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STABILITY P R O P E R T I E S OF P E R I O D I C 
SOLUTIONS OF PERIODICALLY F O R C E D 

N O N - D E G E N E R A T E SYSTEMS 

ALAN R. HAUSRATH AND R.F. MANASEVICH 

1. Introduction. In this paper we study the stability properties of 
T-periodic solutions of the ordinary differential equation 

(1.1) x' = f(x) + eF(t,x) 

where ' denotes ^ and s G R is a small parameter. We make the 
following hypotheses about (1.1): 

1. Let U C R2 be open, 0 <E U. f : U -> R2 is of class C2 and 
f(x) = 0 if and only if x — 0. 

2. F : R x U —> R2 is of class C" on its domain and F(t,x) — 
F(t + T, x) for all (*, x) eKxU. 

3. 0 is a center of 

(1.2) x' = f(x), 

that is, there exists a continuum C of periodic orbits of (1.2) contained 
in U and enclosing the origin. Moreover, C contains a nontrivial 
periodic solution of least period T which will be denoted by u. 

4. w is non-degenerate where we define non-degenerate periodic 
solutions as follows. 

Let v be a nontrivial (/-periodic solution of (1.2). Associated with 
(1.2) and v we have the linear variational equation 

(1-3) y' = Uv(t))y, 
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786 NON-DEGENERATE SYSTEMS 

where fx(v(t)) denotes the Jacobian matrix of / evaluated at v(t). 

DEFINITION 1.1. v is degenerate if and only if every solution of (1.3) 
is ç-periodic. 

We shall use non-degenerate to mean "not degenerate." 

DEFINITION 1.2. We say that (1.2) is degenerate if and only if each 
member of C is degenerate. 

The next proposition, which we will state without proof, relates the 
concept of degeneracy to the periods of the elements of C. 

PROPOSITION 1.1. (1.2) is degenerate if and only if every element of 
C has the same minimum period. 

At this point we introduce some notation. The symbol • will denote 
the scalar product on R2 and | | will denote the absolute value of 
a real number, the Euclidean norm on R2 , or the induced norm of 
a matrix or linear operator R2 —» R2; which one will be clear from 
context. A vector x = {xi,x2) G R2 will be identified with its column 
representation, col(xi,X2). xl will denote the row vector [^1,^2]. 
A linear operator L : R2 —> R2 will be identified with its matrix 
representation with respect to the canonical basis of R2 . In particular, 
the letter / will denote both the identity operator on R2 and the 2 x 2 
identity matrix. A will denote the matrix 

(? -.')• 
x(t,XQ,e) will denote the solution of (1.1) such that x(0,xo,e) = XQ. 
We will use xXQ to denote the derivative of x with respect to the intial 
condition coordinate and xe to denote the derivative of x with respect 
to the parameter coordinate. 

fxx will denote the second derivative of / with respect to its variable, 
a symmetric bilinear mapping from R2 x R2 into R2 . 

We gather some results from elementary Floquet theory into a propo
sition which will be stated without proof. 

PROPOSITION 1.2. 
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1. If ßi(0) and /X2(0) are the characteristic multipliers of (1.3) with 
v — u, then /xi(0) = /X2(0) = 1. 

2. 

(1.4) / tv[fx(u(t))}dt = 0. 

Jo 

3. If t = 0 is chosen, without loss of generality, such that uf(0) is 

parallel to the horizontal X\ axis, in the positive direction, then the 

principal matrix solution (1.3) with v = u is given by 

where p : R —» R2 is C, T-periodic, and has p(0) = co/(0,1) and K is 
a constant. 

REMARK, U is degenerate if and only if K — 0. 

Finally, we establish a local coordinate system about u: 

(1-6) t(t) = ^ ; n(t) = At(t). 

Then [3], the following theorems are proved concerning the existence 
of T-periodic solutions of (1.1). 

THEOREM 1.2. There exist e0 > 0 and R : (-e0,£0) x R -+ R of 
class C and T-periodic in the second variable such that 

(1.7) t(s) • [x(T, u(s) + R(e, s)ft(s), s) - u(s) - R(e, s)n{s)} = 0 

for all s G R. Furthermore, R(0, s) = 0 for all s G R . 

REMARK. The geometric meaning of Theorem 1.2 is that solutions 
of (1.1) with initial point u(s) + R(eis)n(s) return to the line through 
u(s) normal to {u(t)\0 <t<T} after time T. 

We define the C function 7 : (-£o,£o) x R —> R2 by 7(e,s) = 
u(s) + R(e,s)n(s). 
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THEOREM 1.3. Let g{s) be defined by 

(1.8) g{s) = h(a)-xt(T,u{s),0). 

Assume that there exists an so € [0, T] such that 

(1.9) g(so)=0 and 

(1.10) ff'(«o)#0. 

Then there exists an 6\ > 0 and a C function s : (—£i, £i) —* R, s(0) = 
«so, such that for any e E (—£i,£i), 

(1.11) ->•(£, 5(e)) = u(s(e)) + R(e, s(e))h(s(e)) 

is the initial condition of a T-periodic solution of (1.1). Furthermore, 

if 

(1.12) z{U £, s0) = x(*, u(S(e)) 4- fifo s(c))n(s~(e)), e) 

denotes this family of T-periodic solutions, then 

(1.13) z(*, £, so) = u(* + s0) + £/?(£, s0) + po(*, £, s0) 

where lim£^o\po{t,£,so)\/e = 0 uniformly in t. Moreover, ß is a T-
periodic solution of 

V = /* (u(* + s0))î/ + ^ (*, w(* + so)) 

2/(0) = ^(0,s0)h(s0) + s'(0)\u'(8o)\t{so). 

Finally, ß is given explicitly by 

(1.15) /3(«,ao)=a:£(<,w(so),0)+xx o(<,u(so),0)/S(0,*o). 

REMARK. Let 

(1.16) e(t) = exp[[ tr(/x(u(a)))d*]. 
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Then it is a straightforward calculation to show that 

g(s0) = 0, g\s0) ^ 0 

if and only if 
h(s0) = 0, h'(so) # 0 

where 

(1.17) h(s) = [T Ä ^ F ( ( 7 , U(S + (7))d(7. 

Jo e\s + <0 

Moreover, if g(so) = 0, 

(1.18) sgn[(y,(«o)]=sgn[/i/(so)]. 

In §2 we will state and prove our main result which gives sufficient 
conditions for the asymptotic stability, or instability, of z(£,£,so)-
Finally, in §3, we analyze an example which illustrates the theory 
presented here. 

2. Stability. In this section, we study the stability properties of the 
T-periodic solution 

(1.13) z(t, e, so) = u(t + so) + eß(t, s0) + p0(t, e, s0) 

of 

(1.1) xf = f(x) + eF(t,x) 

where so is determined by (1.9) and (1.10). We begin with the relevant 
definitions, (see, for example, [2, p.26].) 

For the purposes of the next definition, let x(t,to,xo,e) denote the 
solution of (1.1) with x(to,to,x0,e) = XQ. 

DEFINITION 2.1. The solution x(t,t0,xo,e) of (l . l) is said to be 
Lyapunov stable, if and only if for any 7 > 0 and for any to > 0, 
there exists 6 = 6(7,to) such that \XQ — yo\ < S implies \x(t,to,xo,s) — 
tf(Mo?2/o»£)| < 7 for £ € [to, 00). The solution x(t, to,xo,e) is asymp
totically stable if and only if it is stable and there exists b = b(to) such 
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that |#o — 2/01 < b implies \x(t, to,x0,£) — x(t,to,yo,e)\ —> 0 as t —> oo. 
The solution x(f , to,xo,^) is unstable if and only if it is not stable. 

REMARK. Since (1.1) is periodic in t, if a solution x(t,to,xo,s) 
is stable (asymptotically stable) then S(^,to)(b(to)) c a n be chosen 
independently of to. (see [2, Lemma 4.1, p.27]). 

The stability properties of Z ( £ , £ , S Q ) are determined by the charac
teristic multipliers ßi(e), 112(e) of the linear variational equation 

(2.1) y' = fx(z(t, e, s0))y + eFx(*, z(t, e, s0))y. 

P R O P O S I T I O N 2.1. 

a. if both l/zi(£")|, |//-2(s)I < 1, then z(t,e,so) is asymptotically stable; 
and 

b. if one 0 / | / / i (c) | , 1 /̂2(̂ )1 > 1> then z(t,£,so) is unstable. 

PROOF. See, for example, Th. 2.I., p.322, and Th. 1.2, p.317 of [1]. 

R E M A R K . If both \pi(e)\, |/x2(e-)| = 1 or if |/xi(e)| = 1 and |//2(^)| < 1, 
then stability cannot be determined by the linear approximation. 

Let Z(t,£,so) be the fundamental matrix solution of (2.1) with 
Z(0,e, so) = X(so), where X is defined by (1.5). Then pi(e) and 
112(e) a r e the eigenvalues of 

(2.2) Z-1(0,s,so)Z(T,e,so) = X-1(s0)Z(T,e1s0). 

In order to study Z(t,£, so) further, we begin by observing that 

fx[u(t + s0) + eß(t, so) + Po(t, £, so)} 

+ eFx[t, u(t + s0) + eß(t, so) + po(t, e, s0)] 

= fx(u(t + s0)) + efxx(u(t + s0))/3(£, so) 

+ eFx(t, u(t 4- s0)) + pi(t , e, s0) 

where l i m ^ o \p\(t,e,so)\/e = 0, uniformly in t. Using (2.3), (2.1) can 
be rewritten as 

/ 0 4. V = /*(u(* + s0))y + efxx(u(t + s0))/?(*,s0)?/ 
(2.4) 

+ eF x ( t , u(* + s0))y + pi (t, e, s0)y. 
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Applying the variation of constants formula to (2.4), we obtain 

Z(t,e,8o) = X(t + so) + eX(t + s0) / X'^s + so) 
(2.5) 

[fxx(u(s + s0))ß(s, so) + Fx(s, u{s + s0))]Z(s, e, s0)ds 
+ P2{t,e,s0) 

where \im£-+o\p2(t,e,so)\/£ = 0 uniformly for t G [0,T]. From (2.4) 
and Ch. 2, Theorem 4.1 of [1], we see that 

(2.6) Z(t, e, so) = X(t + s0) + p3(*, e, *o) 

where Ume-+o\p3(tie,SQ)\ — 0, uniformly for t G [0,T]. Substituting 
(2.6) into (2.5) yields 

Z{t,£,s0) = -X"(* + so)+eX( t + so) / X - ^ s + so) 
(2.7) 

' [/r.x(w(s + So) )^ ( s ,So ) + ^ ( 0 , w(s + S o ) ) ] ^ ( s + So)d5 

+ p4(^£,so) 

where r im^o \p4(t,£,so)\/£ = 0 uniformly for t G [0,T]. Using (2.7) at 
t = T we obtain 

(2.8) =M + SM [ X'1(8 + 80)[fxx(u(8 +80^(3,80) 
Jo 

+ Fx(s, u(s + s0))]X(s -f s0)ds + p5(e, s0) 

where M = ( J ^ T J and lime_+0 |ps(^5 «o)|/£ = 0-

Hence pi(e), P2(^) are eigenvalues of a matrix of the form 

1 + edn(so) + pn(e, so) # T + sd12(s0) + pi2(e, s0) (2 9) 
V £d2i(so)+/>2i(e,$o) l + 5d22(so) + P22(^,so) 

where lime_0 \pij(s,8o)\/e — 0, ij = 1,2. 

The characteristic equation of (2.9) is 

(2.10) (\-l)2-£(dll(so)+d22(so))(\-l)-eKTd2i{so)+P6(£,s0) = 0 
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where l im e_o \p6Ì-^so)\/- — 0- The roots of (2.10) are 

A = 1 + ^[rfn(so) + d22(s0)}± 

(2.11) ! ' 
-Ve2(dn{so) + d 2 2 (s 0 ) ) 2 + AeKTd2l{s0) + 4p 6 (s ,8 0 ) . 

Examination of (2.11) yields 

a. If cA~<Ì2i(so) > 0 r then the roots are both real, one less than 1 
and the other greater than 1, and z(t,e, SQ) is unstable for e sufficiently 
small; and 

b. If sKd2i(so) < 0, the roots are complex conjugates for e small and 
the square of their common modulus is 

det[Z-1{01eì8o)Z{TìeJ80)]. 

In this case, z(t,e,so) is unstable or asymptotically stable as 
de t [Z _ 1 (0 , £, so)Z(T, £, so)] is greater than or less than 1. 

Fortunately, reasonably simple expressions can be derived for d2i(so) 
and d e t [ Z - 1 ( 0 , s , s 0 ) Z ( f , 5 , s 0 ) ] . 

In order to calculate d2i(so), let zi(t,e, so) denote the first column of 
Z(t,e,so). That is, 

(2.12) 2i(*,e,so) = Z ( ^ , s 0 ) c o l ( l , 0 ) . 

Using (2.12) and (2.8), we calculate 

(2.13) 

Z-1(0,e,s0)z1(T,e,s0) 

= col(l ,0) + (e / |u ' (0) | )M / X-\s + so)[fxx(u(s + s0))ß(s,s0) 
Jo 

+ Fx(s,u{s + s0))]u'(s + s0)ds + p7(e, s0) 

where l i m ^ o \p7(e,s0)\/£ = 0. 

At this point, let us recall the differential equation for ß: 

(2.14) ß' = fx(u(t + so))/? + F(t, u(t + s0))-
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Differentiate (2.14) with respect to t to obtain 

(2 15) ß" =fx{u{t + So))ß' + [fxx{u{t + So))ß 

+ Fx{tMt + Su))}u'{t + s0) + Ft(t,u(t + s0)). 

(2.15) can be solved using the variation of constants formula to obtain 

ß'{t,80) = X(t + so)X~1(so)ß'(0,so) 

(2.16) + X(t + so) / X~\s + s0){[fxx(u(s + 80))ß(s, s0) 
Jo 

+ Fx(s,u(s + s0))]u'(s + s0) + Ft(s,u(s + sQ))}ds. 

Since ß is T-periodic, ß' is T-periodic also so that 

[I-X{T + 8o)X-l(so)]ß'{0,ao) 

-X(T + 80) f X-1(s + s0)Ft(s,u{s + s0))ds 
(2.17) / ° 

= X(T + 80) f X-l(a + 80)[fxx(u{s + 80))ß(a,80) 
Jo 

+ Fx(s, u(s + so))]u'(s + s0)ds. 

Using (2.17) in (2.13), we obtain 

(2.18) 

Z-l(0,e,80)zi(T,e) 

= col(l,0) + eM{[X~\T + *o) - X-l(so)}ß'(0,*0)/|«'(0)| 

- (1/ |« ' (0) | ) / X-'is + sQ)Ft(s,u(s + s0))ds} + P7(e,s0). 
Jo 

Since 

[0, 1]Z_1(0, e, s0)zi(T, e, a0) = e<fci (so) + P21 (e, *o), 

(2.18) implies 

(2.19) d2i(so) = -([0,l]/ |u'(0)|) / X- 1 ( s + s0)F,(s,«(s + so))ds. 
Jo 

We remark that it is a short calculation using the definition of X to 
show that 

(2.20) d21(So) = - ( l / |u ' (0) | 2 ) / [Au'{s + SifFt(sMs + s0))ds. 
Jo e\s "+" so) 
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By the standard theory of linear systems 

det[Z-1(0ìeìso)Z(Tìe,8O)] 

= exp< / tv[fx(z(s,e,so))-\-£Fx(sìz(sì£ìs0))]ds>. 
(2.21) 

/o 

Thus 

as 

(2.22) 

det[Z~1(Oì£ìs0)Z(Tì£ìs0)] > 1 or < 1 

Q{e,s0)= / tT[fx(z(s,£,s0)) + eFx(s,z(s,£,s0))]ds 
Jo /o 

> 0 or < 0. 

The preceding discussion has proved 

THEOREM 2.1. Letd2i{s0) be given by (2.19) or (2.20) and letQ(£,s0) 
be given by (2.22). Then 

a. lfeKd2i{so) > 0, then z(t,£,so) is unstable for £ sufficiently small; 

b. If sKd2i(so) < 0 and Q(£,SQ) > 0, then z(t,£,so) is unstable for 
£ sufficiently small; and 

c. lf£Kd2i{so) < 0 andQ(£,so) < 0, then z(t,£,so) is asymptotically 
stable for £ sufficiently small. 

In order to study Q(£,so) further, we use (2.3) and (1.4) to obtain 

Q(e, so) = eQo(so) + ps(e, s0). 

where 

(2.23) Qo(so)= I tr[fxx(u(s + s0))ß(s,s0) + Fx(s,u{s + s0))]ds 
Jo 

and lim£^o \ps(s,s0)\/e = 0. 

We then have, as a corollary to Theorem 2.1, 
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COROLLARY 2.2. Let d2i(s0) be given by (2.19) or (2.20) and let 
Qo(so) be given by (2.23). Then 

a. If eKd'2i{s()) > 0, then 2(£,e,so) is unstable fore sufficiently small; 

b. If eKd2i{$o) < 0 and SQQ(SO) > 0, then z(t,e,so) is unstable for 
e sufficiently small; and 

c. lfsKd2i(s()) < 0 and £QQ(SQ) < 0? then z(t,e,so) is asymptotically 
stable for s sufficiently small. 

Finally, we examine the relationship between cfoiC ô)? as given by 
(2.19) and ^(so), where g is the branching function defined in Theorem 
1.3. 

THEOREM 2.3. Let d2i(so) be given by (2.19) and let g be given by 
(1.8). Then 

(2.24) sgn[s'(so)]=sgn[d21(so)]. 

PROOF. By direct calculation 

(2.25) g(s) = n(s)-p(s)[0,l] [ X~l(t + s)F(t,u{t + s))dt. 
Jo 

Since n(0) • p(0) — 1 and since X(s) is invertible for all s, we have 
that h(s) - p(s) > 0 for all s. Thus, g{so) — 0 if and only if 
[0,1] J0

T X~l(t + s)F(t, u(t + s))dt = 0 and 

(2.26) sgn[</(s0)] = sgn 

Next we examine 

[o,i][Tx-\t 
Jo 

+ s)F(t,u{t + s))dt 

I(s) = ^ j [ 0 , l ] / X-l{t + s)F(t,u(t + s))dt\ 

(2.27) = [ 0 , 1 ] / ^[X-l(t + s)ÏF(t,u(t + s))dt 
Jo "5 

rT 

+ [0,1] / X-1(t + s)Fx(t,u(t + s))u'(t + s)dt. 
Jo 
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We integrate the first term by parts after observing that 

to obtain 

[0Jl][X-1(t + 8)F(tMt^-s))]'[=0 

-[0,1] / X-\t + s)[Ft(t,u(t + s)) 
Jo 

+ Fx(t,u(t + s))u'(t + s)]dt 

+ [0,1] / X-1(t-\-s)Fx(t,u(t-{-s))uf(t + s)dt 
Jo 

Since the second row of X~l(t -f s) is T-periodic in its argument, the 
first member on the right hand side of (2.28) evaluates to 0. Thus, I(s) 
becomes simply 

(2.29) I(s) = -[0il][ X-1(t + s)Ft(t,u{t + s))dt. 
Jo 

Using (2.19), (2.26), (2.27), and (2.29), we see that 

(2.30) sgn[^(s0)] = sgn[/(s0)] = sgn[d2i(s0)], 

thus completing the proof of the theorem. 

In [5], W.S. Loud studied the equation 

(2.31) x" + g(x, x') = ef(t, x, x'\ e) 

where x is a scalar. If / in (2.31) does not depend on 5, (2.31) can be 
recast as a particular instance of system (1.1). In this case, Theorem 
3.9 of [5] which discusses stability when so = 0 can be deduced from 
Corollary 2.2 of this paper. The case SQ ^ 0, treated in Theorem 
3.12 of [5], can also be obtained from Corollary 2.2 in part. However, 
Theorem 3.12 there contains additional information about stability 
when eKd2\{so) > 0 and Qo(so) = 0, obtained by use of the e2 term 
in the power series for z(t,e,so), which Corollary 2.2 here does not 
provide. 

1(8) 

(2.28) 
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3. An illustrative example. In this section, we apply the theory 
developed above to the system 

, . x[= x2(x\ + x%) +e(^\X\ + aiQost + b\smt + Fi(t)) 

x2 = ~x\{x\ + x\) + e{X2x2 + «2Coŝ  + 62sin£ -f F2(t)) 

where Ai; A2 > 0, F.j; : R —* R, j = 1,2, are C", 27r-periodic, and 

/»2TT /»27T 

(3.2) / Fj(t)smtdt= Fj(t)costdt = 0, j = 1,2. 
Jo Jo 

The unperturbed system 

,~ ox X l = ^ 2 ( ^ 1 + ^ 2 ) 
^ ' / _ / 2 , 2 \ 

was studied in [4] and was shown to be nondegenerate there. 

To place (3.1) and (3.3) into the context of the previous theory, let 

x = col(xi,x2), f(x) = col(x2(x? + X2), -xi(xf + X2)), 

F(t, x) = col(Aia:i -h oleosi -f bisin£ 

+ Fi(^), X2x2 + a2cos£ -f fr2sin£ + ftft)), 

and let x(t,Xo,e) denote the solution of (3.1) passing through xo at 
t = 0. Then / , F satisfy the hypotheses detailed in the Introduction. 

It is clear that (3.3) possesses u(t) = col(sin t, cos £) as a 27r-periodic 
solution. The linear variational equation for (3.3) associated with this 
solution is given by 

(3.4) y' = A(t)y 

where y — col(t/i,y2) and 

/ 0 cv ...v / 2sin£cos£ l + 2cos2£ 
( 3-5 ) A{t)=z{-l-2sin2t -2SmtcoSt 

Clearly, u'(t) = col(cos£, — shit) is a solution of (3.4) and it can 
be shown that col(sint -f 2tcost,cost — 2tsint) is a second linearly 
independent solution. 
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Thus 

/ 0 a, v,,, f cost s'mt-\-2tcost\ 
( 3 ' 6 ) X{t)={-smt cost-2tsmt) 

is the principal matrix solution of (3.4) and, in the notation of (1.5), 
p(t) = eol(sin£cos£) and K = 2. Finally, the local coordinate system 
about u(t) is given by 

(3.7) t (t) = col(cos t, —sin t), h(t) = col(sin, t, cos t). 

According to Theorem 1.3, 27r-periodic solutions of (3.1) branch from 
translates of u, u(t + 5o), where So is given by 

(3.8) g(so) = 0, g'(so)^0 

and g is defined by : 

(3.9) g(s) = n(s)'X£(27T,u(s0),0). 

Using (1.17), (3.8) is equivalent to 

(3.10) h(s0) = 0, h'(s0) # 0 

where 

/»2TT 

(3.11) h(s) = / [sin(s + cr), cos(s + <T)]F(<T, U(S + a))da. 
Jo 

It is a brief calculation to see that 

h(s) = (Ài + \2)TT + (sins)(ai — 62)7r + (cos s)(bi + a2)ir and 

(3.12) ^ ' (s) = (cos s)(a\ — Ò2)7T — (sin s)(bi + a2)7r. 

In order to solve (3.10), it is convenient to write 

(3.13) h(s)/ir = Ai + A2 + # cos (s - 0) 
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where 
R2 = (ai - b2)

2 + (h + a2f and 

(3.14) tan0 = { « Ä a i ^ &2 

We can conclude from (3.13) and (3.14) 

a. if (Ai + A)2 > (ai - b2)
2 + (61 + a2)2, then (3.10) has no solutions; 

and 

b. if(AiH-A2)
2 < (ai - 62)2 4-(^i + a2)2, then (3.10) has two solutions 

of the form 

so = 0 + cos ( — ) and 
i t 

(3.15) s^t-vn-nÒLtòl). 

In the case that solutions exist, 

(3.16) h'(s)/K = -R sm(s - <ß) 

and it is clear that 

(3.17) h'(so)/n=-h'(si)/7r 

with 

(3.18) \h'{80)\ = \h'(81)\=vR. 

Thus, if (Ai + A2)2 < {a\ - 62)2 + (h + a2)2, (3.1) possesses two 27r-
periodic solutions branching from u(t -f SQ) and u(t + si). 

In order to study the stability properties of these solutions, we need 
more information about SQ and s\. From (3.15) and (3.16), one can see 
that h'(so) < 0 and h'(si) > 0. 

We recall that in light of Theorem 2.3, (1.18), and the fact that 
K — 2,sgn[£A^d2i(s)] = sgn[eh'{s)] where s = 5oors i . 
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Finally, we must calculate Q, defined by (2.22). It is clear that 

(3.19) Q(e, s0) = Q(e, Sl) = 2TT£(X1 + A2). 

We apply Theorem 2.1 and summarize the preceding discussion in 

THEOREM 3.1. Let (Ài + A2)
2 < (ax - ò2)2 + (h + a2)2 and let 

z(t,£,s0) and z(t,£,si) represent the solutions branching, respectively, 
from u(t + so) and u(t + si), with $o> si defined by (3.15). Then 

a. If Xi + A2 > 0, z{t,e, so) is unstable for all £ ^ 0 sufficiently small 
and z(t,£, s\) is unstable for £ > 0 sufficiently small and asymptotically 
stable for £ < 0 sufficiently small; and 

b. If Ai +A2 < 0, z(t<£.si) is unstable for all £ ^ 0 sufficiently small 
and z(t, £, So) is unstable for £ < 0 sufficiently small and asymptotically 
stable for £ > 0 sufficiently small. 

REMARK. If £• = 0, 2(f,0,s;) = u(t + s*),z = 0,1, which is always 
unstable. 
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