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ON WEIGHTED ORLICZ SEQUENCE SPACES 
A N D THEIR SUBSPACES 

FERNANDA FUENTES f AND FRANCISCO L. HERNANDEZ 

ABSTRACT. Weighted Orlicz sequence spaces t*(a) con
taining an isomorphic copy of £°° and co are characterized by-
means of suitable conditions on the Orlicz function </> and the 
weight sequence (an) for an —• 0. This extends a result of B. 
Turett [14] for Orlicz spaces I/^(/x) o y e r atomless measures of 
the case of purely atomic probability measures. As an appli
cation, the spaces I*(a) which are B-convex are determined. 
Also, a question of W. Luxemburg [11] on inclusions of spaces 
£^(a) for sequences (a n ) slowly decreasing to 0 is answered. 

1. Introduction. Recent years have seen a quite profound analysis 
of the relationship between Orlicz spaces and the spaces £p, 1 < p < oo. 
In this direction a well-known result is that every Orlicz space always 
contains an isomorphic copy of some £v. A deeper analysis by J. 
Lindenstrauss and L. Tzafriri [9, 10] determined the set of all numbers 
p such that £p can be isomorphically embedded into an Orlicz sequence 
space £$. For Orlicz spaces of functions Z^(ìì), B. Turett [14, 15] has 
characterized, in terms of the Orlicz function 0, the spaces L^(ft) for 
atomless finite measures containing an isomorphic copy of £°° and c$. 

In this paper, we analyze these topics for weighted Orlicz sequence 
spaces £^{a) when an —» 0 or on —> oo. The results answer the 
following general question: for which class of weight sequences (an) 
can the suitable characterizations of the non-atomic case be extended 
to the spaces £^(a)l 

In a more precise way, we study the class of weighted Orlicz sequence 
spaces £^{a) where (an) is of finite sum and 

lim E £ n + i ° * > 0 
n-+oo an 
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(it seems that this is the greatest class for which most positive results 
can be established) and give an inclusion theorem for this class, answer
ing a question of W. Luxemburg [11, p. 40]. Also, we characterize, in 
terms of the function 0, the spaces fé (a) containing an isomorphic copy 
of £°° and CQ (Theorem 3). This extends the above mentioned result of 
B. Turrett [14, 15] for L^(ü) to the case of purely atomic probability 
measures. An easy consequence of this theorem is a characterization 
of the B-convex [3] spaces fé (a) generalizing a result of Denker and 
Kombrink [1]. 

On the other hand, the problem of characterizing in terms of the 
function 0, when fé(a) contains a copy of £p has a negative answer 
for the class of weights verifying (*). Thus, in §4, we show functions 
(f) nonequivalent to the function ^{x) = xp and weight sequences (on) 
slowly decreasing to 0 such that fé (a) is isomorphic to £p(0 < p < oo). 
Finally, the results are complemented with several counterexamples. 

2. Notations and preliminary results. Let us start with some 
notation and definitions. An Orlicz function 0 is a non-decreasing 
function (ß : R + —• R + , left continuous for t > 0, continuous at 0 
and such that 0(0) = 0. Given a poisitive measure space (ft,//) and 
an Orlicz function 0, the Orlicz space L^(Q) is defined as the set of 
equivalence classes of//-measurable scalar functions on (Sì, fi) such that 
In ^ ( l / l / 5 ) ^ < °° f° r some s > 0. The space L^(fì) becomes a linear 
metric space when it is endowed with the F-norm | / | = inf {s > 0 : 
In 0(|/|/s)cfyx < 5}, and has as a basis of neighbourhoods at 0 the sets 
8.Bf(0) for 5 > 0, where Bf{0) = {/ € L+(Sl) : JQ 0(1/1) < *}. If <t> is 
convex, then Bf(0) is a convex bounded neighbourhood of 0 and L^(Ü) 
with the Minkowski functional of Bf (0) - the so-called Luxemburg norm 
- I/I0 = inf {s > 0 = Jn (f)(\f\/s) < 1} is a Banach space. 

For arbitrary purely atomic cr-finite measure spaces we obtain the 
Orlicz sequence spaces fé (a) of the sequences x = (xn)nes € K N 

such that S^Li <t>{\xn\/s)an < 00 for some s > 0, where (an)nGN is 
a sequence of positive scalars (a weight sequence). The symbol h^{a) 
denotes the closed subspace of the sequences x = (xn)n €N such that 
J ^ L i <f>(\xn\/s)an < 00 for every s > 0, having an unconditional 
Schauder basis in the sequence of unit vectors (en). In the case that 
0 < limar, < liman < 00 we simply write fé, as usual. Recall that 
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a function <f) satisfies the A2- condition at 00 if there exist constants 
M > 0 and s0 > 0 with <f>(s0) > 0 such that <p(2s) < M</>(s) if s > s0. 
If (j> and ip are Orlicz functions, we write </> -< ^ at 00 when there exist 
constants If > 0, r > 0 and so > 0 such that (f>(s) < Kxp(rs) for every 
s > So > 0. We say that <j> and ^ are equivalent at co, </> ~ ?/>, iî (ß ^ ip 
and </> -< 0 at 00. The reader is referred to [8, 12, 19] for a detailed 
exposition of the basic properties of Orlicz spaces. 

It is clear that the spaces £^{a) are included in the general category 
of modular sequence spaces or Musielak- Orlicz spaces 

l^n) [9) 1 2 ] , For 
these spaces, £^n\ generated from a sequence (0n) of Orlicz functions, 
J. Woo [17] has introduced the notion of uniform A2-condition which 
plays a remarkable role in the study of the properties of the modular 
space £^n\ However, this notion has the disadvantage of not being 
preserved by equivalences, i.e., two different Orlicz function sequences 
can define the same modular space £^n^ while the first satisfies the 
uniform A2-condition and the second does not satisfy it (see, e.g., [9, 
p. 167]). This is the reason why the criteria based on the uniform 
A2-condition are not easy to handle when applied to specific cases. 
Here we have avoided use of this condition, and, on the contrary, the 
ordinary A2-condition has been used as often as possible. 

The results of this paper are centered on the spaces £^{a) when 
an —• 0 with J^nLi an < °°- By symmetry we have similar results 
for the case of weight sequences an —• co, by replacing the behavior of 
<t> near to co by its behavior near to 0. The statements of these results 
are omitted, as well as the results for the case an —• 0 with £a n = 00, 
since, for this class, they are easily obtainable by using a certian uni
versal property of £^(a) (see [4, 5], namely £^{a) always contains a 
copy of &(b) for any arbitrary sequence of weights (6n). 

PROPOSITION 1. Let </> and X/J be Orlicz functions and let (an) be a 
weight sequence of finite sums. If limn_^oo(y^%<lTI+1 ak)lo»a > 0, then 
£^(a) ^ £^{a) if and only if <$> •< ip at 00. 

PROOF. Let £^(a) -̂> £^(a). W.l.o.g. assume that (an) is decreasing. 
By the hypotheses, there exists a A G (0,1) such that, for every 
n> ]CfcLn+ia* > ^am s o tf A * l s t n e m e a s ure on N defined by ß{n) = an, 
then, by Theorem I of [13] (see also [7, Theorem 3], JJ, has the Darboux 
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^-property for the function 9(s) = As; i.e., for 0 < a' < Sa) n = a, 
there exists a n i c N such that Xa' < ß(A) < a'. Let r = acj)(so) for 
So > 0 with ip(so) > 0, and consider the Xr.B^r(0) neighbourhood of 0 
in £^(a). As the inclusion £^(a) «—• £^(a) is continuous, by the closed 
graph theorem, there is a neighbourhood r'.B^(0) of 0 in £^(a) such 
that r'.Bf,(Q) C Xr.ßfr(0). Now, if s > 0 and a' = r/</>(s) < a, for 
some A C N, we have Xr/(j>{s) < fi(A) < r/</>(s), and if / = STXA we 
deduce that 

t*^)'- * ÏXnr1)"" = *»»W a *'• 
n=l n=l 

Thus, / belongs neither to Ar£jfr (0) nor to r'B?, (0), and £ ^ = 1 ^ ( | / (n ) | 
/ r )a n = ip(rs/r')ß(A) > r', (p(s) ß(A) < r < (r/r /)V ;(^/r /)//(A). 
Therefore, if k = r/r', then (ß(s) < kip(ks) for all s > so > 0. 

The second implication is obviously valid for any arbitrary sequence 
(an) of finite sum. D 

The next proposition has, as a consequence, that the class of the se
quences of weights such that hni n _^ 0 0 (^^ = n + 1 ak)/an > 0 is the great
est class of which the above proposition holds. 

PROPOSITION 2. If(an) is a sequence of finite sum with 
l imn_ c c (X^fe^n+i ak)/an = 0, then there exist Orlicz functions (j> and 
Î/J such that £^(a) «—• £^{a) and <j) < ip at oo does not hold. 

PROOF. From the hypotheses it follows that there is a subsequence 

(bnk/Q>nk) , where bn denotes £)m=n+i «m such that bnk/ank < 

l/2fc. Consider (£fc)fcLi with £fe —• oo such that S^Li *fc^fc/ûnfc < oo 
and with the Orlicz functions: 

;£-*. if* e [o,i] 
ifa€(fc!,(fc + l)!], fc>l, 

rP(s) = 

and 

1 

0(5) 
£7«. if s e [0,1] 
^ S if«6(fe!,(fe + l)!], fc>l. 
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Let us show that l^{a) <-» l*(a). If x = (xn) e ^ ( a ) , there exist 
s > 0 and N € N such that ^ ( k n l / ^ ) ^ < 1 for every n > N. If 
Ik = {i>N : |#i|/s e (fc!, (fc + 1)!]}, then a ^ ( | ^ | / s ) = ai/anfc < 1 for 
every i G /&. Thus i > rik for every i £ Ik and Sie/ fc

 a* ^ ^nfc- Hence 
x = (#n) G ̂ ( a ) , since 

n = l n^t/Jfc fc=l j e / * 

oo oo , 

However, -0 -< </> at oo does not hold because lims_oo(0(s)/V,(As)) = oo 
for every À > 0. D 

REMARKS (1). It is clear that this class of sequences of weights 
(an) with limn_+oo(X)fcLn+i a>k)la>n > 0 is bigger than the class of se
quences slowly decreasing to 0, i.e., such that lim a n +i /a n > 0, 
considered for example in [11, 1]. In fact, it may happen that 

M21n->oo(Efcln+lafe)/an = °° a n d l™n^ooa^+l/an = °> a S t h e f o l _ 

lowing example shows: 

Let ck = ]C*L0
 2 2 » * € N. Define (ak)k€N by 

1 

a0 = 1, an = 2fe(fc+3)/2 if c*-i < n < ck. 

It can be easily checked that the sequence (an) satisfies the required 
conditions. 

(2). If £Q(CL)
 1S the Orlicz class defined by {x = (#n)n€N ' 

Y.(j){\xn\)an < oo}, then, as a direct consequence of Proposition 1, we 
obtain that £$ (a) <—• ^o(a) ^ a n d on^y ^ there exist X > 0 and SQ > 0 
such that ^(s) < Ki/;(s) for every 5 > 5o > 0. These results answer a 
question of W. Luxemburg in [11; p. 40, Remark 1]. 

3. Subspaces isomorphic to f°°,co and I1. 
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THEOREM 3. Let <j> be a convex Orlicz function and let (an) be 

a weight sequence of finite sum with Hmn_+00 ( 2fcLn+iafc)/a™ > 0-

Then the following statements are equivalent: 

(1)0 verifies the A 2-condition at 00, 

(2) t*(a) = h*(a), 

(3) £^(a) is separable, and 

(4) £^(a) contains no isomorphic copy of £°°. 

This theorem constitutes an extension to the case of purely atomic 
finite measures of a result of Turett ([14 Theorem 4], [15, p. 33]). In 
the proof we shall make use of the following technical lemma. 

LEMMA 4. Let (an) be a finite sum with Y^T=n-\-i ak > 2can for 
0 < 2c < 1. If<t> does not satisfy the ^-condition at 00, then there exist 
sequences (m^), (pk) of natural numbers and (tk) of positive scalars such 
that 

(1) c ^ 1 < ( £ £ + * * ajMh) < c*, and 

(2) 4>(stk) > (l/cfc+1(j)(tk) for every k e N. 

PROOF. We proceed by induction. As (j) does not fulfill the A2-
condition at 00, we can take a ti > 0 in such a way that (j)(2t\) > 
(l/c2)(£(ti) and 4>(ti) > 2c/6i. 

Let bn = Y^T=n-\-i ak a n ( i Ni = {n > 1 : there exists q > 1 such 
that £"=n a i^ (* i ) > c2} Ç N. Nx is non empty since 2 e Nx : if 
e = c2 /<t>(ti) we can find a j e N with bj+i < e, so (òi — bj+i)</)(ti) > 
2c2 — €<j>(ti) = c2. Moreover, Ni is bounded above by j + 2, because 
(6n_i - bn+q)(t>{ti) < bj+icßih) < £<t>{h) = c2 for every n > j + 2 
and q > 1. Let mi = sup Ni. By the definition of Ni, there 
is a qi > 1 with (J^=mT ai)^(*i) > °2' N o w consi<ier the set 
Fi = {q € N : c2 < ( ^ a y ) ^ ) < c} and write P l = inf Yi if 
Yi # 0 and pi = 0 otherwise. Clearly, if Y\ ^ 0, then (1) holds. Let 
us show that if p\ = 0 then c2 < ami(/)(ti) < c. Otherwise, for some q 



F. FUENTES AND F.L. HERNANDEZ 591 

,2 ^ Jl 

<j>(2tk+i) > 

<t>(tk+i) 

^ + 2 ^ ( ^ + 1 ) 

rk+2 
> 2 T -

sufficiently big, we would have 

(bmi - bmi+qi)(ß(ti) =(6m i_i - bmi+qi(j)(ti) 

+ (bmi - bmi-i)<t>(ti) > c-c2 > è 

since Fi = 0. So mi + 1 € Ni in contradiction to the choice of mi. 

Now suppose we have mi < m<i < • • • < rrik,pi,... ,p& and £ 1 , . . . , £& 
such that (1) and (2). Choose tk+i such that 

and 

where rik = rrik + Pk- Define 

n+p 

iVfc+i = {n> rik ' there exists p > 1 with ( V"* %)0(^+i) > c f c+2}. 

It is clear that n& + 1 e iV^+i, cfc+2/(/>(^+i) is an upper bound of iVfc+i 
and if mfc+i = sup iVfc+i, then mfc+i > n*. > mfc. 

Moreover, if 

TWi = { < Z > l : c f c + 2 < ( £ o^^tfc+O < c*+1} 

and pfe+i = inf Yjt+i if F^+i ^ 0 and p^+i = 0 otherwise, then 

rrik+i+Pk+i 

ck+2 < ( E «i) c*+i) *cfe+1-

This ends the proof of the lemma. D 

PROOF OF THEOREM 3. (1) => (2). It follows from Proposition 1 
with a standard argument (see [11, 12]). 
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(2) => (3) =» (4). Immediate. 

(4) => (1). We assume that </) does not satisfy the A2-condition at 
oo. Then there exist 0 < c < 1/2 with YlT=n-\-i ak > ^can for every 
n 6 N, and sequences (m*;), (p^) and (£&) like in Lemma 4. Define the 
operator T : f ° -> ^ ( o ) by T(xn) = i/n, where 

_ J tkxk if n e [m*, mfc + pfc] for some A; 
l o otherwise . 

Clearly, T is linear and one-to-one. If Si = M ^ , then 

OO I | OO ™>k+Pk OO 

n = l fc=l j=mk k=l 

while, for s2 = MQO/4, there is a q G N with \xq\ > 2s2 and 

o o I I oo rrik+Pk . i i 

n = l n fc+1 j = m f c
 J 

( m<z+Pg \ 

5 ] ajU(2t2)>l. 
j=mq / 

Hence, M ^ / ^ < |T(x)|^ < |o:|00 and T is a topological isomorphism. oO 

REMARK. It is clear that the isomorphism T of the previous theorem 
between £°° and T(£°°) is a Riesz-isomorphism that, in general, is not 
onto, i.e., £^(a) ^ £°°. For example, if <p(x) = ex — 1 and an = \jn log2n 
is a sequence of weights, using a recent result of W. Wnuk [18, Theorem 
2], we get that t?(a) is not Riesz isomorphic to £°°. 

If, in the above theorem, we assume that cf> has a Young conjugate we 
get that ii£^(a) contains no copy o/co" is a fifth equivalent statement. 
This is due to the fact that £^(a) is a pre-dual space, by Proposition 
5, together with a general property of pre-dual spaces (see [9, p. 103]). 

PROPOSITION 5. If $ is a convex Orlicz function with Young conju
gate ip, then the topological dual of 0(a) is isometrically isomorphic 
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to £^(a) for any arbitrary weight sequence (an). 

PROOF. First we define the sequence of functions (ßn(s) = an(j)(rns) 
for s > 0 and (rn) such that an(j>{rn) = 1 and then consider the modular 
sequence space 

/«»> = {z = (xn) : J2<t>ny— ) < oo for some s > o} 
n=l 

endowed with the usual norm 

OO I I 

\x\,n= inf{.>0:5XHal)<l}, 
n=l 

and also the corresponding closed subspace h^n\ It is easy to check 
that £(<pn) and £^(a) are isometrically isomorphic: take the operator 
T : ^(j)n) -» I* (a) defined by T(xn) = (rnxn). Now, by a result of Woo 
(see [9, p. 168]) we have that (ft^»)' S l^») (Here (^n) denotes the 
sequence of Young conjugate functions of (0n))- A simple computation 
in our case gives the following expression for the functions ipn: 

tpn(s) = anip( s) for s > 0. 
\rnan / 

Finally we have that the spaces &^n^ and t?(a) are isometrically 
isomorphic by means of the operator 

T : ̂ {a) -> l{*n) defined by T{xn) = (rnanxn). 

D 

As a consequence we obtain an improvement of the results given by 
Luxemburg [11, p. 60] and Denker-Kombrink [1, Theorem 2]: 

PROPOSITION 6. Let </> be a convex Orlicz function with Young 
conjugate rp, and let (an) be a weight sequence with Ean < oo and 
hnin_^ec(y^^l r i+1 ak)l0"n > 0. The following conditions are equivalent : 
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(1) £^{a) is reflexive, 

(2) <f> and ip satisfy the A2-condition at oc, 

(3) £^{a) is uniformly convexifiable, 

(4) £^{a) is B-convex, and 

(5) £^(a) contains no isomorphic copy of £}. 

PROOF. (I) <& (2). If the A2-condition at 00 does not hold for </>, 
then, by Theorem 4, <°°£^(a) and so I*(a) is not reflexive. If the 
A2-condition holds for 0 but not for V, then (I*(a))' = ^ ( a ) ^ ° ° , 
and thus {£^{a))' is not reflexive and neither is £^{a). The remaining 
implication follows from the last proposition. 

(2) => (3). Following Akimovich (see [1]) we construct a function 0 
which is equivalent to 0 at 00 such that, for every 0 < r < 1, there is 
0 < t < 1 such that ~4>{s + rs/2) < (1 - t)($(s)_+ ~4>{rs))/2 for all s > 0. 
Now, by a result of Luxemburg [11, p. 64], £^{a) is uniformly convex, 
and so £^(a) is uniformly convexifiable. 

(3) =* (4). Well-known (see [3]). 

(4) => (2). If <f> does not satisfy the A2-condition at 00, then as £°° is 
not B-convex and ^°°~^(a) , we have that l^(a) cannot be B-convex. 
If (j) fulfils the A2-condition and tp does not, then £^(a) is not B-convex 
since (**(a))' ~ ^ ( a ) ~ r ° . So the pre-dual £^(a) is not ß-convex 
either. 

(1) =* (5). Trivial. 

(5) => (2). If the A2-condition does not hold for </>, l^(a)^tcc^e1. 
Moreover, if it holds for 0 but not for V, then (I*(a))' ~ £^(a)~£°°~c0 

and, by [9, p. 103], £^(a) contains a complemented copy of £}. 

4. Counterexamples. The following examples show that, in gen
eral, Theorem 3 and Proposition 6 cannot be extended to wider classes 
of weight sequences. 

EXAMPLE 1. A separable Orlicz sequence space £^{a) such that (ß 
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does not satisfy the Ä2-condition at oo and (an) is a weight sequence 
with £a n < oc and 

fon ^ * = n + i ° * = 0_ 

Let (dn) be an increasing sequence of positive scalars such that d\ = 1 
and X)^+i dn/dn+i = D < 1/2 (for example, dn = 22U ,n > 1). 

Define the Orlicz function 

«*>-{l 
if 0 < s < 1 

s + Bn if dn < s < d n + i , 

where An = dn+i + dn and £?n = — dn+\dn for n G N. Clearly, </> is 
a convex Orlicz function which does not verify the A2-condition at oo 
since (j){2dn)I(j){dn) = 2 + dn+i/dn. Consider the space £^(a) where 
(an) is the sequence of weights given by an = l/(f>(dn+i. We shall show 
that £^{a) is isomorphic to £l. By a similar argument to the one in 
Proposition 5, we have that £^{a) is isomorphic to £^n^ for the (4>n) 
sequence of Orlicz functions defined by (j)n{s) = (ß(dn+is)/(ß(dn+i) for 
n e N. Now, observe that 

sup \(j)n(s)-s\ < 2 -
0<S<1 ^71 + 1 

since if 0 < s < d n /d n+i , |</>n(s) — s\ < s + s < 2dn/dn+i and if 
dn /dn+i < « < 1, then 

\<l>n(s) - «| 
^n^n+iS + Bn 

s < + i 

dn+idn{l - s) dn 

dn+i dn+\ 

Hence, i1 and £^n) are the same sets. Let us show that the identity 
map between £l and £($*) is an isomorphism. Let A = 1/1 — 2D and 
£ be such that B(l - 2D) > 1. Then, for s£ = \x\x + eA"1, 

n = l n = l n = l 

<1±2£ = 1 _ 4 D » < 1 > 
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so As£ > \x\. for all e > 0 and hence |xL < -̂ 4.|xc|x. On the other 
hand, if 6£ = \x\x — eB and we assume that \xn\ < Se for every n G N, 
then 

n = l n = l n = l 

> # ( y ^ - 2£>) > 5(1 - 2D) > 1. 

If there exists a natural number n0 with |xno | > 6£, then we also have 

n = l 

so 6eB~l < \x\(f)n and hence l a ^ i ? - 1 < |#L . 

EXAMPLE 2. A reflexive Orlicz sequence space £^(a) such that </> does 
not satisfy the A2-condition at 00 and (an) is a weight sequence with 
Ean < oc and Hmn_>00 Efctn+i afe/an = 0. 

Let (dn) be a sequence of scalars as in Example 1 and define 

*->={£+*. 
if 0 < s < 1 

s + Bn, if dn < s < dn+i, 

where An = dn(dn+i — dn-i/dn+i — dn) and Bn = —dndn+i(dn — 
dn-i/dn+i — dn) for n > 1(AQ = Bo = do = 0). First, 0 is a convex 
Orlicz function not satisfying the A2-condition at 00 since 

<t>{dn+i) > ^ dn+1 

dn *M 
Consider £^(a) for an = l /0 (d n + i ) . Then l?(a) is isomorphic to £2. 

In fact, reasoning as in the previous example, £^{a) is isomorphic to 
£(*») for <f>n(s) = 0(d n + i s ) /0(d n + i ) and ^») is isomorphic to ^2. For 
this last case 

21 ^ 8 dn sup | ^ n ( 5 ) - 5 2 | < - — 2 - f o r n G N . 
0<s<l O«n+1 
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REMARK. Recall that if the Orlicz function <\> is such that lims_^oo (f>(2s)/ 
(ß(s) = oo, then £^(a) always contains a copy of £°° for every weight 
sequence (an) of finite sum [2, Prop. 4]. 

It is well-known that every Orlicz space contains an isomorphic copy 
of some £p or CQ. A result of Lindenstrauss and Tzafriri [9, 10] gives a 
characterization of the set of numbers p such that (P can be isomorphi-
cally embedded into a normed Orlicz space: for the sequence spaces ^ , 
it is the interval [a^,/^] whose endpoints are the Matuszewska-Orlicz 
indices of the function </> at 0. In particular, £^ is isomorphic to £p if 
and only if 0 is equivalent to the function ip{x) = xp at 0. Now, for the 
spaces £^(a) we get the following result: 

PROPOSITION 7. / / <j> is an Orlicz function with the A2-condition 
at oo and ß^ -concave, then there exists a weight sequence (an) with 
£a n < oo such that £^{a) is isomorphic to £&* . 

PROOF. Recall that /??° = p, the Mat uszewska-Orlicz upper index of 
<j> at oo, is defined by 

ß?= Hm (log { lim ^ } / l o g A). 

As <f> is p-concave at oo, if we define 7(A) = lim1<Ax (/>(Xx)/(/>{x) 
for A > 0, then Xp -« 7(A) and so P C £p. On the other hand, as 
/?oo = p£P Q £i a s s o p — £P ]\jOW5 given a sequence (xn) of positive 
scalars such that £ |# n | p < 00, take (sn) with sn —> oo,sn:rn > 1 and 
such that 

l{Xn)<t^^<M\xn\p 

<P{Sn) 

for all n, where M is a positive constant. Now consider the space 
t*(a) for the sequence of weights an = l/<j>(sn). Then Ean < 00 since 
E r = l l / 0 ( « n ) < E ~ = 1 MxH<t>{xnSn) < 00. 
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By the p-concavity of 0, (f)(xsn)/x
p < (ß(xnsn)j'x^ < M(j)(sn) for ev

ery x > xn. Now, as the A2-condition at oo for </> holds, £^{a) = h^(a) 
has in (/n) for fn = snen a Schauder basis. Finally, it is not difficult 
to check that the canonical basis (en) of £p and the basis (fn) of £^(a) 
are equivalent, and therefore £^{a) is isomorphic to £p. DO 

A similar result can be proved for a^-convex functions in a neigh
bourhood of oo. 

REMARK. Observe that from the last Proposition we can deduce that 
£^(a) with San < oo may be locally convex even if (j) is not equivalent 
to any convex function at oo. On the other hand, this fact does not 
happen if Ean = oo and an —• 0 (see [6] where a study of the spaces 
^(a) within the theory of galbs of Turpin [16] is presented). 

Finally, let us show that even if we restrict ourselves to the class of 
sequences (an) with l im^^ 5 Z ^ n + 1 «fc/on > 0, the spaces £^{a) can 
be isomorphic to £p for (j) nonequivalent to the function ip(x) = xp at 
oo. (In contrast with the results for the spaces £$, cf. [9]). 

EXAMPLE 3. An Orlicz sequence space £^(a) which is isomorphic to 
£p', with <f> non-equivalent to the function xp at oo and (an) is of finite 
sum and slowly decreasing to 0. 

Let 0 < p < oo and define 

-

&*> if* e [0,1] 

B g f e ' **e[i,oo]. 

Then /?£° = p and <j) is p-concave at oo. If we consider the space £^(a) 
where an = l /0(22 n) , then l im n __ an+i/a>n = 1/4P > 0. Now, by a 
similar argument to that in the previous proposition, we get that £^(a) 
is isomorphic to £P. 
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