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ABSTRACT We discuss two infinite triganular matrices b(n, k) and 
B(n, k) of rational integers that are associated with the matrices 
s(n> k) and S(n, k) of the Stirling numbers of the first and second 
kind. The numbers b{n, k) were introduced in 1974 by Comtet in 
treating the nth derivative of xx. They are generated by powers of 
the function (1 + ;c)log(l + x). The numbers B(n, k) are generated 
by powers of the inverse function. 

All four matrices are treated together and numerous properties 
and relations are presented. In particular it is shown that b(4h 4- 1, 
2h) — 0 for all integers h > 0. The values of the elements in a partic
ular row of a matrix as well as the row sum when reduced modulo 
a prime p are also considered. 

In 1974 Comtet introduced the numbers b(n, k) defined by 

CO 

£ b(n, k)x»ln\ = {(1 + x) log(l + *)}*/*!. 

He used these numbers in the formula 

^ g 1 = ** S (log x y ( ] ) g 6(« -j,n-k -j)x-K 

It is my purpose to show that these numbers are closely related to the 
Stirling numbers of the first and second kind and that they have a number 
of interesting properties. In fact it is important to introduce a second set 
of numbers B(n, k) in order to treat the whole subject adequately. 

We begin by introducing four infinite lower triangular matrices s, 5, 
b, B, The elements on the ni\\ row and kt\\ column we denote by 

(1) s{n, k), S(n, k), b(n, k), B(n, k) 

with initial conditions 
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s(p, 0) = 5(0, 0) = b(0, 0) = 5(0, 0) = 1 

s(n, 0) = S(n, 0) = 6(/i, 0) = B(n, 0) = 0 if n * 0 

j(0, Ä:) = 5(0, k) = 6(0, A:) = £(0, *:) = 0 if n # 0. 

If H ^ 0 and k ^ 0 these elements are generated by the following generat
ing functions. 

CO 

(2) k ! 2 *(", *)*"/"! = {log(l + *)}* 
w = l 

OD 

(3) k\ J]S(n,k)x«/nl = (e* - 1)* 

co 

(4) k ! 2 i(/i, A:)*»//!! = {(1 + JC) log(l + *)}* 
n=l 

(5) k Î 2 £(/!, *)JC»//I! = (0(JC)}*. 

Here we use the notation <j)(x) to denote the function 

(6) cjj(x) = 2 ( - l ) ^ ( v - O^-^/v! 

which is the inverse of the function (1 + x) log(l + x) in the sense that 

Äf'Kx)) = f-Kf(x)) = x. 
Since the four basic functions log(l + x), ex — 1,(1 4- x) log(l + x), 

(J){x) all vanish at the origin, all four matrix elements vanish whenever 
k > n and moreover all elements on the main diagonals of the four 
matrices are equal to 1. 

The elements s(n, k) and S(n, k) are called Stirling numbers of the first 
and second kind respectively. We call the elements b(n, k) and B(n, k) 
Comtet numbers of the first and second kind. 

The matrices s and 5 are mutually inverse and so are b and B. The 
first ten rows and columns of these four matrices are shown in Tables 
1 to 4. 

We find it convenient to introduce two more matrices 

(7) M(n9k) = (-l)"+*nri(n
kZ \ 

(8) m(n,k) = kn-^. 

The fact these are mutually inverse is easy to establish. 

Inversion Lemma. We first prove the useful result. 

LEMMA. Let co and Q be two mutually inverse matrices and let gm(x) be 
a sequence of functions of x. Finally let 
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2 w(k, v)gv(x) = Gk(x). 

Then 

gn(x) = 2 0(n, k)Gk(x). 

PROOF. Substituting from the first equation into the second we get 

2 fl(«, k)Gk{x) = S fl(/i, *) 2 Û)(AT, y)gv(x) 

= 2 gvW 2 Q(n, k)o)(k, v) = 2 Sv(*) 5J = gwO), 

where 5? is Kronecker's delta. This proves the lemma. 

If we multiply both sides of (2) by tkjk\ and then sum over k we obtain 

oo oo 

2 2 '**(*. k)x«/n\ = t̂o«tt+*) = (1 + xy. 
k=l n=l 

If we identify the coefficients of xn/nl on both sides we get 

(9) 2 J("> *)'* = *(* - 0 (' - 2) • • • (' - n + 0 = 'Cw] 

a well known identity. If we use the lemma we get the familiar 

(io) 2 s(n> fc)/c*3 =**• 

If we let a denote the row sum function of ò, so that 

(11) 2 Z>(/2,/:)** = <7W(0 

then by the lemma 

2 B(n9 k)an(t) = t". 
k=0 

The row sum function of b 

THEOREM 1. The function an(t) is generated by 

(1 + JC)/C1+*) = 2 <Tn(t)x»lnl. 

PROOF. 

oo 

(1 + JC)«1"^ = <?«i+*)iog(i+*) = 2 f*[(l + x) log(l -f *)]*/*! 
fc=0 

oo oo 

2 ^ 2 *(«» k)xn/n\ = 2 xW 2 *>("> * ) ' * / " ! 
=0* n=l n=\ \k=Q I 

<E*n(t)x*lnL 



468 D. H. LEHMER 

Table 5 

n 
0 
1 
2 
3 
4 

On 

1 
1 
2 
3 
8 

n 
5 
6 
7 
8 
9 

tfn 
10 
54 

- 4 2 
944 

-5112 

n 
10 
11 
12 
13 
14 

On 

47160 
-419760 
4297512 

-47607144 
575023344 

For / = 1 we get an{\) as the sum of the elements of the ni\\ row of b 
and it is the coefficient of xn\n\ in the expanison of (1 4- x)1+x in powers 
of x. Table 5 gives a small table of an(\) = an. 
The number 

a30(\) = 357611376476800486783526273280 

has 30 digits. 
The numbers an(l) can be expressed in terms of Stirling numbers of 

the first kind by means of the following theorem. 

THEOREM 2. 

an{\) = „! 2 [s(n - X - 1, A) 4- s(n - X - 1), À - l)]/(/i - X)L 

PROOF. By (2) we can write 
oo 

(1 4. x)x = flogen-*) = £j x*(log(l H- *))*/*! 

oo oo 

= S xk Z J *m^(™> ^ ) / w ! 

oc oo 

— ZJ
 X" ZJ ^(m ' /7 "" m)/(n — mV" 

Multiplying both sides by 1 4- x we have 

(1 4- x)1+* = f; x™ £) j(/w-A:, A:)/(/w - £)! 4- f ] Jtw+1s(w - /:, k)/(m - A)! 

OO DO 

= 2 *w L W w - k,k) + (m- k)s(m - k - \,k)}/(m - k)! 
w = l k=0 

- v m : y?3 s(m - k -I, k) + s(m - k - I, k - 1) 
. V M (m-*)! 

But by Theorem 1 with t = 1 we see that an(\)jm\ is the coefficient of 
xm on the right side of the last equality. This proves the theorem. 

Connection b with s. Comtet gave the following equation (12) which 
connects the elements of b with those of s. If we write 
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{(1 + x)log(l + x)}* = (I + xY {log(l + x)Y 

and identify the coefficients of xn\n\ on both sides we get 

bin, k)=t/-(*)(:}(»-v<v 

(12) =£(")2*'5(>UW«-v,*) 

where use is made of the known identity 

More facts about b. A main result is the following theorem. 

THEOREM 3. If n > 1 

£ ( - l ) * ( * - l)*-i6(/i,*) = 0. 

PROOF. We make use of Abel's generalization of the binomial theorem 
(see Riordan [2], p. 18, (13a)) 

(13) x~Hx + y + n)» = fj (* + x)*-i(fy(y + « ~ *)""*• 

If we put A7 = v, * = — 1, j> = — y and divide both sides by ( — l)v we get 

±(-\Y(k - D*-1(jt)^v~* = - 1 -

Now we write 

*=1 k=l v=k \ n / 

= f ] j ( / f ,v )£( - l )*(A:- l )*- i (^V 

= - 2] *(«, v) = o. 
v=0 

This proves the theorem. 

This theorem can be used to prove that cp{x) and (1 + x)log(l 4- x) 
are mutually inverse as follows. Let x be chosen so that |x| is so small 
that (1 4- x)log(l + x) is inside the circle of convergence of (J), that is 

11 + x | |log(l +x)\ < l/e. 
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Then 

oo 

#(1 + *)log(l +*)] = £ ( - \y~Kv - 1)^[(1 + x) log(l + x)Yiv\ 

CO CO 

= S ( - l)"_1(v - l)^1 S b("> *"/«! 

CO y.fl CO 

By Theorem 3 the inner sum is 0 if n > 1 and it is — 1 if n = 1. 
That is 

<J)[(l + x) log(l + x)] = x. 

A more general result than Theorem 3 is the following. 

THEOREM 4. 

Zj(-!)*(* + J)*-1*^*) = ( - l)w(* J f 7 *)(« - 1)! 

PROOF. If, we do not fixxat — 1 in (13), we get 

Using this identity with (12) we find that 

£ ( - 1)*(* + x)*-i*(/i, k) = £ *(«, y)( - 1 )^ -1 = JL J ( - Xys(n, v) 
k=0 y=0 •* v=0 

= ( - 1 ) " ( J C + l)(* + 2) . . . ( * + » - 1) 

= (_!)-(„_ l ) ' . ( n +f 7 ! 

This proves Theorem 4. 

If we apply the lemma to Theorem 4 we obtain 

(14) g ( _ l)*(* + f - »)(fc - \)\B{n, k) = ( - l)»(x + n)»-\ 

If we use the fact developed in the proof of Theorem 4 that 

( - \y>{k - i)! (* + * 7 ' ) = g *(*, v x - 1 ) ^ - 1 

then (14) gives us, on identifying the coefficients of xv~l on both sides, 

(15) J *(»> k ) s ^ *) = ( - 1)V+W-V(J I J) = A*(", »)• 

THEOREM 5. 

file:///y~Kv
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±S(n,k)b(k,v) = n*-^ 

PROOF. The relation (15) can be written Bs = M. Taking the inverse 
of both sides gives us (Bs)~x = s - 1 /? - 1 = Sb = M~l = m. Since 

m(n9v)= v ^ Q , 

the theorem is poved. 

Another theorem about B is the following: 

THEOREM 6. 

2 ( - l)*(Jfc - 2)! B(n9 k) = ( - l)»(/i - I)""1. 

PROOF. Since the functions (J)(x) and (1 + x)log(l + x) are inverse, we 
have 

(1 + #*))log(l + #*)) = x. 

Hence 

* = #t) + 2 (- ly-H^wwA + (^))A+I/A) 
=2 

= ̂ ) + 2(- iW)W- 0) 
*=2 

= # 0 + I ] ( - 0*(* - 2)! 2 B(n, k)x«ln\ 
k=2 n=k 

oo oo y-n oo 

= L ( - l)»-H» - l)""1^/«! + S ^ r L ( - 1)*(* - 2)!£(«, *). 
«=1 «=2 / 7 : k=2 

If « > 1 the coefficient of xnjn\ on both sides is zero. Transposing the 
first term on the right gives the theorem. 

The è-counterpart of Theorem 6 is Theorem 3. Another way of proving 
Theorem 3 along similar lines starts with the relation cjj[{\ + x)log(l + x)] 
= x. 

Further identities. Another set of four identities comes from (2), (3), 
(4), (5) by writing 

{F(x)Ylk\ = {F(x)/k} {F(x)}*-y(k - 1)! 

for 

F(x) = log(l + JC), e* - 1, (1 + x)log(l + JC), (/J(X). 

Identifying coefficients of xn/n\ on both sides gives the following results, 
with v = n — k + 1. 
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(16) ks(n, k) = 2 ( - Ô HA - W(jf(n -*,k-l) 

(17) kS(n, k) = 2 Qs(/ i - A, * - D 

(i8) *&(/!,*) = *(» - 1 , * - 1 ) + s ( - 1 w - 2v(nM» - ; u - 1 ) 

(19) */*(/!,*) = J (_ l )A- ig^ _ [y-iß(n -X,k- 1). 

These will be used later. 

Diagonal polynomials. If one examines the elements of the matrix b, 
say, that lie on a diagonal of slope — 1, that is the elements 

b(n, n — r) (n = r 4- 1, r 4- 2, . . .) 

one finds that these are the values of a polynomial with rational coeffi
cients. More precisely, there is a polynomial Pr(b, x), of degree r — 1 in 
x, with integer coefficients and an integer dr such that 

(20) drb{n,n-r)=(r " ,)p r(6, n). 

The other three polynomials Pr{s, x), Pr(S, x), Pr(B, x) enjoy the same 
denominator dr, the first six values are displayed below. 

r j 1 2 3 4 5 6 

rfj 1 4 2 48 16 576 

The corresponding polynomials can be listed as follows. 

P^ x) = - 1 P^S, x) = 1 

Pi(b, x) = 1 P i ^ , x) = - 1 

/>2(s, x) = 3x - 1 P2(S> *) = 3x - 5 

p2(6, x) = 3x - 13 P2(£, x) = 3x 4- 7 

/>3(J, *) = - x ( x - 1) P3(5, *) = ( * - 2) (x - 3) 

P3(b, x) = (x - 5) (x - 8) P3(2*, x) = -(x 4- 2) (x 4- 5) 

/>4C?, x) = 15x3 - 30x2 + 5x + 2 

/>4(S, x) = 15x3 - 150x2 + 485x - 502 

PA(b, x) = 15x3 - 390x2 + 3245x - 8638 

PA(B, x) = 15x3 4- 210x2 4- 845x + 938 

P5(5, x) = - x ( x - 1) (3x2 _ lx _ 2) 

p5(S, x) = (x - 4) (x - 5) (3x2 _ 23x + 38) 
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/>5(/>, X) = (X - 9) (3x3 _ 103^2 + 11 18A: - 3876) 

P5(B, x) = - ( x + 4) (3x3 + 58x2 + 313* + 386). 

All the above polynomials have no complex roots. However 

P6(s, x) = 63x5 - 315x4 + 315x3 + 91x2 _ 42* _ 16 

has the pair -.2835345 ± .2696825/ of complex roots. 

Recurrences. The two term recurrences for s and S 

(21) s(n + 1, k) = s(n, k - 1) - /w(/i, k) 

and 

(22) S(n + 1, *) = S(/i, £ - 1) + kS(n, k) 

are well known. The first follows from identifying the coefficients of 
xn/n\ on both sides of 

'dx{ (1 + *)£[ log( l + x)]'/kl = [log(l + x)]*-y(k - 1)! 

The second recurrence (22) follows via (10) from 

«+1 n 

2 5(/i + 1, £V[*] = ^+ 1 = r • /» = / £ S(/i, /2)r[« 

= 2 5(/i, A) {tv+v- + /tfCÄ]} 
Ä = l 

by indentifying coefficients of tLkl on both sides. Comtet gave the following 
recurrence for 6 
(23) b(n + 1, k) = A7Z>(rt — 1, /c — 1) + 6(/i,Jfc - 1) - (n - k)b(n, k). 
This follows from the identity 

(1 + x)£([(l + x) log(l + x)]')/k\ = (1 + x)[(l + x)log(l + *)]*-V(* - D! 

4- k[{\ + x)log(l +x]*/kl 

Whether Comtet numbers of the second kind have a recurrence with a 
fixed number of terms I don't know. 

The central £(«, k). Perhaps the most striking features of the matrix b 
are the three zero values 

6(5, 2) = 6(8, 5) = 6(9, 4) = 0. 

Are there any more occurrences of zero or are these three the only ones? 
This question is answered by the following 
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THEOREM 7. Let h be any positive integer. Then 

(24) b(4h + 1, 2/z) = 0 

(25) 2Aft(4A, 2/0 = -è(4A, A - 1) 

(26) b(4h - 1,2/2 - 1) = 6(4/z, 2/z) 

(27) (2/* - 1)0(4/? - 1, 2/z) = (4/z - l)/>(4/z - 2, 2/z - 1). 

PROOF. We begin by proving (27). We dehne polynomials Fx and F2 by 

4h-2 4A-2 

F^x) = [ ] (* + 2A - A:), F2(x) = f\ (x + 2h - k) 

and consider the polynomial 

F(x) = (2h - \)F2(x) - x(4h - \)Fx{x). 

Since F2(x) = (x 4- 2h)Fi(x), we have 

2 Â - 1 

F(x) = - 2/Z(JC - 2/z 4- l)Fx(x) = -2Ax f ] (*2 ~ ^2) 

and so F(x) is an odd function of x. 
By (9), the polynomials Fx and F2 have the expansions. 

4Ä-2 

Fx(x) = 2 s(4A - 2, fc) (x + 2/z - 1)* 
fe=0 

4 Ä - 1 

F2(JC) = 2 *(4A - 1, * ) (JC + 2A)*. 

If we ask for the coefficient of x2h in xFi(x) we obtain in view of (12) 

2 UhL \Y2h - l)m"2Ä+1<4/z - 2, m) = *(4A - 2, 2/z - 1). 

Similarly, the coefficient of x2h in F2(x) is 

2 (%)(2h)m-2hs(4h - l,m) = b(4h - 1, 2/z - 1). 

The coefficient of x2h in F{x) is therefore 
(2/z - 1)A(4A - 1, 2A) - (4A - 1)A(4A - 2, 2A - 1). 

But F is an odd function so this must be zero. Thus (27) is established. 
We next prove (26). We define F3 and F4 by 

4 Ä - 1 4 A - 1 

F3(x) = n (* + 2h - k)> F*(x) = \\(x + 2h- k) 
k=0 k=l 

so that F3(x) — xF±(x) + 2/zF4(x). Since F4(x) is an odd function of x, 
the coefficients of x2h in F3(x) and xF4(x) are identical. 
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Now 

F3(JC) = j ] s(4k9 m) (x + 2A)W 

m=0 

= I ** S 7 (2A)*-*5(4A, m). 

Hence the coefficient of x2h in F3(x) is 

Similarly, 

2 ; ; (2A)»-2* j(4A, m) = ft(4A, 2A). 

4A-1 

;cF4(;c) = x 2] *(4A - 1, m) (x + 2A - 1)M 

m=0 

4A 4Ä-1 / m \ 

= I x*+1 II ( TX2/* - Dm-**(4A - 1, m). 
The coefficient of x2h in JCF4(X) is therefore 

2 ? (9 ™ \\2h - 1)W"2Ä+M4A - 1, m) = b{4h - 1, 2A - 1). 

Equating these two coefficients gives us (26). Next we prove (24). We 
define F5(x) by 

4Ä 

F5(x) = J] (x + 2A - lc). 
k=0 

Hence 

4m+l 
F5(JC) = l\ s(4m + 1, w)(x + 2A)W 

m=0 

= I x*4£Y7)(2A)"-M4A + 1, m), 

Since F5(x) is an odd function of x the coefficient of x2h must vanish. 
That is, 

0 = 4£X (™)(2h)>»-2hs(4h + 1, m) = Z>(4A + 1, 2A). 
m =2A \ Z / I ' 

This proves (24). The relation (25) is now an easy consequence of (24), 
(26) and the recurrence (23). 

The fact that £(8, 5) = 0 is easily explained since from (16) we have 
P^(b, x) = (x — 5)(x — 8). However, this gives us little hope of finding 
further zeros in the b matrix besides the ones we already know about. 

Congruence properties. We give a few properties of the Stirling and 
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Comtet numbers modulo a prime p. The first of these shows that these 
numbers behave like the binomial coefficients. 

THEOREM 8. If p is a prime and if 1 < k < p then p divides s(p, k), 
S(p, k), b(p, k) and B(p, k). 

PROOF. If we inspect formulas (16), (17), (18), (19), we observe the 
ubiquitous factor (J). For n = p this becomes a multiple of /?, except 
when X = p. Since 1 < k < /?, this never happens. This proves Theorem 
8. 

If k = p all four numbers are equal to 1. If A: = 1 with the help of Wil
son's Theorem we find 

s(p9 1) = ( - l ) ' " 1 ^ - 1)! = - 1 (mod/)) 

S(P, 1) = 1 

b(p9 1) = (-l)P(p - 2)! = - 1 (mod/?) 

£(/?, 1) = (- l) ' -K/> - l ) ' " 1 = 1 (mod/7). 

Theorem 8 can be extended as follows: 

THEOREM 9. Let p be a prime and let r + 1 < k < p. Then s(p + r, k), 
S(p + r, k), b(p + r, k) and B(p + r, k) are all divisible by p. 

PROOF. We prove the theorem for the number S(p + r, k). The same 
proof works for the three other numbers. For r = 0 we have Theorem 8 
and we use induction on r. Suppose the theorem is true for all r < h. If we 
set n = p 4- h in (17) we get 

p-rh-k+l / „ i JA 

kS(p + h,k)= 2 (P J )S(P + h - hk - 1). 

Because h + 1 < k < p we have 

X^p + h-k+l<p. 

If X > h then p + h - X < p and hence 

(P + * ) = () (mod/,). 

That is 

kS(p + A, £) = £ (^ J" AW/> - a + A, jfc - l) (mod />). 

Now A < & — 1 </7 and so by hypothesis of induction each value of 
S(p — A 4- A, A: — 1) is a multiple of/? and so the theorem holds for r = 
A. 
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Row sum congruences. Congruences for the row sums of the matrices 
s, 5, b, B follow from Theorem 9. In conclusion we give a few results of this 
kind. 

In the first place the n-\h row sum for the matrix s is zero if n > 1. 
For the matrix S the row sum is usually denoted by Bn 

Bn = ± S(«> k) 
and is called the Bell number. The row sums for b we have denoted by 
an and those for B we call £«• That is 

an = £ b(n, k\ Sw = L B(n, k). 

The values of these functions modulo pforn=p+i are tabulated below 
for/ = 0(1)5. 

n 

P 

P + 1 

P + 2 

P + 3 

p + 4 

P + 5 

Bn 

2 

3 

7 

20 

67 

255 

<7» 

0 

- 1 

- 2 

- 6 

- 1 2 

- 4 0 

The Stirling numers of the second kind have 

k\S(n, 
• * ) = 

k 

21 (" - l ) * - ( 

E* 
2 

2 

1 

- 1 

23 

-345 

a so called explicit formula 

> 

while no such formula seems to hold for s(n, k). The same situation pre
vails for the Comtet numbers. In fact we have the following result. 

THEOREM 10. 

(* - \)\B(n, k) = ^ ( - l y - ' - f v V - v - 1)""1-

PROOF. That the theorem holds for k = 1) follows from (5) and (6). 
In fact 

oo oo 

S % iM«! = #*) = 2](-1)w"1(« - i)w-M«! 
«=1 =1« 

so that 

B(n, l) = (-l)»-i(fl - l)»-i 
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which is Theorem 10 when k = 1. 
The proof now proceeds by induction on k. If the theorem holds for 

all n and for k — 1 we have 

(_l)n-A+*-i(£ _ 2)\B(n - A,k - 1) 

(28) k-2 /h. _ j \ 
= L(-M „ z)(n- A - v- îy-'-i. 

Multiplying (19) by (k - 2)! and substituting (28) into this product gives 

(-l)»-"k(k - 2)\B(n,k) 
n-k+l /„ \ £-2 /k — 2 

To evaluate the inner sum we make use of the identity found in [2], p. 23. 

16)(;c + xy~i(n + y "iy'1'1 = (jc-1+y~i)(n + *+j;)w"1 

with x = — 1, j = — v — 1. If we let A = 0(1) /? we get 

- 7TT<" - » - 2>-'-
From this we must subtract the terms for A = 0, A = n and A = (tf — k + 2) 
(1) (« — 1). Hence the inner sum is 

. (« _ v _ 2)»-i + (n - v - l)""1 + (v + 1)-H« - 1)"-

=«-*+2 W 

V + 1 

We now have 

(-l)"-*A:(/fc - 2) !£(«,&) 

(30) = i (« - <?)B-\ - ?(?)(« - ' - i)"-'-1 

2 ( - i ) f r ~ 2 ) ( * - v - i)'-1 

where 

The inner sum in (30) vanishes. Multiplying both sides by (k — \)/k we get 
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(_!)-*(* - \)\B(n,k) = g (n - q)-i(- 1)«(J I *) -jJL=-i-

= g(-i)<J:!)("-^-1-
Thus the theorem holds for k. 

The following corollary results from setting k = n — r — Ì and 
m — n — 1. 

ä (" ! )A a j ^ - ^ w = —V.Yi)! (* + 1)! 

Examples of this corollary, the first of which is well known, are 

£ ( - l ) ^ ) ( / » - « " = m ! 

g ( - D A ( W 7 ' ) ( W - A ) - = i - ( m + 1)! 

(-1W ^ J ( w - / l ) w = - ^ 1 | L(w + 1)! 
-3 

We have not taken the time and space to discuss the numerical analysis 
and combinatorial meanings of the matrices b and B. This we hope to 
do in a future note. 
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