ANOTHER FAMILY OF q-LAGRANGE INVERSION FORMULAS

IRA GESSEL AND DENNIS STANTON

Abstract

A q-analog of Lagrange inversion is stated for (x / $\left.\left(1-x^{r}\right)^{b}\right)$. Applications to basic hypergeometric series, identities of the Rogers-Ramanujan type, and orthogonal polynomials are given.

1. Introduction. The generalized Lagrange inversion problem is: given

$$
\begin{equation*}
G_{k}(x)=\sum_{n=k}^{\infty} B_{n k} x^{n}, k=0,1, \ldots \tag{1.1}
\end{equation*}
$$

for some lower triangular non-singular matrix $B_{n k}$, and a formal power series

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} f_{n} x^{n} \tag{1.2}
\end{equation*}
$$

find constants a_{k} such that

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} a_{k} G_{k}(x) \tag{1.3}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
f_{n}=\sum_{k=0}^{n} B_{n k} a_{k} \tag{1.4}
\end{equation*}
$$

Thus to find a_{k} it is sufficient to find the inverse matrix $B_{k l}^{-1}$:

$$
\begin{equation*}
a_{k}=\sum_{l=0}^{k} B_{k \prime}^{-1} f_{l} \tag{1.5}
\end{equation*}
$$

The usual Lagrange inversion formula takes $G_{k}(x)=y^{k}$, where $y(x)$ is a formal power series in x such that $y(0)=0$ and $y^{\prime}(0) \neq 0$.

In a recent paper [10] we gave a q-analog of $B_{n k}, B_{k /}^{-1}$, and $G_{k}(x)$ for $G_{k}(x)=x^{k} /(1-x)^{a+(b+1) k}$. In this paper we similarly find a q-Lagrange inversion formula for a q-analog of $G_{k}(x)=x^{k} /\left(1-x^{r}\right)^{a+(b+1) k}$ for $r=$ $1,2, \ldots$ Our main theorem is stated as Theorem 2.3. Just as in [10],

[^0]we give some applications of Theorem 2.3. These include transformations for basic hypergeometric series, identities of Rogers-Ramanujan type, and connections with orthogonal polynomials.

We use the standard notation for q-binomial coefficients and basic hypergeometric series [9]. When not specified, the base is always q, but sometimes we will use other bases. Thus

$$
\begin{align*}
(A)_{n} & =\prod_{j=0}^{n-1}\left(1-A q^{j}\right) \tag{1.6}\\
(B ; p)_{n} & =\prod_{j=0}^{n-1}\left(1-B p^{j}\right) \tag{1.7}
\end{align*}
$$

At the beginning of section 2 we momentarily consider the $q=1$ case; there

$$
\begin{equation*}
(a)_{k}=a(a+1) \cdots(a+k-1) \tag{1.8}
\end{equation*}
$$

is the usual shifted factorial.
Recall that the q-difference operator D_{q}

$$
\begin{equation*}
\left(D_{q} f\right)(x)=\frac{f(q x)-f(x)}{(q-1) x} \tag{1.9}
\end{equation*}
$$

satisfies [11, Eq. [2.6.])

$$
\left.(q-1)^{N}(-x)^{N}\left(D_{q}^{N} f\right)(x)=\sum_{k=0}^{N}\left[\begin{array}{l}
N \tag{1.10}\\
k
\end{array}\right]_{q}(-1)^{k} q^{(k+1} 2^{2}\right)-N k ~ f\left(x q^{k}\right)
$$

Given a formal Laurent series $f(x)$, we let $\operatorname{Res}_{x} f(x)$ denote the coefficient of $1 / x$ in $f(x)$.
2. The main theorem. In this section we give our q-Lagrange inversion formula for a q-analog of $G_{k}(x)=x^{k}\left(1-x^{r}\right)^{-a-(b+1) k}$. First we state the matrices $B_{n k}$ and $B_{k \prime}^{-1}$ for the $q=1$ case. According to (1.1) here we have

$$
\tilde{B}_{n k}=\left\{\begin{array}{cl}
\frac{(a+(b+1) k)_{(n-k) / r}}{((n-k) / r)!}, & n-k \equiv 0(\bmod r) \tag{2.1}\\
0, & \text { otherwise }
\end{array}\right.
$$

The Lagrange inversion formula implies

$$
\tilde{B}_{k \prime}^{-1}=\left\{\begin{array}{cc}
\frac{(-a-(b+1) k+1)_{(k-\jmath) / r-1}}{((k-\iota) / r)!}(-a-\iota(b+1)), & k-\ell \equiv 0(\bmod r) \tag{2.2}\\
0 & , \text { otherwise }
\end{array}\right.
$$

Our object is to give a q-analog of (2.1) and (2.2). This is accomplished by Theorem 2.3.

Theorem 2.3. (q-Lagrange inversion for $\left.x /\left(1-x^{r}\right)^{b+1}\right)$ Let $B_{n k}$ be the lower triangular matrix

$$
B_{n k}=\left\{\begin{array}{cl}
\frac{\left(A p^{k / r} q^{k / r} ; p\right)_{(n-k) / r}}{(q)_{(n-k) / r}} q^{-n k / r^{2}}, & n-k \equiv 0(\bmod r) \\
0 & , \text { otherwise } .
\end{array}\right.
$$

Then

$$
B_{k \prime}^{-1}=\left\{\begin{array}{cl}
\frac{\left(A p^{k / r-1} q^{k / r} ; p^{-1}\right)_{(k-s) / r-1}\left(1-A p^{/ / r} q^{\prime / r}\right)(-1)^{(k-s) / r} q\left({ }^{(k-s) /(r+1)}\right)^{+/ k / r^{2}}}{(q)_{(k-\Lambda) / r}} \\
0 & , k-\ell \equiv 0(\bmod r) \\
0 & , \text { otherwise. }
\end{array}\right.
$$

In order to derive (2.1) and (2.2) from Theorem 2.3 put $q=p^{r b+r-1}$ and $A=p^{a}$. Then

$$
\begin{align*}
\lim _{p \rightarrow 1} B_{n k} & =\lim _{p \rightarrow 1} \frac{\left(p^{a+k+b k} ; p\right)_{(n-k) / r}}{\left(p^{r b+r-1} ; p^{r b+r-1}\right)_{(n-k) / r}} \tag{2.4}\\
& =\frac{(a+(b+1) k)_{(n-k) / r}}{((n-k) / r)!}(r b+r-1)^{(k-n) / r} .
\end{align*}
$$

This agrees with (2.1) except for the scaling factor $(r b+r-1)^{(k-n) / r}$. In this case

$$
\begin{equation*}
G_{k}(x)=\sum_{n=k}^{\infty}\left(\lim _{p \rightarrow 1} B_{n k}\right) x^{n}=x^{k}\left(1-x^{r} /(r b+r-1)\right)^{-a-(b+1) k} . \tag{2.5}
\end{equation*}
$$

So it is more accurate to call Theorem 2.3 a q-analog of Lagrange inversion for $x\left(1-x^{r} /(r b+r-1)\right)^{-b-1}$. The same type of scaling factors occurred in [10, Th. 3.7]. In this case we cannot put $b=(1-r) / r$ so we state the theorem for $x /\left(1-x^{r}\right)^{1 / r}$ separately.

Theorem 2.6. (q-analog of Lagrange inversion for $x /\left(1-x^{r}\right)^{1 / r}$). Let $B_{n k}$ be the lower triangular matrix

$$
B_{n k}=\left\{\begin{array}{cl}
\frac{\left(A q^{k / r}\right)_{(n-k) / r}}{(q)_{(n-k) / r}} q^{-n k / r^{2}}, & n-k \equiv 0(\bmod r) \\
0 & , \text { otherwise }
\end{array}\right.
$$

Then

$$
B_{k r}^{-1}=\left\{\begin{array}{cc}
\frac{\left(A q^{k / r-1} ; q^{-1}\right)_{(k-\gamma) / r}}{(q)_{(k-\ell) / r}}(-1)^{(k-\ell) \cdot r} q\left(^{(k-\ell) /(r+1)}\right)^{+/ k / r^{2}}, k-\ell \equiv 0(\bmod r) \\
0, & , \text { otherwise }
\end{array}\right.
$$

Theorem 2.3 has the disadvantage that it is not in general possible to evaluate

$$
\begin{equation*}
G_{k}(x)=\sum_{n=k}^{\infty} B_{n k} x^{n}=x^{k} q^{-k^{2} / r^{2}} \sum_{n=0}^{\infty} \frac{\left(A p^{k / r} q^{k / r} ; p\right)_{n}}{(q)_{n}}\left(x^{r} q^{-k / r}\right)^{n} \tag{2.7}
\end{equation*}
$$

However, there are special cases which can be evaluated by the q-binomial theorem [14; Eq. (3.2.2.11)]

$$
\begin{array}{ll}
G_{k}(x)=x^{k} q^{-k^{2} / r^{2}}\left(x^{r} q^{-k / r}\left(1-A q^{k / r}\right)\right)_{\infty}, & (p=1) \\
G_{k}(x)=x^{k} q^{-k^{2} / r^{2}}\left(A x^{r} q^{k / r}\right)_{\infty} /\left(x^{r} q^{-k / r}\right)_{\infty}, & (p=q) \tag{2.9}
\end{array}
$$

and

$$
\begin{equation*}
G_{k}(x)=x^{k} q^{-k^{2} / r^{2}}\left(x^{r} q^{-k / r}\right)_{\infty}, \quad(A=0) \tag{2.10}
\end{equation*}
$$

For Theorem 2.6 we see that

$$
\begin{equation*}
G_{k}(x)=x^{k} q^{-k^{2} / r^{2}}\left(A x^{r}\right)_{\infty} /\left(x^{r} q^{-k / r}\right)_{\infty} \tag{2.11}
\end{equation*}
$$

Proof of Theorem 2.3. We need to show that

$$
\begin{equation*}
(*)=\sum_{k=\prime}^{n} B_{n k} B_{k \prime}^{-1}=\delta_{n \ell} \tag{2.12}
\end{equation*}
$$

If $n-\ell \not \equiv 0(\bmod r)$, then clearly this sum is zero. So we assume $n-\ell$ $\equiv 0(\bmod r)$. Then, after replacing k by $l+r k$

$$
\begin{align*}
(*)= & \left.q^{\left((/-n) / r^{2}\right.} \frac{\left(1-A p^{\prime / r} q^{\prime / r}\right)}{(q)_{(n-\zeta) / r}^{(n-\zeta) / r}} \sum_{k=0}\left[\begin{array}{c}
(n-l) / r \\
k
\end{array}\right]_{q}(-1)^{k} q^{(k+1} 2\right)+k(\ell-n) / r \tag{2.13}\\
& \cdot\left(A p^{/ / r+1} q^{/ / r+k} ; p\right)_{(n-\zeta) / r-1}
\end{align*}
$$

Note that (2.13) can be rewritten with the q-difference operator D_{q}, and (1.10) implies

$$
\begin{equation*}
(*)=\left.q^{\left((\alpha-n) / r^{2}\right.} \frac{\left(1-A p^{\prime / r} q^{/ / r}\right)}{(q)_{(n-r) / r}}\left(D_{q}^{(n-r) / r} f\right)(x)\right|_{x=1} \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
f(x)=\left(A p^{/ /(r+1)} q^{/ / r} x ; p\right)_{(n-r) / r-1} \tag{2.15}
\end{equation*}
$$

If $n-\ell>0, f(x)$ is a polynomial in x of degree $(n-\ell) / r-1$. Thus $D_{q}^{(n-\Lambda) / r} f \equiv 0$. The proof of Theorem 2.3 is completed by checking the $n=l=k$ case.

In fact, Theorem 2.3 can be shown to be equivalent to Theorem 3.7 of [10], which is q-Lagrange inversion for $x /(1-x)^{b+1}$. This is not surprising because Theorem 2.3 should correspond to an r-section of Theorem 3.7 of [10]. Carlitz [8] and Al-Salam and Verma [1, p. 416] had previously stated theorems equivalent to Theorem 3.7 of [10]. Carlitz used the q binomial theorem, while Al-Salam and Verma used the q-difference operator for their proof. They did not refer to q-Lagrange inversion, and
[10] did not prove Theorem 3.7. So we have included the simple proof. The proof of Theorem 2.6 is similar, and it corresponds to an r-section of Theorem 3.3 of [10].

Krattenthaler [12, p. 343] has given four examples of inverse relations. His first, second, and fourth examples are equivalent to Theorem 3.3, Theorem 3.2, and the $p=1$ case of Theorem 3.7 in [10]. His second example is equivalent to the $r=2$ and $p=q$ case of Theorem 2.3. We could not derive our Theorem 2.3 from his Theorem 2. However, Theorem 2.6 does follow in this way. In Theorem 2 of [12], put $h_{n}(z)=H_{k}(z)=1$, $\alpha_{n}=\beta_{n}=1$,

$$
\begin{gather*}
g_{n}(z)=\left(a z^{r}\right)_{n / r}, \tag{2.16}\\
G_{k}(z)=\left(a z^{r}\right)_{k / r+1}, \tag{2.17}
\end{gather*}
$$

and

$$
\begin{equation*}
F(z)=\frac{\left(z^{r}\right)_{\infty}}{\left(a z^{r}\right)_{\infty}}, \tag{2.18}
\end{equation*}
$$

where

$$
\begin{equation*}
(y)_{\alpha}=\frac{\left(y q^{\alpha}\right)_{\infty}}{(y)_{\infty}} \tag{2.19}
\end{equation*}
$$

(In Krattenthaler's notation (2.4), $(y)_{\alpha}=P_{\alpha}(1, y)$.) Then the matrix $d_{n k}$ given by his Theorem 2 is equivalent to $B_{n k}$ in Theorem 2.6.

In Theorem 2.3 we can clearly switch the factor ($1-A p^{/ / r} q^{/ / r}$) from $B_{k \prime}^{-1}$ to ($1-A p^{n / r} q^{n / r}$) in $B_{n k}$. This changes the function $G_{k}(x)$ to the "derivative form", as in [10].
3. Applications. We give some applications of Theorem 2.3 and Theorem 2.6 which are similar in spirit to those in [10].

Our first application is the orthogonality relation

$$
\begin{equation*}
\sum_{\ell=m}^{k} B_{k f}^{-1} B_{l m}=\delta_{k m} . \tag{3.1}
\end{equation*}
$$

We see that this is

$$
\begin{equation*}
\sum_{\ell=0}^{(k-m) r} \frac{\left(q^{(m-k) / r} ; q\right)_{\lambda}\left(A p^{m / r} q^{m / r} ; p\right)_{\lambda}\left(A p^{m / r+1} q^{m / r+1} ; p q\right)_{\ell}}{\left(A p^{m / r+1} q^{k / r} ; p\right)_{\ell}(q ; q)_{\ell}\left(A p^{m / r} q^{m / r} ; p q\right)_{\ell}} q^{\ell(k-m) / r}=\delta_{k m} . \tag{3.2}
\end{equation*}
$$

Equation (3.1) is a bibasic well poised evaluation.
Next we concentrate on the $p=q$ case of Theorem 2.3 with $r=2$. We need to choose a_{k} so that (by (1.4))

$$
\begin{equation*}
f_{n}=q^{-n^{2} / 4}(A)_{n} \sum_{k=0}^{n / 2} \frac{q^{n k / 2} a_{n-2 k}}{(q)_{k}\left(A q^{n-1} ; q^{-1}\right)_{k}(A)_{n-2 k}} \tag{3.3}
\end{equation*}
$$

is evaluable. The choice

$$
\begin{equation*}
\left.a_{k}=\frac{(A)_{k}}{\left(q^{1 / 2} ; q^{1 / 2}\right)_{k}} q\left(\frac{k}{k}\right)^{\prime}\right)\left(i q^{1 / 8} A^{-1 / 2}\right)^{k} \tag{3.4}
\end{equation*}
$$

gives

$$
f_{n}=q^{-n^{2} / 8}\left(i A^{-1 / 2}\right)^{n} \frac{(A)_{n}}{\left(q^{1 / 2} ; q^{1 / 2}\right)_{n}}{ }^{2} \varphi_{1}\left[\left.\begin{array}{c}
q^{n / 2}, q^{(n-1) / 2} \tag{3.5}\\
A q^{n-1}
\end{array} \right\rvert\, q^{-1} ; A q^{-1 / 2}\right] .
$$

The q-analog of Vandermonde's theorem [14; p. 247] implies

$$
\begin{equation*}
f_{n}=q^{-n^{2 / 8}}\left(i A^{-1 / 2}\right)^{n} \frac{\left(A ; q^{1 / 2}\right)_{n}}{\left(q^{1 / 2} ; q^{1 / 2}\right)_{n}} \tag{3.6}
\end{equation*}
$$

Finally, these values for a_{k} and f_{n} and (1.2), (1.3), and (2.9) imply

$$
\begin{align*}
& \sum_{n=0}^{\infty} q^{-n^{2} / 8} \frac{\left(A ; q^{1 / 2}\right)_{n}}{\left(q^{1 / 2} ; q^{1 / 2}\right)_{n}}\left(i x A^{-1 / 2}\right)^{n} \tag{3.7}\\
& \quad=\sum_{\gamma=0}^{\infty} \frac{(A)_{\ell}\left(A x^{2} q^{/ / 2}\right)_{\infty}}{\left(q^{1 / 2} ; q^{1 / 2}\right)_{\lambda}\left(x^{2} q^{-/ / 2}\right)_{\infty}} q^{-/^{2 / 8}}\left(i x A^{-1 / 2}\right)^{\prime}
\end{align*}
$$

This is a q-analog of

$$
\begin{equation*}
\left(1-x^{2}\right)^{-a}\left(1-2 x i /\left(1-x^{2}\right)\right)^{-a}=(1-x i)^{-2 a} \tag{3.8}
\end{equation*}
$$

An interesting special case of (3.7) is $i x A^{1 / 2}=y, A \rightarrow \infty$ and $q \rightarrow q^{8}$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{n^{2}-2 n} y^{n}}{\left(q^{4} ; q^{4}\right)_{n}}=\sum_{\ell=0}^{\infty} \frac{\left(-y^{2} q^{4 /} ; q^{8}\right)_{\infty}}{\left(q^{4} ; q^{4}\right)_{\ell}} q^{3 / \ell^{2-4 /} y^{\prime}} \tag{3.9}
\end{equation*}
$$

If $y=q^{2}$, the left-hand side of (3.9) can be evaluated by [15, Eq. (20)] to obtain

$$
\begin{equation*}
\sum_{\ell=0}^{\infty} \frac{\left(-q^{4 /+4} ; q^{8}\right)_{\infty}}{\left(q^{4} ; q^{4}\right)^{\prime}} q^{3 / 2-2 \ell}=\frac{1}{\left(-q^{2} ; q^{2}\right)_{\infty}\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}} \tag{3.10}
\end{equation*}
$$

or, if $y=q^{4}$ we use [15, Eq. (16)] to find

$$
\begin{equation*}
\sum_{\ell=0}^{\infty} \frac{\left(-q^{4 /+8} ; q^{8}\right)_{\infty}}{\left(q^{4} ; q^{4}\right)_{\ell}} q^{3 / 2}=\frac{1}{\left(-q^{2} ; q^{2}\right)_{\infty}\left(q^{2} ; q^{5}\right)_{\infty}\left(q^{3} ; q^{5}\right)_{\infty}} \tag{3.11}
\end{equation*}
$$

Both (3.10) and (3.11) appear to be new.
We can relate (3.10) and (3.11) to evaluations on Slater's list [15]. Equate even and odd powers of y in (3.9) and then set $y=q^{2}$. For even powers (3.9) implies

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{4 n^{2}}}{\left(q^{4} ; q^{4}\right)_{2 n}}=\sum_{\substack{i=0 \\ \text { leven }}}^{\infty} \frac{\left(-q^{4 /+4} ; q^{8}\right)_{\infty}}{\left(q^{4} ; q^{4}\right)} q^{3 /{ }^{2-2 \ell}} \tag{3.12}
\end{equation*}
$$

Applying [15, Eq. (98)], we see that

$$
\begin{equation*}
\sum_{\substack{k=0 \\ \iota \text { even }}}^{\infty} \frac{\left(-q^{4 \kappa+4} ; q^{8}\right)_{\infty}}{\left(q^{4} ; q^{4}\right)} q^{3 \iota^{2-2}}=\frac{1}{\left(q^{4} ; q^{8}\right)_{\infty}\left(q^{16} ; q^{80}\right)_{\infty}\left(q^{64} ; q^{80}\right)_{\infty}} \tag{3.13}
\end{equation*}
$$

For odd powers, [15, Eq. (94)] implies

$$
\begin{align*}
& \sum_{\substack{\gamma=0 \\
\text { odd }}}^{\infty} \frac{\left(-q^{4 /+4} ; q^{8}\right)_{\infty}}{\left(q^{4} ; q^{4}\right)^{3 / 2-2 /}} q^{2 /} \tag{3.14}\\
&=\frac{q\left(q^{12} ; q^{40}\right)_{\infty}\left(q^{28} ; q^{40}\right)_{\infty}\left(q^{16} ; q^{80}\right)_{\infty}\left(q^{64} ; q^{80}\right)_{\infty}\left(q^{40} ; q^{40}\right)_{\infty}}{\left(q^{4} ; q^{4}\right)_{\infty}}
\end{align*}
$$

If we multiply (3.10) by $(q)_{\infty}(-q)_{\infty}=\left(q^{2} ; q^{2}\right)_{\infty}$, we see that (3.13) and (3.14) imply

$$
\begin{align*}
& \left(-q ; q^{2}\right)_{\infty}\left(q^{2} ; q^{5}\right)_{\infty}\left(q^{3} ; q^{5}\right)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty} \\
& \quad=\left(q^{2} ; q^{4}\right)_{\infty}\left(q^{8} ; q^{16}\right)_{\infty}\left(q^{32} ; q^{80}\right)_{\infty}\left(q^{48} ; q^{80}\right)_{\infty}\left(q^{80} ; q^{80}\right)_{\infty} \tag{3.15}\\
& \quad+q\left(q^{2} ; q^{4}\right)_{\infty}\left(q^{12} ; q^{40}\right)_{\infty}\left(q^{28} ; q^{40}\right)_{\infty}\left(q^{64} ; q^{80}\right)_{\infty}\left(q^{16} ; q^{80}\right)_{\infty}\left(q^{40} ; q^{40}\right)_{\infty} .
\end{align*}
$$

This identity is also new. We could apply the same steps to (3.11).
For our choice of a_{k} and f_{n} the dual evaluation (1.5) is a special case of the very-well poised ${ }_{5} \varphi_{4}$ evaluation.

Next we give an application of Theorem 2.6 with $r=2$. We need to choose a_{k} such that

$$
\begin{equation*}
f_{n}=q^{-n^{2} / 4} \sum_{k=0}^{n / 2} \frac{\left(A q^{n / 2} ; q^{-1}\right)_{k}}{(q)_{k}} q^{n k / 2} a_{n-2 k} \tag{3.16}
\end{equation*}
$$

is evaluable. If

$$
\begin{equation*}
a_{k}=\frac{\left(B ; q^{1 / 2}\right)_{k}}{\left(q^{1 / 2} ; q^{1 / 2}\right)_{k}} q^{\left(k^{2}+2 k\right) / 8} i^{k} \tag{3.17}
\end{equation*}
$$

then

$$
f_{n}=\frac{\left(B ; q^{1 / 2}\right)_{n}}{\left(q^{1 / 2} ; q^{1 / 2}\right)_{n}} q^{\left(2 n-n^{2}\right) / 8} i^{n}{ }_{3} \varphi_{2}\left[\begin{array}{c}
A q^{(n-2) / 2}, q^{n / 2}, q^{(n-1) 2} \tag{3.18}\\
B q^{(n-1) / 2}, B q^{(n-2) / 2} \mid q^{-1} ; q^{-1}
\end{array}\right] .
$$

We see that f_{n} can be evaluated by the q-analog of Vandermonde's theorem for $B=A$ or $B=A q^{-1 / 2}$.

For $B=A$, we have

$$
\begin{equation*}
f_{n}=\frac{(1-A)\left(A q^{n / 2} ; q^{-1}\right)_{n}}{\left(1-A q^{n / 2}\right)\left(q^{1 / 2} ; q^{1 / 2}\right)_{n}} q^{n^{2 / 8}} i^{n} \tag{3.19}
\end{equation*}
$$

$$
\begin{align*}
{ }_{2} \varphi_{1} & {\left[\begin{array}{l}
A, A^{-1} \mid q ; A x^{2} q^{1 / 2} \\
q^{1 / 2}
\end{array}\right] } \\
& +\frac{1-A}{1-q^{1 / 2}} i x q^{1 / 8}{ }_{2} \varphi_{1}\left[\left.\begin{array}{c}
A q^{1 / 2}, A^{-1} q^{1 / 2} \\
q^{3 / 2}
\end{array} \right\rvert\, q ; A x^{2} q^{1 / 2}\right] \tag{3.20}\\
& =\sum_{\ell=0}^{\infty} \frac{\left(A ; q^{1 / 2}\right)\left(A x^{2}\right)_{\infty}}{\left(q^{1 / 2} ; q^{1 / 2}\right)_{\ell}\left(x^{2} q^{-/ / 2}\right)_{\infty}} q^{\left(2 /-/^{2}\right) / 8}(i x)^{4} .
\end{align*}
$$

To find of what (3.20) is the q-analog, put $A=q^{a / 2}$ and let $q \rightarrow 1$. The result is

$$
\left.\begin{array}{c}
{ }_{2} F_{1}\left[\begin{array}{c}
a / 2,-a / 2 \\
1 / 2
\end{array} x^{2}\right]+\operatorname{aix}_{2} F_{1}\left[(a+1) / 2,(1-a) / 2 \mid x^{2}\right] \tag{3.21}\\
3 / 2
\end{array}\right) .
$$

The substitution $x=\sin z$ and [9, p. 101, Eq. (11), (12)] show that (3.21) is $\cos a z+i \sin a z=(\cos z-i \sin z)^{-a}$. In this sense (3.20) is a q-analog of DeMoivre's theorem.

For $B=A q^{-1 / 2}$ we have

$$
\begin{equation*}
f_{n}=\frac{\left(A q^{n / 2-1} ; q^{-1}\right)_{n}}{\left(q^{1 / 2} ; q^{1 / 2}\right)_{n}} q^{n^{2 / 8}} i^{n} \tag{3.22}
\end{equation*}
$$

so

$$
\begin{align*}
{ }_{2} \varphi_{1}[& \begin{array}{l}
\left.A, q A^{-1} \mid q ; A x^{2} q^{-1 / 2}\right] \\
q^{1 / 2} \mid
\end{array} \\
& +\frac{1-A q^{-1 / 2}}{1-q^{1 / 2}} i x q^{1 / 8}{ }_{2} \varphi_{1}\left[\begin{array}{c}
\left.A q^{1 / 2}, q^{3 / 2} A^{-1} \mid q ; A x^{2} q^{-1 / 2}\right] \\
q^{3 / 2}
\end{array}\right] \tag{3.23}\\
= & \sum_{\gamma=0}^{\infty} \frac{\left(A q^{-1 / 2} ; q^{1 / 2}\right)\left(A x^{2}\right)_{\infty}}{\left(q^{1 / 2} ; q^{1 / 2}\right)\left(x^{2} q^{-/ / 2}\right)_{\infty}} q^{\left(2 /--/^{2}\right) / 8}(i x)^{4} .
\end{align*}
$$

Again [9; p. 101, Eq. (11), Eq. (12)] imply that (3.23) is the q-analog of

$$
\frac{\cos (1-a) z}{\cos z}-i \frac{\sin (1-a) z}{\cos z}=\frac{1}{\cos z}(\cos z-i \sin z)^{1-a} .
$$

In fact, the q-analog of Euler's transformation shows that (3.23) is equivalent to (3.20).
4. Connections with orthogonal polynomials. In [10] we showed that q Lagrange inversion for $x /(1-x)^{2}$ is related to the little q-Jacobi polynomials $p_{\lambda}(x ; a, b ; q)$. Put

$$
\begin{equation*}
r_{k}(x)=(x ; q)_{k} . \tag{4.1}
\end{equation*}
$$

Then an explicit formula can be given for the connection coefficients $A_{k \prime}$ in

$$
\begin{equation*}
r_{k}(x)=\sum_{k=0}^{k} A_{k /} p_{\lambda}(x ; a, b ; q) . \tag{4.2}
\end{equation*}
$$

This is equivalent to finding $B_{k \prime}^{-1}$ for the q-analog of Lagrange inversion for $x /\left(1-x^{2}\right)$. In this section we show that this idea applies to a set of q-ultraspherical polynomials.

The discrete q-ultraspherical polynomials [3] are defined by

$$
P_{n}(x, a ; q)={ }_{3} \varphi_{2}\left[\left.\begin{array}{c}
q^{-n}, a^{2} q^{n+1}, \tag{4.3}\\
a q, \\
-a q
\end{array} \right\rvert\, q ; q\right] .
$$

However, there is another way to write $P_{n}(x, a ; q)$ which shows that $P_{n}(x, a ; q)$ is either even or odd [3]

$$
\begin{gather*}
\frac{\left(a^{2} q\right)_{n}}{(q)_{n}}\left(i q^{-1 / 2} a^{-1}\right)^{n} q^{-n^{2} / 4} P_{n}(x, a ; q) \\
=\sum_{k=0}^{n / 2} \frac{\left(q a^{2} q^{2 n-4 k} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} q^{-n(n-2 k) / 2} \frac{\left(i q^{-1 / 2} a^{-1}\right)^{n-2 k} q^{(n-2 k)} 2 / 4}{} x^{n-2 k} \tag{4.4}\\
(q)_{n-2 k}\left(a^{2} q ; q^{2}\right)_{n-2 k}
\end{gather*} .
$$

Let $\tilde{P}_{n}(x, a ; q)$ be the left-hand side of (4.4), and put

$$
\begin{equation*}
\tilde{r}_{k}(x)=\frac{\left(i q^{-1 / 2} a^{-1}\right)^{k} q^{k^{2 / 4}} x^{k}}{(q)_{k}\left(a^{2} q ; q^{2}\right)_{k}} \tag{4.5}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\tilde{P}_{n}(x, a ; q)=\sum_{k=0}^{n} B_{n k}(a) \tilde{r}_{k}(x) \tag{4.6}
\end{equation*}
$$

where $B_{n k}(a)$ is given by Theorem 2.3 with q replaced by $q^{2}, p=q^{2}$, and $A=a q^{2}$. Thus

$$
\begin{equation*}
\tilde{r}_{k}(x)=\sum_{f=0}^{k} B_{k f}^{-1}(a) \tilde{P}_{f}(x ; a, q) \tag{4.7}
\end{equation*}
$$

The connection coefficient problem for $\tilde{P}_{\wedge}(x ; a, q)$ can now be solved. Let

$$
\begin{equation*}
\tilde{P}_{n}(x ; b, q)=\sum_{\ell=0}^{n} a_{n \iota} \tilde{P}_{l}(x ; a, q) \tag{4.8}
\end{equation*}
$$

so that (4.7) implies

$$
\begin{equation*}
a_{n \iota}=\sum_{k=\prime}^{n} B_{n k}(b) B_{k \prime}^{-1}(a) . \tag{4.9}
\end{equation*}
$$

Clearly (4.9) implies that $a_{n /}=0$ if $n-\ell$ is odd and

$$
\begin{align*}
& a_{n, n-2 \ell}=\frac{\left(b q^{1+2 n-4 \iota} ; q^{2}\right)_{\iota}}{\left(q^{2} ; q^{2}\right)_{\iota}} q^{-\iota(n-2 \iota)} \tag{4.10}\\
& \quad \sum_{k=0}^{\zeta} \frac{\left(a q^{1+2 n-4 \iota} ; q^{2}\right)_{2 k}\left(b q^{1+2 n-2 \iota} ; q^{2}\right)_{k}\left(q^{-2 \iota} ; q^{2}\right)_{k}}{\left(b q^{1+2 n-4 /} ; q^{2}\right)_{2 k}\left(a q^{3+2 n-4 /} ; q^{2}\right)_{k}\left(q^{2} ; q^{2}\right)_{k}} q^{2 k}
\end{align*}
$$

For $q=1$ the right-hand side of (4.10) is summable by a theorem of Bailey [5, Eq. (3.42)]. A q-analogue of Bailey's result can be given (see [2] and [10]), but it will not evaluate (4.10).

There is another set of orthogonal polynomials which is related to Theorem 2.3. Rogers [13] defined

$$
A_{n}(\cos \theta)=\sum_{m=0}^{n}\left[\begin{array}{l}
n \tag{4.11}\\
m
\end{array}\right] \cos (n-2 m) \theta
$$

so $A_{n}(\cos \theta)$ is a polynomial of degree n in $\cos \theta$. Let $T_{k}(\cos \theta)=\cos k \theta$ be the Chebyshev polynomial of the first kind. If $r_{k}(x)=2 T_{k}(x), k \geqq 1$, $r_{0}(x)=1$, then (4.11) implies

$$
A_{n}(x)=\sum_{m=0}^{n / 2}\left[\begin{array}{l}
n \tag{4.12}\\
m
\end{array}\right] r_{n-2 m}(x)
$$

so $A_{n}(x)=\sum_{m=0}^{n} C_{n m} r_{m}(x)$, where $C_{n m}=0$ if $n-m$ is odd and $C_{n, n-2 m}=$ $\left[{ }_{m}^{n}\right.$]. In Theorem 2.3 put $A=1, p=q$, and $r=2$. Then, if $n-m$ is even,

$$
\begin{equation*}
\left.B_{n m}^{-1}=\frac{\left(1-q^{m}\right)}{\left(1-q^{n}\right)} C_{n m}(-1)^{(n-m) / 2} q^{(n / 2+1}\right)+\binom{m / 2}{2} \tag{4.13}
\end{equation*}
$$

so

$$
\begin{equation*}
\left.C_{k n}^{-1}=\frac{\left(1-q^{k}\right)}{\left(1-q^{n}\right)} B_{k n}(-1)^{(n-k) / 2} q^{(n / 2+1}\right)+\left({ }_{2}^{k / 2}\right) \tag{4.14}
\end{equation*}
$$

which implies

$$
\begin{equation*}
r_{k}(x)=\sum_{n=0}^{k / 2}\left(1-q^{k}\right) \frac{(q)_{k-n-1}}{(q)_{k-2 n}(q)_{n}}(-1)^{n} q^{\binom{n}{2}} A_{k-2 n}(x) . \tag{4.15}
\end{equation*}
$$

Equation (4.15) was a key ingredient in Rogers' proof of the RogersRamanujan identities (see [6]).

Bressoud [7] has given a matrix inverse which is equivalent to the connection coefficients problem for a certain set of discrete q-Jacobi polynomials.
5. Krattenthaler's Theorem. Krattenthaler [12] gave a q-Lagrange inversion formula (his Theorem 1) for a certain class of expansions. As we remarked in section 2 , he found several examples which correspond to our matrix inversion problems. In this section we show that our general results-Theorem 3.7 of [10] and Theorem 2.3 can be put into this form.

Roughly speaking, Krattenthaler took a formal power series $f(x)$ and asked for the coefficients a_{k} in the expansion

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} a_{k} x^{k} \phi_{k}(x) \tag{5.1}
\end{equation*}
$$

where $\phi_{k}(x)$ satisfies a certain q-difference equation. He gave two solutions for a_{k} (Theorem 1(A) and (B)) for two different classes of functions $\phi_{k}(x)$. We shall use our matrices to define functions $\phi_{k}(x)$. Then we shall give the solution a_{k} in forms that correspond to Krattenthaler's Theorem (A) and (B).

For Theorem 3.7 of [10], it is clear that we put

$$
\begin{equation*}
\phi_{k}(x, a, p, q)=\sum_{n=0}^{\infty} \frac{\left(q^{k} p^{a+k} ; p\right)_{n}}{(q)_{n}}\left(x q^{-k}\right)^{n} \tag{5.2}
\end{equation*}
$$

Clearly, if (5.1) holds, then Theorem 3.7 implies

$$
\begin{equation*}
a_{k}=\sum_{\ell=0}^{k} \frac{\left(q^{k} p^{a+k-1} ; p^{-1}\right)_{k-\ell-1}}{(q)_{k-\ell}}\left(1-p^{a+\ell} q^{\iota}\right) q^{-k(k-\iota)+\left({ }_{2}^{k-\iota+1}\right)}(-1)^{k-\iota} f_{\iota} \tag{5.3}
\end{equation*}
$$

Defining

$$
\begin{equation*}
\left.\Phi_{k}(x, a, p, q)=\sum_{n=0}^{\infty} \frac{\left(q^{k} p^{a+k} ; p^{-1}\right)_{n}}{(q)_{n}} q^{(n+1}\right)(-x)^{n} \tag{5.4}
\end{equation*}
$$

we see that (5.3) is equivalent to

$$
\begin{equation*}
a_{k}=\frac{1}{1-q^{k} p^{a+k}} \operatorname{Res}_{x}\left\{\left(f(x)-p^{a} f(p q x)\right) \tilde{\phi}_{k}\left(x q^{-k}, a, p, q\right) / x^{k+1}\right\} \tag{5.5}
\end{equation*}
$$

Equation (5.5) corresponds to Theorem 1(B). Note also that

$$
\begin{equation*}
\bar{\phi}_{k}(x, a, p, q)=\phi_{-k}\left(x q^{k},-a, p^{-1}, q^{-1}\right) \tag{5.6}
\end{equation*}
$$

A form that corresponds to Theorem $1(\mathrm{~A})$ is

$$
\begin{align*}
a_{k}= & \frac{1}{1-q^{k} p^{a+k}} \tag{5.7}\\
& \operatorname{Res}_{x}\left\{f(x)\left[\tilde{\phi}_{k}\left(x q^{-k}, a, p, q\right)-p^{a+k} q^{k} \tilde{\phi}_{k}\left(x q^{-k-1} p^{-1}, a, p, q\right)\right] / x^{k+1}\right\}
\end{align*}
$$

The q-binomial theorem implies that ϕ_{k} and $\tilde{\phi}_{k}$ are summable if $p=1$ or $p=q$. These two cases are Examples 2 and 4 in [12].

For Theorems 2.3 and 2.6 we offer an example instead of a general theorem. In this example the function ϕ_{k} is summable. In Theorem 2.3 take $r=2, A=q^{a}$, and $p=q$. By (2.9), let

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} a_{k} x^{k} /\left(x^{2} q^{-k / 2}\right)_{a+k} . \tag{5.8}
\end{equation*}
$$

Then Theorem 2.3 implies

$$
\begin{equation*}
a_{k}=\frac{1}{1-q^{a+k}} \operatorname{Res}_{x}\left\{\left(x^{2} q^{1-k / 2}\right)_{a+k}\left(f(x)-q^{a} f(q x)\right) / x^{k+1}\right\} \tag{5.9}
\end{equation*}
$$

or, equivalently

$$
\begin{equation*}
a_{k}=\operatorname{Res}_{x}\left\{\left(x^{2} q^{1-k / 2}\right)_{a+k-2}\left(1-q^{a-1} x^{4}\right) f(x) / x^{k+1}\right\} \tag{5.10}
\end{equation*}
$$

For $a=0$, the difference quotient in (5.9) is a q-difference operator.
We do not have a general theorem such as Krattenthaler's which will give (5.5), (5.7), (5.9), and (5.10). It is clear that ϕ_{k} satisfies a nice q difference equation though.

References

1. W.A. Al-Salam and A. Verma, On quadratic transformations of basic series, SIAM J. Math. Anal. 15 (1984), 414-421.
2. G. Andrews, Connection coefficient problems and partitions, AMS Proc. Symposia in Pure Mathematics 34, ed. D. Ray-Chaudhuri, American Mathematical Society, Providence, (1979), 1-24.
3. G. Andrews and R. Askey, The classical and discrete orthogonal polynomials and their q-analogues, to appear.
4. R. Askey and M. Ismail, A generalization of ultraspherical polynomials, Studies in Pure Mathematics, ed. P. Erdös, Birkhäuser, Cambridge 1983.
5. W. Bailey, Products of generalized hypergeometric series, Proc. London Math. Soc. 28 (1928), 242-254.
6. D. Bressoud, On partitions, orthogonal polynomials and the expansion of certain infinite products, Proc. London Math. Soc. 42 (1981), 478-500.
7. D. Bressoud, A matrix inverse, Proc. Amer. Math. Soc. 88 (1983), 446-448.
8. L. Carlitz, Some inverse relations, Duke Math. J. 40 (1973), 893-901.
9. A. Erdélyi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953.
10. I. Gessel and D. Stanton, Applications of q-Lagrange inversion to basic hypergeometric series, Trans. Amer. Math. Soc. 277 (1983), 173-201.
11. W. Hahn, Über Orthogonalpolynome die q-Differzengleichungen genïgen, Math. Nachr. 2 (1949), 4-34.
12. C. Krattenthaler, A new q-Lagrange formula and some applications, Proc. AMS 80 (1984), 338-344.
13. L.J. Rogers, On a three-fold symmetry in the elements of Heine's series, Proc. London Math. Soc. 24 (1893), 171-179.
14. L. Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966.
15. L. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. 54 (1952), 147-167.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

School of Mathematics, University of Minnesota, Minneapolis, MN 55455

[^0]: * This work was partially supported by NSF grants MCS 8105188 and MCS 8300872.

 Received by the editors on September 20, 1984
 Copyright © 1986 Rocky Mountain Mathematics Consortium

