NUMBERS ASSOCIATED WITH
 STIRLING NUMBERS AND \mathbf{X}^{x}

D. H. LEHMER

Dedicated to the memory of my good friend E. G. Strauss

Abstract

We discuss two infinite triganular matrices $b(n, k)$ and $B(n, k)$ of rational integers that are associated with the matrices $s(n, k)$ and $S(n, k)$ of the Stirling numbers of the first and second kind. The numbers $b(n, k)$ were introduced in 1974 by Comtet in treating the nth derivative of x^{x}. They are generated by powers of the function $(1+x) \log (1+x)$. The numbers $B(n, k)$ are generated by powers of the inverse function.

All four matrices are treated together and numerous properties and relations are presented. In particular it is shown that $b(4 h+1$, $2 h)=0$ for all integers $h>0$. The values of the elements in a particular row of a matrix as well as the row sum when reduced modulo a prime p are also considered.

In 1974 Comtet introduced the numbers $b(n, k)$ defined by

$$
\sum_{n=1}^{\infty} b(n, k) x^{n} / n!=\{(1+x) \log (1+x)\}^{k} / k!
$$

He used these numbers in the formula

$$
\frac{d^{n}\left(x^{x}\right)}{d x^{n}}=x^{x} \sum_{j=0}^{n}(\log x)^{j}\binom{n}{j} \sum_{n=0}^{n-j} b(n-j, n-k-j) x^{-h} .
$$

It is my purpose to show that these numbers are closely related to the Stirling numbers of the first and second kind and that they have a number of interesting properties. In fact it is important to introduce a second set of numbers $B(n, k)$ in order to treat the whole subject adequately.

We begin by introducing four infinite lower triangular matrices s, S, b, B. The elements on the nth row and k th column we denote by

$$
\begin{equation*}
s(n, k), S(n, k), b(n, k), B(n, k) \tag{1}
\end{equation*}
$$

with initial conditions

$$
\begin{aligned}
& s(0,0)=S(0,0)=b(0,0)=B(0,0)=1 \\
& s(n, 0)=S(n, 0)=b(n, 0)=B(n, 0)=0 \text { if } n \neq 0 \\
& s(0, k)=S(0, k)=b(0, k)=B(0, k)=0 \text { if } n \neq 0 .
\end{aligned}
$$

If $n \neq 0$ and $k \neq 0$ these elements are generated by the following generating functions.

$$
\begin{align*}
& k!\sum_{n=1}^{\infty} s(n, k) x^{n} / n!=\{\log (1+x)\}^{k} \tag{2}\\
& k!\sum_{n=1}^{\infty} S(n, k) x^{n} / n!=\left(e^{x}-1\right)^{k} \tag{3}\\
& k!\sum_{n=1}^{\infty} b(n, k) x^{n} / n!=\{(1+x) \log (1+x)\}^{k} \tag{4}\\
& k!\sum_{n=1}^{\infty} B(n, k) x^{n} / n!=\{\psi(x)\}^{k} . \tag{5}
\end{align*}
$$

Here we use the notation $\psi(x)$ to denote the function

$$
\begin{equation*}
\psi(x)=\sum_{\nu=1}^{\infty}(-1)^{\nu-1}(\nu-1)^{\nu-1} x^{\nu} / \nu! \tag{6}
\end{equation*}
$$

which is the inverse of the function $(1+x) \log (1+x)$ in the sense that $f\left(f^{-1}(x)\right)=f^{-1}(f(x))=x$.

Since the four basic functions $\log (1+x), e^{x}-1,(1+x) \log (1+x)$, $\phi(x)$ all vanish at the origin, all four matrix elements vanish whenever $k>n$ and moreover all elements on the main diagonals of the four matrices are equal to 1 .

The elements $s(n, k)$ and $S(n, k)$ are called Stirling numbers of the first and second kind respectively. We call the elements $b(n, k)$ and $B(n, k)$ Comtet numbers of the first and second kind.

The matrices s and S are mutually inverse and so are b and B. The first ten rows and columns of these four matrices are shown in Tables 1 to 4.

We find it convenient to introduce two more matrices

$$
\begin{align*}
& M(n, k)=(-1)^{n+k} n^{n-1}\binom{n-1}{k-1} \tag{7}\\
& m(n, k)=k^{n-k}\binom{n}{k} . \tag{8}
\end{align*}
$$

The fact these are mutually inverse is easy to establish.
Inversion Lemma. We first prove the useful result.
Lemma. Let ω and Ω be two mutually inverse matrices and let $g_{m}(x)$ be a sequence of functions of x. Finally let
Table 1

	1	2	3	4	5	6	7	8	9	10
1	1									
2	-1	1								
3	2	-3	11	-6	1					
4	-6	35	-10	1						
5	24	-50	274	-225	85	-15	1			
6	-120	720	-1764	1624	-735	175	-21	1		
7	-5040	13068	-13132	6769	-1960	322	-28	1		
8	40320	-109584	118124	-67284	22449	-4536	546	-36	1	
9	-362880	1026576	-1172700	723680	-269325	63273	-9450	870	-45	1
10										

D. H. LEHMER
Table 4
$B(n, k)$

	1	2	3	4	5	6	7	8	9	10
1	1									
2	-1	1								
2	4	-3	1							
3	-27	19	-6	1						
4	256	-175	55	-10	1					
5	-3125	2101	-660	125	-15	1				
6	46656	-31031	9751	-1890	245	-21	1			
7	-823543	543607	-170898	33621	-4550	434	-28	1		
8	16777216	-11012415	3463615	688506	95781	-9702	714	-36	1	
9	-387420489	253202761	-79669320	15958405	-2263065	238287	-18900	1110	-45	1

$$
\sum_{\nu=1} \omega(k, \nu) g_{\nu}(x)=G_{k}(x) .
$$

Then

$$
g_{n}(x)=\sum_{k=1} \Omega(n, k) G_{k}(x) .
$$

Proof. Substituting from the first equation into the second we get

$$
\begin{aligned}
\sum_{k=1} \Omega(n, k) G_{k}(x) & =\sum_{k=1} \Omega(n, k) \sum_{\nu=1} \omega(k, \nu) g_{\nu}(x) \\
& =\sum_{\nu=1} g_{\nu}(x) \sum_{k=1} \Omega(n, k) \omega(k, \nu)=\sum_{\nu=1} g_{\nu}(x) \delta_{\nu}^{n}=g_{n}(x),
\end{aligned}
$$

where δ_{ν}^{n} is Kronecker's delta. This proves the lemma.
If we multiply both sides of (2) by t^{k} / k ! and then sum over k we obtain

$$
\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} t^{k} s(n, k) x^{n} / n!=e^{t \log (1+x)}=(1+x)^{t} .
$$

If we identify the coefficients of x^{n} / n ! on both sides we get

$$
\begin{equation*}
\sum_{k=0}^{n} s(n, k) t^{k}=t(t-1)(t-2) \cdots(t-n+1)=t^{[n]} \tag{9}
\end{equation*}
$$

a well known identity. If we use the lemma we get the familiar

$$
\begin{equation*}
\sum_{k=0}^{n} S(n, k) t^{[k]}=t^{n} . \tag{10}
\end{equation*}
$$

If we let σ denote the row sum function of b, so that

$$
\begin{equation*}
\sum_{k=0}^{n} b(n, k) t^{k}=\sigma_{n}(t) \tag{11}
\end{equation*}
$$

then by the lemma

$$
\sum_{k=0}^{n} B(n, k) \sigma_{n}(t)=t^{n} .
$$

The row sum function of b
Theorem 1. The function $\sigma_{n}(t)$ is generated by

$$
(1+x)^{t(1+x)}=\sum \sigma_{n}(t) x^{n} / n!.
$$

Proof.

$$
\begin{aligned}
(1+x)^{t(1+x)} & =e^{t(1+x) \log (1+x)}=\sum_{k=0}^{\infty} t^{k}[(1+x) \log (1+x)]^{k} / k! \\
& =\sum_{=0 k}^{\infty} t^{k} \sum_{n=1}^{\infty} b(n, k) x^{n} / n!=\sum_{n=1}^{\infty} x^{n}\left(\sum_{k=0}^{\infty} b(n, k) t^{k}\right) / n! \\
& =\sum \sigma_{n}(t) x^{n} / n!.
\end{aligned}
$$

Table 5

n	σ_{n}	n	σ_{n}	n	σ_{n}
0	1	5	10	10	47160
1	1	6	54	11	-419760
2	2	7	-42	12	4297512
3	3	8	944	13	-47607144
4	8	9	-5112	14	575023344

For $t=1$ we get $\sigma_{n}(1)$ as the sum of the elements of the nth row of b and it is the coefficient of x^{n} / n ! in the expanison of $(1+x)^{1+x}$ in powers of x. Table 5 gives a small table of $\sigma_{n}(1)=\sigma_{n}$.
The number

$$
\sigma_{30}(1)=357611376476800486783526273280
$$

has 30 digits.
The numbers $\sigma_{n}(1)$ can be expressed in terms of Stirling numbers of the first kind by means of the following theorem.

Theorem 2.

$$
\left.\sigma_{n}(1)=n!\sum_{\lambda=1}^{n-1}[s(n-\lambda-1, \lambda)+s(n-\lambda-1), \lambda-1)\right] /(n-\lambda)!.
$$

Proof. By (2) we can write

$$
\begin{aligned}
(1+x)^{x}=e^{x \log (1+x)} & =\sum_{k=0}^{\infty} x^{k}(\log (1+x))^{k} / k! \\
& =\sum_{k=0}^{\infty} x^{k} \sum_{m=0}^{\infty} x^{m} s(m, k) / m! \\
& =\sum_{n=0}^{\infty} x^{n} \sum_{m=0}^{\infty} s(m, n-m) /(n-m)!
\end{aligned}
$$

Multiplying both sides by $1+x$ we have

$$
\begin{aligned}
(1+x)^{1+x} & =\sum_{m=1}^{\infty} x^{m} \sum_{k=0}^{\infty} s(m-k, k) /(m-k)!+\sum_{m=1}^{\infty} x^{m+1} s(m-k, k) /(m-k)! \\
& =\sum_{m=1}^{\infty} x^{m} \sum_{k=0}^{\infty}\{s(m-k, k)+(m-k) s(m-k-1, k)\} /(m-k)! \\
& =\sum_{m=1}^{\infty} x^{m} \sum_{k=1}^{[m / 2]} \frac{s(m-k-1, k)+s(m-k-1, k-1)}{(m-k)!} .
\end{aligned}
$$

But by Theorem 1 with $t=1$ we see that $\sigma_{n}(1) / m$! is the coefficient of x^{m} on the right side of the last equality. This proves the theorem.

Connection b with s. Comtet gave the following equation (12) which connects the elements of b with those of s. If we write

$$
\{(1+x) \log (1+x)\}^{k}=(1+x)^{k}\{\log (1+x)\}^{k}
$$

and identify the coefficients of x^{n} / n ! on both sides we get

$$
\begin{align*}
b(n, k) & =\sum_{\nu=0}^{k} \nu!\binom{k}{\nu}\binom{n}{\nu} s(n-\nu, k) \\
& =\sum_{\nu=0}^{k}\binom{n}{\nu} \sum_{\lambda=0}^{\nu} k^{\lambda} s(\nu, \lambda) s(n-\nu, k) \tag{12}\\
& =\sum_{\nu=k}^{n}\binom{\nu}{k} k^{\nu-k} s(n, \nu)
\end{align*}
$$

where use is made of the known identity

$$
\binom{a}{b} s(c, a)=\sum_{d=0}\binom{c}{d} s(c-d, b) s(d, a-b)
$$

More facts about \mathbf{b}. A main result is the following theorem.
Theorem 3. If $n>1$

$$
\sum_{k=1}^{n}(-1)^{k}(k-1)^{k-1} b(n, k)=0
$$

Proof. We make use of Abel's generalization of the binomial theorem (see Riordan [2], p. 18, (13a))

$$
\begin{equation*}
x^{-1}(x+y+n)^{n}=\sum_{k=0}^{n}(k+x)^{k-1}\binom{n}{k}(y+n-k)^{n-k} \tag{13}
\end{equation*}
$$

If we put $n=\nu, x=-1, y=-\nu$ and divide both sides by $(-1)^{\nu}$ we get

$$
\sum_{k=0}^{\nu}(-1)^{k}(k-1)^{k-1}\binom{\nu}{k} k^{\nu-k}=-1
$$

Now we write

$$
\begin{aligned}
\sum_{k=1}^{n}(-1)^{k}(k-1)^{k-1} b(n, k) & =\sum_{k=1}^{n}(-1)^{k}(k-1)^{k-1} \sum_{\nu=k}^{n}\binom{\nu}{k} k^{\nu-k} s(n, \nu) \\
& =\sum_{\nu=0}^{n} s(n, \nu) \sum_{k=0}^{n}(-1)^{k}(k-1)^{k-1}\binom{\nu}{k} k^{\nu-k} \\
& =-\sum_{\nu=0}^{n} s(n, \nu)=0
\end{aligned}
$$

This proves the theorem.
This theorem can be used to prove that $\psi(x)$ and $(1+x) \log (1+x)$ are mutually inverse as follows. Let x be chosen so that $|x|$ is so small that $(1+x) \log (1+x)$ is inside the circle of convergence of ψ, that is

$$
|1+x||\log (1+x)|<1 / e .
$$

Then

$$
\begin{aligned}
\psi[(1+x) \log (1+x)] & =\sum_{\nu=1}^{\infty}(-1)^{\nu-1}(\nu-1)^{\nu-1}[(1+x) \log (1+x)]^{\nu} / \nu! \\
& =\sum_{\nu=1}^{\infty}(-1)^{\nu-1}(\nu-1)^{\nu-1} \sum_{n=1}^{\infty} b(n, \nu) x^{n} / n! \\
& =-\sum_{n=1}^{\infty} \frac{x^{n}}{n!} \sum_{\nu=1}^{\infty}(-1)^{\nu}(\nu-1)^{\nu-1} b(n, \nu)
\end{aligned}
$$

By Theorem 3 the inner sum is 0 if $n>1$ and it is -1 if $n=1$.
That is

$$
\psi[(1+x) \log (1+x)]=x
$$

A more general result than Theorem 3 is the following.
Theorem 4.

$$
\sum_{n=1}^{n}(-1)^{k}(k+x)^{k-1} b(n, k)=(-1)^{n}\binom{n+x-1}{n-1}(n-1)!
$$

Proof. If, we do not fix x at -1 in (13), we get

$$
x^{\nu-1}=\sum_{k=0}^{\nu}\binom{\nu}{k}(x+k)^{k-1}(-1)^{\nu-k} k^{\nu-k} .
$$

Using this identity with (12) we find that

$$
\begin{aligned}
\sum_{k=0}^{n}(-1)^{k}(k+x)^{k-1} b(n, k) & =\sum_{\nu=0}^{n} s(n, \nu)(-1)^{\nu} x^{\nu-1}=\frac{1}{x} \sum_{\nu=0}^{n}(-x)^{\nu} s(n, \nu) \\
& =(-1)^{n}(x+1)(x+2) \cdots(x+n-1) \\
& =(-1)^{n}(n-1)!\binom{n+x-1}{n-1}
\end{aligned}
$$

This proves Theorem 4.
If we apply the lemma to Theorem 4 we obtain

$$
\begin{equation*}
\sum_{k=1}(-1)^{k}\binom{k+x-1}{k-1}(k-1)!B(n, k)=(-1)^{n}(x+n)^{n-1} \tag{14}
\end{equation*}
$$

If we use the fact developed in the proof of Theorem 4 that

$$
(-1)^{k}(k-1)!\binom{k+x-1}{k-1}=\sum_{\nu=0}^{n} s(k, \nu)(-1)^{\nu} x^{\nu-1}
$$

then (14) gives us, on identifying the coefficients of $x^{\nu-1}$ on both sides,

$$
\begin{equation*}
\sum_{k=1}^{n} B(n, k) s(k, \nu)=(-1)^{\nu+n} n^{n-\nu}\binom{n-1}{\nu-1}=M(n, \nu) . \tag{15}
\end{equation*}
$$

Theorem 5.

$$
\sum_{k=1}^{n} S(n, k) b(k, \nu)=n^{n-\nu}\binom{n}{\nu} .
$$

Proof. The relation (15) can be written $B s=M$. Taking the inverse of both sides gives us $(B s)^{-1}=s^{-1} B^{-1}=S b=M^{-1}=m$. Since

$$
m(n, \nu)=\nu^{n-\nu}\binom{n}{\nu}
$$

the theorem is poved.
Another theorem about B is the following:
Theorem 6.

$$
\sum_{k=2}^{n}(-1)^{k}(k-2)!B(n, k)=(-1)^{n}(n-1)^{n-1}
$$

Proof. Since the functions $\psi(x)$ and $(1+x) \log (1+x)$ are inverse, we have

$$
(1+\psi(x)) \log (1+\psi(x))=x
$$

Hence

$$
\begin{aligned}
x & =\psi(x)+\sum_{k=2}^{\infty}(-1)^{\lambda-1}\left\{(\psi(x))^{\lambda} / \lambda+(\psi(x))^{\lambda+1} / \lambda\right\} \\
& =\psi(x)+\sum_{k=2}^{\infty}(-1)^{k}(\psi(x))^{k} /(k(k-1)) \\
& =\psi(x)+\sum_{k=2}^{\infty}(-1)^{k}(k-2)!\sum_{n=k} B(n, k) x^{n} / n! \\
& =\sum_{n=1}^{\infty}(-1)^{n-1}(n-1)^{n-1} x^{n} / n!+\sum_{n=2}^{\infty} \frac{x^{n}}{n!} \sum_{k=2}^{\infty}(-1)^{k}(k-2)!B(n, k)
\end{aligned}
$$

If $n>1$ the coefficient of x^{n} / n ! on both sides is zero. Transposing the first term on the right gives the theorem.

The b-counterpart of Theorem 6 is Theorem 3. Another way of proving Theorem 3 along similar lines starts with the relation $\psi[(1+x) \log (1+x)]$ $=x$.

Further identities. Another set of four identities comes from (2), (3), (4), (5) by writing

$$
\{F(x)\}^{k} / k!=\{F(x) / k\}\{F(x)\}^{k-1} /(k-1)!
$$

for

$$
F(x)=\log (1+x), e^{x}-1,(1+x) \log (1+x), \psi(x)
$$

Identifying coefficients of x^{n} / n ! on both sides gives the following results, with $v=n-k+1$.

$$
\begin{align*}
& k s(n, k)=\sum_{\lambda=1}^{v}(-1)^{\lambda-1}(\lambda-1)!\binom{n}{\lambda} s(n-\lambda, k-1) \tag{16}\\
& k S(n, k)=\sum_{\lambda=1}^{v}\binom{n}{\lambda} S(n-\lambda, k-1) \tag{17}\\
& k b(n, k)=b(n-1, k-1)+\sum_{\lambda=2}^{v}(-1)^{\lambda}(\lambda-2)!\binom{n}{\lambda} b(n-\lambda, k-1) \tag{18}\\
& k B(n, k)=\sum_{\lambda=1}^{v}(-1)^{\lambda-1}\binom{n}{\lambda}(\lambda-1)^{\lambda-1} B(n-\lambda, k-1) . \tag{19}
\end{align*}
$$

These will be used later.
Diagonal polynomials. If one examines the elements of the matrix b, say, that lie on a diagonal of slope -1 , that is the elements

$$
b(n, n-r) \quad(n=r+1, r+2, \ldots)
$$

one finds that these are the values of a polynomial with rational coefficients. More precisely, there is a polynomial $P_{r}(b, x)$, of degree $r-1$ in x, with integer coefficients and an integer d_{r} such that

$$
\begin{equation*}
d_{r} b(n, n-r)=\binom{n}{r+1} P_{r}(b, n) . \tag{20}
\end{equation*}
$$

The other three polynomials $P_{r}(s, x), P_{r}(S, x), P_{r}(B, x)$ enjoy the same denominator d_{r}, the first six values are displayed below.

$$
\begin{array}{l|llllll}
r & 1 & 2 & 3 & 4 & 5 & 6 \\
d_{r} & 1 & 4 & 2 & 48 & 16 & 576
\end{array}
$$

The corresponding polynomials can be listed as follows.

$$
\begin{array}{ll}
P_{1}(s, x)=-1 & P_{1}(S, x)=1 \\
P_{1}(b, x)=1 & P_{1}(B, x)=-1 \\
P_{2}(s, x)=3 x-1 & P_{2}(S, x)=3 x-5 \\
P_{2}(b, x)=3 x-13 & P_{2}(B, x)=3 x+7 \\
P_{3}(s, x)=-x(x-1) & P_{3}(S, x)=(x-2)(x-3) \\
P_{3}(b, x)=(x-5)(x-8) & P_{3}(B, x)=-(x+2)(x+5) \\
P_{4}(s, x)=15 x^{3}-30 x^{2}+5 x+2 \\
P_{4}(S, x)=15 x^{3}-150 x^{2}+485 x-502 \\
P_{4}(b, x)=15 x^{3}-390 x^{2}+3245 x-8638 \\
P_{4}(B, x)=15 x^{3}+210 x^{2}+845 x+938 \\
P_{5}(s, x)=-x(x-1)\left(3 x^{2}-7 x-2\right) \\
P_{5}(S, x)=(x-4)(x-5)\left(3 x^{2}-23 x+38\right)
\end{array}
$$

$$
\begin{aligned}
& P_{5}(b, x)=(x-9)\left(3 x^{3}-103 x^{2}+1118 x-3876\right) \\
& P_{5}(B, x)=-(x+4)\left(3 x^{3}+58 x^{2}+313 x+386\right)
\end{aligned}
$$

All the above polynomials have no complex roots. However

$$
P_{6}(s, x)=63 x^{5}-315 x^{4}+315 x^{3}+91 x^{2}-42 x-16
$$

has the pair $-.2835345 \pm .2696825 i$ of complex roots.
Recurrences. The two term recurrences for s and S

$$
\begin{equation*}
s(n+1, k)=s(n, k-1)-n s(n, k) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
S(n+1, k)=S(n, k-1)+k S(n, k) \tag{22}
\end{equation*}
$$

are well known. The first follows from identifying the coefficients of $x^{n} / n!$ on both sides of

$$
(1+x) \frac{d}{d x}[\log (1+x)]^{k} / k!=[\log (1+x)]^{k-1} /(k-1)!
$$

The second recurrence (22) follows via (10) from

$$
\begin{aligned}
\sum_{k=1}^{n+1} S(n+1, k) t^{[k]} & =t^{n+1}=t \cdot t^{n}=t \sum_{h=1}^{n} S(n, h) t^{[h]} \\
& =\sum_{h=1}^{n+1} S(n, h)\left\{t^{[h+1]}+h t^{[h]}\right\}
\end{aligned}
$$

by indentifying coefficients of $t^{[k]}$ on both sides. Comtet gave the following recurrence for b
(23) $\quad b(n+1, k)=n b(n-1, k-1)+b(n, k-1)-(n-k) b(n, k)$.

This follows from the identity

$$
\begin{aligned}
(1+x) \frac{d}{d x}\left([(1+x) \log (1+x)]^{k}\right) / k!= & (1+x)[(1+x) \log (1+x)]^{k-1} /(k-1)! \\
& +k\left[(1+x) \log (1+x]^{k} / k!\right.
\end{aligned}
$$

Whether Comtet numbers of the second kind have a recurrence with a fixed number of terms I don't know.

The central $\boldsymbol{b}(\boldsymbol{n}, \boldsymbol{k})$. Perhaps the most striking features of the matrix b are the three zero values

$$
b(5,2)=b(8,5)=b(9,4)=0
$$

Are there any more occurrences of zero or are these three the only ones? This question is answered by the following

Theorem 7. Let h be any positive integer. Then

$$
\begin{align*}
& b(4 h+1,2 h)=0 \tag{24}\\
& 2 h b(4 h, 2 h)=-b(4 h, h-1) \tag{25}\\
& b(4 h-1,2 h-1)=b(4 h, 2 h) \tag{26}\\
& (2 h-1) b(4 h-1,2 h)=(4 h-1) b(4 h-2,2 h-1) \tag{27}
\end{align*}
$$

Proof. We begin by proving (27). We define polynomials F_{1} and F_{2} by

$$
F_{1}(x)=\prod_{k=1}^{4 h-2}(x+2 h-k), F_{2}(x)=\prod_{k=0}^{4 h-2}(x+2 h-k)
$$

and consider the polynomial

$$
F(x)=(2 h-1) F_{2}(x)-x(4 h-1) F_{1}(x)
$$

Since $F_{2}(x)=(x+2 h) F_{1}(x)$, we have

$$
F(x)=-2 h(x-2 h+1) F_{1}(x)=-2 h x \prod_{k=1}^{2 h-1}\left(x^{2}-k^{2}\right)
$$

and so $F(x)$ is an odd function of x.
By (9), the polynomials F_{1} and F_{2} have the expansions.

$$
\begin{aligned}
& F_{1}(x)=\sum_{k=0}^{4 h-2} s(4 h-2, k)(x+2 h-1)^{k} \\
& F_{2}(x)=\sum_{k=0}^{4 h-1} s(4 h-1, k)(x+2 h)^{k}
\end{aligned}
$$

If we ask for the coefficient of $x^{2 h}$ in $x F_{1}(x)$ we obtain in view of (12)

$$
\sum_{m=0}\binom{m}{2 h-1}(2 h-1)^{m-2 h+1} s(4 h-2, m)=b(4 h-2,2 h-1) .
$$

Similarly, the coefficient of $x^{2 h}$ in $F_{2}(x)$ is

$$
\sum_{m=0}\binom{m}{2 h}(2 h)^{m-2 h} s(4 h-1, m)=b(4 h-1,2 h-1)
$$

The coefficient of $x^{2 h}$ in $F(x)$ is therefore

$$
(2 h-1) b(4 h-1,2 h)-(4 h-1) b(4 h-2,2 h-1)
$$

But F is an odd function so this must be zero. Thus (27) is established.
We next prove (26). We define F_{3} and F_{4} by

$$
F_{3}(x)=\prod_{k=0}^{4 h-1}(x+2 h-k), F_{4}(x)=\prod_{k=1}^{4 h-1}(x+2 h-k)
$$

so that $F_{3}(x)=x F_{4}(x)+2 h F_{4}(x)$. Since $F_{4}(x)$ is an odd function of x, the coefficients of $x^{2 h}$ in $F_{3}(x)$ and $x F_{4}(x)$ are identical.

Now

$$
\begin{aligned}
F_{3}(x) & =\sum_{m=0}^{4 h} s(4 h, m)(x+2 h)^{m} \\
& =\sum_{k=0} x^{k} \sum_{m=k}^{4 h}\binom{m}{k}(2 h)^{m-k} s(4 h, m) .
\end{aligned}
$$

Hence the coefficient of $x^{2 h}$ in $F_{3}(x)$ is

$$
\sum_{m=2 h}^{4 h}\binom{m}{2 h}(2 h)^{m-2 h} s(4 h, m)=b(4 h, 2 h)
$$

Similarly,

$$
\begin{aligned}
x F_{4}(x) & =x \sum_{m=0}^{4 h-1} s(4 h-1, m)(x+2 h-1)^{m} \\
& =\sum_{k=1}^{4 h} x^{k+1} \sum_{m=k}^{4 h-1}\binom{m}{k}(2 h-1)^{m-k} s(4 h-1, m)
\end{aligned}
$$

The coefficient of $x^{2 h}$ in $x F_{4}(x)$ is therefore

$$
\sum_{m=2 h-1}^{4 h-1}\binom{m}{2 n-1}(2 h-1)^{m-2 h+1} s(4 h-1, m)=b(4 h-1,2 h-1)
$$

Equating these two coefficients gives us (26). Next we prove (24). We define $F_{5}(x)$ by

$$
F_{5}(x)=\prod_{k=0}^{4 h}(x+2 h-k)
$$

Hence

$$
\begin{aligned}
F_{5}(x) & =\prod_{m=0}^{4 m+1} s(4 m+1, m)(x+2 h)^{m} \\
& =\sum_{k=0} x^{k} \sum_{m=k}^{4 h+1}\binom{m}{k}(2 h)^{m-k} s(4 h+1, m)
\end{aligned}
$$

Since $F_{5}(x)$ is an odd function of x the coefficient of $x^{2 h}$ must vanish. That is,

$$
0=\sum_{m=2 h}^{4 h+1}\binom{m}{2 h}(2 h)^{m-2 h} s(4 h+1, m)=b(4 h+1,2 h)
$$

This proves (24). The relation (25) is now an easy consequence of (24), (26) and the recurrence (23).

The fact that $b(8,5)=0$ is easily explained since from (16) we have $P_{3}(b, x)=(x-5)(x-8)$. However, this gives us little hope of finding further zeros in the b matrix besides the ones we already know about.

Congruence properties. We give a few properties of the Stirling and

Comtet numbers modulo a prime p. The first of these shows that these numbers behave like the binomial coefficients.

Theorem 8. If p is a prime and if $1<k<p$ then p divides $s(p, k)$, $S(p, k), b(p, k)$ and $B(p, k)$.

Proof. If we inspect formulas (16), (17), (18), (19), we observe the ubiquitous factor $\binom{n}{\lambda}$. For $n=p$ this becomes a multiple of p, except when $\lambda=p$. Since $1<k<p$, this never happens. This proves Theorem 8.

If $k=p$ all four numbers are equal to 1 . If $k=1$ with the help of Wilson's Theorem we find

$$
\begin{aligned}
& s(p, 1)=(-1)^{p-1}(p-1)!\equiv-1(\bmod p) \\
& S(p, 1)=1 \\
& b(p, 1)=(-1)^{p}(p-2)!\equiv-1(\bmod p) \\
& B(p, 1)=(-1)^{p-1}(p-1)^{p-1} \equiv 1(\bmod p)
\end{aligned}
$$

Theorem 8 can be extended as follows:
Theorem 9. Let p be a prime and let $r+1<k<p$. Then $s(p+r, k)$, $S(p+r, k), b(p+r, k)$ and $B(p+r, k)$ are all divisible by p.

Proof. We prove the theorem for the number $S(p+r, k)$. The same proof works for the three other numbers. For $r=0$ we have Theorem 8 and we use induction on r. Suppose the theorem is true for all $r<h$. If we set $n=p+h$ in (17) we get

$$
k S(p+h, k)=\sum_{\lambda=1}^{p+h-k+1}\binom{p+h}{\lambda} S(p+h-\lambda, k-1)
$$

Because $h+1<k<p$ we have

$$
\lambda \leqq p+h-k+1<p
$$

If $\lambda>h$ then $p+h-\lambda<p$ and hence

$$
\binom{p+h}{\lambda} \equiv 0(\bmod p)
$$

That is

$$
k S(p+h, k) \equiv \sum_{\lambda=1}^{h}\binom{p+h}{\lambda} S(p-\lambda+h, k-1)(\bmod p)
$$

Now $h<k-1<p$ and so by hypothesis of induction each value of $S(p-\lambda+h, k-1)$ is a multiple of p and so the theorem holds for $r=$ h.

Row sum congruences. Congruences for the row sums of the matrices s, S, b, B follow from Theorem 9 . In conclusion we give a few results of this kind.

In the first place the n-th row sum for the matrix s is zero if $n>1$.
For the matrix S the row sum is usually denoted by B_{n}

$$
B_{n}=\sum_{k=0}^{n} S(n, k)
$$

and is called the Bell number. The row sums for b we have denoted by σ_{n} and those for B we call Σ_{n}. That is

$$
\sigma_{n}=\sum_{k=0}^{n} b(n, k), \sum_{n}=\sum_{k=0}^{n} B(n, k) .
$$

The values of these functions modulo p for $n=p+i$ are tabulated below for $i=0(1) 5$.

n	B_{n}	σ_{n}	\sum_{n}
p	2	0	2
$p+1$	3	-1	2
$p+2$	7	-2	1
$p+3$	20	-6	-1
$p+4$	67	-12	23
$p+5$	255	-40	-345

The Stirling numers of the second kind have a so called explicit formula

$$
k!S(n, k)=\sum_{\nu=0}^{k}(-1)^{k-\nu}\binom{k}{\nu} \nu^{n}
$$

while no such formula seems to hold for $s(n, k)$. The same situation prevails for the Comtet numbers. In fact we have the following result.

Theorem 10.

$$
(k-1)!B(n, k)=\sum_{\nu=0}^{k=1}(-1)^{n-k-\nu}\binom{k-1}{\nu}(n-\nu-1)^{n-1} .
$$

Proof. That the theorem holds for $k=1$) follows from (5) and (6). In fact

$$
\sum_{n=1}^{\infty} B(n, 1) x^{n} / n!=\psi(x)=\sum_{=1 n}^{\infty}(-1)^{n-1}(n-1)^{n-1} x^{n} / n!
$$

so that

$$
B(n, 1)=(-1)^{n-1}(n-1)^{n-1}
$$

which is Theorem 10 when $k=1$.
The proof now proceeds by induction on k. If the theorem holds for all n and for $k-1$ we have

$$
\begin{align*}
& (-1)^{n-\lambda+k-1}(k-2)!B(n-\lambda, k-1) \\
& \quad=\sum_{\nu=0}^{k-2}(-1)^{\nu}\binom{k-2}{\nu}(n-\lambda-\nu-1)^{n-\lambda-1} . \tag{28}
\end{align*}
$$

Multiplying (19) by $(k-2)$! and substituting (28) into this product gives

$$
\begin{aligned}
&(-1)^{n-k} k(k-2)!B(n, k) \\
&=\sum_{\lambda=1}^{n-k+1}\binom{n}{\lambda}(\lambda-1)^{\lambda-1} \sum_{\nu=0}^{k-2}(-1)^{\nu}\binom{k-2}{\nu}(n-\lambda-\nu-1)^{n-\lambda-1} \\
&=\sum_{\nu=0}^{k-2}(-1)^{\nu}\binom{k-\nu}{\nu}^{n-h+1} \sum_{\lambda=1}^{n+1}\binom{n}{\lambda}(\lambda-1)^{\lambda-1}(n-\lambda-\nu-1)^{n-\lambda-1} .
\end{aligned}
$$

To evaluate the inner sum we make use of the identity found in [2], p. 23.

$$
\sum_{x=0}^{n}\binom{n}{\lambda}(x+\lambda)^{\lambda-1}(n+y-\lambda)^{n-\lambda-1}=\left(x^{-1}+y^{-1}\right)(n+x+y)^{n-1}
$$

with $x=-1, y=-\nu-1$. If we let $\lambda=0(1) n$ we get

$$
-\frac{\nu+2}{\nu+1}(n-\nu-2)^{n-1}
$$

From this we must subtract the terms for $\lambda=0, \lambda=n$ and $\lambda=(n-k+2)$
(1) $(n-1)$. Hence the inner sum is

$$
\begin{aligned}
-\frac{\nu+2}{\nu+1}(n-\nu-2)^{n-1} & +(n-\nu-1)^{n-1}+(\nu+1)^{-1}(n-1)^{n-1} \\
& -\sum_{\lambda=n-k+2}^{n-1}\binom{n}{\lambda}(\lambda-1)^{\lambda-1}(n-\lambda-\nu-1)^{n-\lambda-1} .
\end{aligned}
$$

We now have

$$
\begin{align*}
&(-1)^{n-k} k(k-2)!B(n, k) \\
&=\sum_{q=1}^{k}(n-q)^{n-1} c_{q}- \sum_{t=1}^{k-2}\binom{n}{t}(n-t-1)^{n-t-1} \tag{30}\\
& \sum_{\nu=0}^{k-2}(-1)^{\nu}\binom{k-2}{\nu}(t-\nu-1)^{t-1}
\end{align*}
$$

where

$$
c_{q}=(-1)^{q-1} \frac{k}{k-q}\binom{k-2}{q-1} .
$$

The inner sum in (30) vanishes. Multiplying both sides by $(k-1) / k$ we get

$$
\begin{aligned}
(-1)^{n-k}(k-1)!B(n, k) & =\sum_{q=1}^{k}(n-q)^{n-1}(-1)^{q}\binom{k-2}{q-1} \frac{k-1}{k-q} \\
& =\sum_{q=1}^{k}(-1)^{q}\binom{k-1}{q-1}(n-q)^{n-1}
\end{aligned}
$$

Thus the theorem holds for k.
The following corollary results from setting $k=n-r-1$ and $m=n-1$.

$$
\sum_{i=0}^{m-r}(-1)^{\lambda}\binom{m-r}{\lambda}(m-\lambda)^{m}=\frac{(-1)^{r} P_{r}(B, m+1)}{d\left(r_{r}+1\right)!}(n+1)!
$$

Examples of this corollary, the first of which is well known, are

$$
\begin{aligned}
& \sum_{\lambda=0}^{m}(-1)^{\lambda}\binom{m}{\lambda}(m-\lambda)^{m}=m! \\
& \sum_{\lambda=0}^{m-1}(-1)^{\lambda}\binom{m-1}{\lambda}(m-\lambda)^{m}=\frac{1}{2}(m+1)! \\
& \sum_{\lambda=0}^{m-2}(-1)^{\lambda}\binom{m-2}{\lambda}(m-\lambda)^{m}=\frac{3 m+10}{6}(m+1)! \\
& \sum_{\lambda=0}^{m-3}(-1)^{\lambda}\binom{m-3}{\lambda}(m-\lambda)^{m}=\frac{(m+3)(m+6)}{48}(m+1)!
\end{aligned}
$$

We have not taken the time and space to discuss the numerical analysis and combinatorial meanings of the matrices b and B. This we hope to do in a future note.

References

1. Louis Comtet, Advanced Combinatorics. Reidel, Dordrecht, 1974, p. 139-140.
2. John Riordan. Combinatorial Identities. Wiley, New York, 1968.

Mathematics Department, University of California, Berkeley, CA 94720

