1 ^ « (/i, g r ) i > V * 1 / 4 -

Combining these results, we find that 

J: *l L * e> ( - am>)| — « tf"1 k » | ^ i / 2 + (/i, ^1/2^^1/4, 
1 lvW(2) I Z 

whence (17) implies 

r s* jvQ-^dz,K<( lxm + ̂ 1/4) 
J l vrSC/U) \ ^ / z 

if we pick zl = (4q)~1. This completes the proof. 
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