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DYNAMIC BEHAVIOR OF
A DELAYED IMPULSIVE SEIRS MODEL
IN EPIDEMIOLOGY

TAILEI ZHANG AND ZHIDONG TENG

ABSTRACT. A delayed SEIRS epidemic model with pulse
vaccination is investigated. Using Krasnoselskii’s fixed-point
theorem, the infection-free periodic solution is obtained. Some
new threshold values R1, R2 and R3 are obtained for dynamic
behavior of the solutions. We point out, if R1 < 1, the
infectious population disappear, i.e., the disease dies out,
while if Rg > 1 or R3 > 1, the infectious permanent, the
infectious population will ultimately remain above a positive
level. An explicit formula is obtained by which the eventual
lower bound of infectious individuals can be computed when
R2 > 1. Our results indicate that a large pulse vaccination
rate will have some active effects to prevent or curtail the
spread of the disease. Furthermore, we only proved the
existence of R3 based upon some abstract theories.

1. Introduction. The spread of infectious diseases is often de-
scribed mathematically by compartmental models. A theory of epi-
demics was derived by Kermack, a chemist, and Mckendrick, a physi-
cian, who worked at the Royal College of Surgeons in Edinburgh be-
tween 1900 and 1930. They introduced and used many novel math-
ematical ideas in studies of populations [6, 13, 17]. From then on,
most of the research literature assumed that the disease latent period
is negligible, i.e., once infected, each susceptible individual (in class S)
becomes infectious (in class I), instantaneously and later recovers (in
class R) with a permanent or temporary acquired immunity. Today, we
usually call these compartmental models SIR models or SIRS models
with each letter referring to a ‘compartment’ in which an individual
can reside. The SIR and SIRS models have been studied in much liter-
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ature [1-3, 7, 10-12, 18, 20, 24, 25]. In particular, Mena-Lorca and
Hethcote [18] considered five SIRS epidemiological models for popula-
tions of varying size. Thieme [24] considered an SIRS epidemiological
model with population size dependent upon contact rate and exponen-
tial demographics. In [25], an SIR epidemic model with a constant
removal rate of infective individuals is proposed to understand the af-
fect of limited resources for treatment of the infective on disease spread.
However, many diseases (e.g., tuberculosis, measles, AIDS, SARS, etc.)
have an incubation period. The disease will incubate inside the host
for a period of time before the host becomes infectious. A susceptible
individual first goes through a latent period (often called the exposed
or in class E) after infection before becoming infectious. The models
obtained by the compartmental approach are said to be SEI, SEIS,
SEIR and SEIRS, respectively. Earlier global stability results on SEI
and SEIR epidemic models without delays are considered in much lit-
erature [15-17, 26]. For instance, Li [15] considered an SEI epidemic
model with general contact rate that has an infectious force in both the
latent and infected periods. The global dynamics of this model have
been completely obtained. Recently, the asymptotic behavior of solu-
tions for an autonomous delayed SEIRS epidemic model with saturation
incidence was studied [26]. If the basic reproduction number is greater
than one, then the disease is permanent. The sufficient conditions for
global stability of endemic equilibrium are obtained.

Recently, pulse vaccination epidemic models have been the subject of
intense theoretical analysis [7, 8, 9, 19, 20, 21, 23]. In [9], Gao et
al. investigated the following SEIR epidemic model with time delays.

(
() = BS(OI(t) — Be ™ S(t — w)I(t —w) — pE(t), | ¢ 4 kr,
I'(t) = Be " S(t — w)I(t —w) — (u+1)I(2), keN
(
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where N = {0,1,2,...}. All parameters in the above model are
nonnegative and the detailed meanings can be found in [9]. In [19],
the following SEIRS epidemic model with two profitless delays and
nonlinear incidence is proposed.

S(t)=A- % —uS(t) — (1 — )l (t)

+rI(t—w)e ™,
BS(t)I(t) Be MTS(t—T)I(t— 1)

B = 1+ aS(t) 1+aS(t—r7) t# kT,
keN
—pBE(t)+ (1 —p)pl(t),
rip = 2Dy ),

1+aS(t—1)
R'(t)=rI(t) —rI(t—w)e " — uR(t),

(")
E(tT) = E(t), R
I(t*) = I(t),
R(t") = R(t) +65(¢),

where all the parameters A, 8, u, «, v, w, 7, d are nonnegative and
p € (0,1). For detailed meanings we refer the reader to [19]. For these
models in [8, 9, 19], there is a common feature: the letter E does
not appear in other equations; hence, authors only need to consider
the subsystems which do not contain the equation about the exposed
E. Tt is well known that the aim of vaccination only guarantees that
individuals who are successfully vaccinated cannot be infected before
the bacterin expires. In general, there are different vaccines shown to
be reliable for a disease. Each type of vaccine may not show 100 percent
efficacy. If the impulsive vaccination is applied every 7 > 0 years and
6 € (0,1] denotes the proportion of those vaccinated successfully, we
can construct the following SEIRS epidemic model with time delays



1844 TAILEI ZHANG AND ZHIDONG TENG

and bilinear incidence:

S'(t) = A—bS(t) — BS(t)I(t) + ne " R(t — 7),
E'(t) = BS)I(t) — (b+e)E(t), t # kr,
I'(t)=cE(t) — (b+a+7y)I(t), keN
R'(t) = vI(t) — bR(t) — ne " R(t — 7),
(1.1)
S(t") =(1-0)8(1),
E(t") = B(t), L= kr
I(t") = I(t),
R(tT) = R(t) + 05(¢).

where N(¢t) = S(¢t) + E(t) + I(¢) + R(t) denotes the total population
at time t; the letters S, E, I and R stand, respectively, for susceptible,
exposed, infectious and recovered; A is the constant recruitment rate
into the population, b is the natural death rate of the population,
is the average number of adequate contacts of an infectious individual
per unit time, ¢ is the rate constant at which the exposed individu-
als become infective, so that 1/¢ is the mean latent period. Infectious
hosts suffer an extra disease-related death with constant rate «, 7 is the
recovery rate of infectious individuals, 7 is the rate of losing immunity,
n > 0 implies that the recovered individuals would lose the immunity,
n = 0 implies that the recovered individuals has permanent immunity
and 7 in the term ‘ne~*" R(t — 7)’ denotes the immune period of recov-
ered individuals. We see that the immune period was coincident with
the interval between two pulses. Here, we give some epidemiological
implications: For some successfully vaccinated susceptible individuals,
these individuals will gradually lose their immunity after the bacterin
is expired, i.e., the period 7. Therefore, 7 is also explained as the best
times of losing immunity. At time ¢, the proportion of the suscepti-
ble from the recovered individuals should be taken ne=*"R(t — 7). All
coefficients are positive constants.

The total population size N(¢) can be determined by the differential
equation

(1.2) N'(t) = A — bN(t) — al(t),
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which is derived by adding the equations in system (1.1). Thus, the
total population size may vary in time. From (1.2), we have

A—(b+a)N(t) < N'(t) < A — bN(2).

It follows that

kS

< liminf N(t) < limsup N(t) <

b+a = itooo t— o0

The initial condition of (1.1) is given as

$a(u),  I(u) = d3(u),

hy  Sw=a. Hw=

R(u) = ¢a(u),
where ¢ = (¢1, ¢2, ¢3,04)T € Cy for all —7 < # < 0, and C denotes

the Banach space C([—7,0],R4) of continuous functions mapping the
interval [—7,0] into R where

IN

u

R = {(21, 29, 23,24) €R*: 2; > 0, i = 1,2,3,4}
and designates the norm of an element ¢ in C' by

ol = sup {lga(w)];[d2(u)],|¢s(w)l, |da(u)]}.

—7<u<0

By biological meaning, we further assume that ¢;(0) > 0 for i =
1,2,3,4. The domain of system (1.1) is

A
Q= {(57127]7}0 € I{i :0<S+FE+I1+R< i;}’

and it is easy to prove that {2 is a positive invariant set. The solution of
system (1.1) is a piecewise continuous function ® : R4 — R?%, ®(¢) is
continuous on (k7, (k+1)7], k € N and ®(k7T) = lim;_, .+ ®(¢) exists.
In fact, the righthand side of system (1.1) can ensure the existence and
uniqueness of solutions of system (1.1).

The organization of this paper is as follows: In the next section, we
will state some lemmas which will be essential to our proofs. Using
Krasnoselskii’s fixed-point theorem, we establish sufficient conditions
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for the existence of infection-free periodic solution. The sufficient
conditions for the global attractivity of infection-free periodic solutions
is obtained in Section 3. In Section 4, we will discuss the permanence
of the disease of model (1.1).

2. Preliminary. The following Krasnoselskii’s fixed-point theorem
may be a proper vehicle for the proof. It can be found in [4, 5, 22].

Lemma 2.1. Let B be a closed, conver and nonempty subset of a
Banach space (X, || -|). Mappings T; : B — X, i = 1,2, satisfy:

(1) Thz + Toy € B for each z,y € B,
(2) T is continuous and compact,
(3) T is a contraction.

Then Ty + T has at least one fized point on B.

We will use a basic result from Theorem 3.2.1 in [14] to obtain the
following lemma.

Lemma 2.2. Consider the following equation
Z'(t) = ax(t — w) — bx(t),

where b, w > 0; z(t) > 0 for t € [~w,0]. We have
(1) if |a] < b, then lim;—, 1o z(t) =0,
(2) if a > b, then lim;_, ;o z(t) = +00.

Lemma 2.3. Consider the following impulsive differential equation

2.1) {u'(t) = a — bu(t) t#kr,keN

w(tt) = (1—-0)u(t) t=kr

where a >0, b >0 and 0 < 8 < 1. Then there exists a unique periodic
solution of system (2.1) which is globally asymptotically stable.
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Lemma 2.4. Consider the following impulsive delayed differential
equation

W(t)=a—-bu(t)—cu(t—7) t#kr,keN
(22) { w(tt) = (1 - O)u(t) t= kr,

where a > 0, b > c >0 and 0 < § < 1. Then system (2.2) exists as
a unique nonnegative periodic solution which is globally asymptotically
stable.

Proof. Let X = C[—7,0] be a Banach space of continuous functions
mapping the interval [—7,0] into R with the topology of uniform
convergence. For convenience, we designate the norm of an element

¢ in X by [¢]] = sup_,<;<o[6(1)]-
Suppose that system (2.2) has the following initial condition
(2.3 ult) = 4(t), e X,

On the interval 0 < t < 7, the function u is given by

(2.4) u(t) = e ((1 — 9)6(0) + /Ot[a ~ehls — )¢ ds).

If a ¢ € X exists such that

¢

(2.5) e*bt((179)¢(o)+/ fa-co(s—T)le*ds) = o(t-7), te[0,7],
0

then system (2.2) has a periodic solution as follows

(2.6) ult) =t —(k+1)7), kr<t<(k+1)r, keN.

In fact, we can prove this statement by using induction. We know this
relation is true for £ = 0. Assume that it is true for some k£ > 0, i.e.,

(2.7) u(t) =t —(k+1)7), kr<t<(k+1)r.

Let’s derive the solution of (2.2) on ((k + 1)7,(k + 2)7] from this

assumption. From system (2.2) and assumption (2.7), we know that

(2.8)

{u'(t)—a—bu(t)—c¢(t—(k+2)7') (k+1)r<t<(k+2)r
wtt)=(1-0)u((k+1)7)=(1-60)p(0) t=(k+1)r.
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By the variation of constants formula, we obtain

u(t) _ e—bt ((1 _ 9)¢(0)e(k+1)7 n /t

[a — co(s — (k + 2)7)]e™ ds)
(k+1)7

t—(k+1)T
— b=+ (1 — 0)6(0 - —7)]et* d
‘ (G=000)+ [ o= cofs = r)e as)

for (k+1)7 <t < (k+2)7. Since 0 <t — (k+ 1)7 < 7, by (2.5) we
have
ut) = ¢t — (k+2)7), (k+1)7 <t < (k+2)7.

This means exactly that (2.6) holds for k£ + 1. The statement about
(2.6) is true. Therefore, we only show that integral equation (2.5) has
a solution for obtaining a periodic solution of system (2.2).

Take transform t = £ —7 and ¢ still denoted by ¢. Then (2.5) becomes
(2.9)

e b(t+7) ((1 —6)$(0) +/

0

t+71

[a—cp(s — )" ds) = 6(t), te[-70]

Obviously, integral equation (2.9) is equivalent to (2.5).

Set B={pe€ X :0< ¢ <a/b} and mappings T; : B — X where, for
any ¢ € B,

(Tyo)(t) = e™*F7) (1 - 6)(0),
t+1
(T29)(t) = e~*(+7) /0 [a — cp(s — 7)]e" ds.

The existence of the solution of integral equation (2.9) is equivalent
whether or not the mapping T + T» has a fixed point. In the following,
we will prove that mapping 7} + 75 has a fixed point on B by using
Lemma 2.1. Tt is easy to validate that B is a closed convex subset of X
and T} is continuous and compact by the Ascoli-Areza theorem. Take
arbitrarily ¢; and ¢2 € B. Since b > ¢, then 0 < ¢5(t) < a/b < a/c.
Thus,

(Ti61 + Tago)(t) = &) (1= 6)614(0)

(2.10) o
a — cho(s — 7)]e’*ds) >

+ [l coals - i as) > 0
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On the other hand, one has
(2.11)

t+T
(Tidn +Tada)(t) = ™4 (L= 0)61(0) + [ [a=coals = r)Je" ds)

a t+1
< efb(tJrT) (_ +/ aebs dS)
b Jo

Equations (2.10) and (2.11) imply T1¢1 + Ta¢2 € B. To see that T is
a contraction, if ¢; and ¢o € B, then

|T2p1 — Tods|
t+7
= sup ‘ce—b(t+r) / [ha(s — ) — ¢1(s — T)]ebs ds‘
—7<t<0 0
t+7
<llgs = dall sup om0+ / ceb* ds
—7<t<0 0

Cc

b(1 —e ") ||py — ¢2l|.

Therefore, the set B and mappings 77 and 73 satisfy all conditions of
Lemma 2.1. Then T} + T> has at least one fixed point on B.

Finally, we will prove that for any two solutions u;(t) and uz(t) with
initial values ¢; and ¢9 € X, respectively, we have

(212) Tm (s (¢) - us(8)) = 0.
Let z(t) = |u1(t) — uz(t)|. Then x(t) satisfies

Dtz(t) < —bz(t) +cx(t—7) kr<t<(k+1)r,keN

(2.13) { z(tT) = (1 — 0)z(t) t=kr.

Consider the following auxiliary delayed differential system

(2.14) y'(t) = —by(t) + cy(t — 7).

Assume y(t) is the solution of system (2.14) with initial function
|¢1 — ¢2]. Then we claim that

(2.15) 0<z(t)<y(t), kr<t<(k+1)r, keN.
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We use mathematical induction on the number k to prove statement
(2.15). For k =0, i.e., as 0 < t < 7, we obtain by (2.13) and (2.14)

2(8) < (1 — )z(0)e + =M /0 ce |61 (s — 7) — da(s — 7| ds
1) = a0 + e [ celi1(s =) = das = 1)l ds,

which implies that 0 < z(t) < y(t) as0< t < 7

Assume that the assertion has been proven for some k& = n, i.e.,
0 <z(t) <y(t) for nt <t < (n+1)7. When (n+ 1)7 <t < (n+2)1,
(2.13) and (2.14) imply that

t
z(t) < (1 —0)z((n+ 1)r)e blt=(n+D7) 4 e_bt/ ce®x(s — 1) ds,
(n+1)7
¢

y(t) =y((n + l)T)e_b(t_("“)T) + e_bt/ cebsy(s —T)ds.
(n+1)7

By inductive assumption, 0 < z(t) < y(¢) for (n+ 1) <t < (n 4+ 2)7.
By Lemma 2.2, the zero solution of system (2.14) is globally uniformly
asymptotically stable as b > ¢. That is, lim;_, o, y(t) = 0 which implies
lim;_, o z(t) = 0. Thus, (2.12) is valid.

Generally speaking, system (2.2) exists as a unique periodic solution
which is globally asymptotically stable, and the lemma is proved.

Remark 2.1. Since the unique nonnegative periodic solution with
period 7 obtained by Lemma 2.3 depends on a, b, ¢ and 0, we denote
this solution by ®(¢,a,b, c,0). We write simply ®(¢).

Remark 2.2. From Lemma 2.3, we know that 0 < ® < a/b. In fact,
we can get ®(t) > 0. Since b > ¢, then ® < a/c. From (2.9), we have

t+7
B(t) > e b+ / [a — c®(s — 7)]e’ ds > 0.
0

Therefore, ®(t) is a strictly positive, bounded periodic solution.
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3. Global attractivity of IFPS. We firstly demonstrate the
existence of an infection-free periodic solution (IFPS for short), in
which infectious individuals are entirely absent from the population
permanently, i.e., I(t) = 0 for all ¢ > 0. Under this condition, the
growth of susceptible, recovered individuals and total population must
satisfy the following impulsive system

S'(t)=A —bS(t) +ne ""R(t — 7),
E'(t) = —(b+ £)E (1), o
R'(t) = —bR(t) —ne " R(t — 1),

(3:1) S(E) = (1— 0)S(1),

E(t") = E(t),
R(t%) = R(t) + 0S(t)

t=kr,

From the second and the fifth equations of (3.1), we easily obtain
lim¢,o E(t) = 0. Further, if I(t) = 0, it follows from (1.2) that
lim¢_, oo N(t) = A/b. So, S(t) + R(t) — (A/b) as t — oo. Therefore,
we have the following limit system of (3.1)
(3.2)

—br

S'(t) = A (1 + ”eb > —bS(t) —ne="S(t — 1), kr <t < (k+ 1),

ken
S(tt) = (1-0)S(t) t=kr.

According to Lemma 2.4, we know that if b > ne~%", then system (3.2)
has a unique positive periodic solution with period 7 which is globally
asymptotically stable. We denote this periodic solution by Se(t).

Regarding the global attractivity of IFPS (S.(t),0,0, (A/b) — Se(t)),
we have the following result.

Theorem 3.1. Ifb > ne=b7 and R1 < 1, then the infection-free
periodic solution (S.(t),0,0,(A/b) — Sc(t)) of system (1.1) is globally

attractive on ), where

-2 (R s ety
P EGTba (- (-0
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Proof. Since R1 < 1, we can choose ry, ro > 0 and sufficiently small
€o > 0 such that

BE <7“_2<b+s
bt+ta+y m €

)

(3.3)

where £ = (A(b+ne ") (1 — e ) /b2 (1 — (1 — 0)e™*)) + eo.

It follows from the first equation of system (1.1) that S’(¢t) < A +
ne °7(A/b) — bS(t). Thus, we consider the following comparison
impulsive differential system:

(3.4) { a'(t) = A+ne " (A/b) —bx(t) t#kr,keN

z(tT) = (1 — 0)z(¢) t=kr.

By Lemma 2.3, we see that the periodic solution of system (3.4) is
Fo(t) =T+ (z* =T)e =*) kr <t < (k4 D,

which is globally asymptotically stable, where

—br _ _ bt
poAGEnet) L a—6) et
b2 1 (1_6)eor

Let (S(t), E(t),I(t),R(t)) be a solution of system (1.1) with initial
value (1.3) and S(0%) = Sp > 0 and let x(¢) be the solution of system
(3.4) with initial value z(07) = Sp. By the comparison theorem of
impulsive differential equations, an integer k; > 0 exists such that

(3.5) S(t) <z(t) < Te(t) + €0, kr<t<(k+1)7, k>ki.
Thus,

Ab+ne bT)(1 —e?7)
b2(1 — (1 —@)ebm)
kr<t<(k+ 17, k>k.

S(t) < Ze(t) + €0 < +e =¢,

(3.6)

Let us consider the following continuous function

(3.7) V(t) = rB(t) + raI(t).
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We see that, for ¢ > k17, the time derivative of V' (¢) along the solutions
of system (1.1) satisfies
(3.8)

VI(8) = niBS@I(t) = ri(b+ ) E(t) +raeB(t) — r2(b+ a +7)I(1)
[rae = r1(b+ €)|E(t) + [r1E — r2(b+ o+ 7)I(2)

<
< —pV(t)

where

)

p_min{rl(b—i—s) —ree rTo(b+a+7) —7"1,85} S o.
1 T2

Equation (3.8) implies V(t) — 0 as ¢ — oo. By the nonnegativity of
E(t) and I(t), we have

(3.9) lim E(t) =0,  lim I(£) =0.

t— o0 t—o00

Therefore, for any sufficiently small €; € (0, 1), there exists an integer
ko > k; satisfying E(t) < €; and I(t) < €; for all ¢t > kor.

From system (1.2), we have
(3.10) N'(t) > A—bN(t) — aer, t > kot
Consider the following comparison system
2'(t) = (A—ae) — bz(t), t> kot

It is easy to obtain lim; o, 2(t) = (A — ae1)/b. By the comparison
theorem, there is an integer k3 > ko such that

(3.11) N > A _bo‘“

—€

for all t > k37 because €; can be arbitrarily small and lim sup,_, ., N(t) <
(A/b). Hence,

(3.12) lim N(t) = %

t—o0

From (3.12), an integer k4 > k3 exists such that
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(3.13) N(t) > ——e

for all ¢t > kyt.
Let W (t) = |S(t) — Se(t)|. Therefore, between two pulses

ne~ b7 (N(t —7)— %)

+BS(O)I(t) +ne™" (Bt —7) + I(t — 7))
— bW (t) +ne "W (t —7)
< Key —bW(t) +ne " W(t — 1)

DTW(t) <

for t > (kg + 1)7, where K = [B(A/b) + 3ne *". When t = k7,
W(tt) = (1—0)W(t).

Consider the following delayed differential equations for ¢ > k47 + 7,
(3.14) w'(t) = Kep — bw(t) + ne Tw(t — 7).

By Lemma 2.2, for any fixed solution w(t) of (3.14), one has lim;_, o w(t)
= (Ke/b—ne ). Furthermore, it is similar to (2.15) that 0 <
W(t) < w(t) for all ¢ > k47 + 7. Here w(t) is the solution of (3.14)
with initial condition w(t) = |S(t) — Se(t)| for t € ((ks+1)7, (kg +2)7].
Thus, there exists an integer ks > k4 such that

K61

3.15 0<WwWit) < ———
(3.15) SWE) <t

for all ¢ > ks7. Because €¢; can be arbitrarily small, it follows from
(3.15) that

(3.16) lim S(t) = S.(t).

t—o0

Finally, it follows from (3.9), (3.12) and (3.16) that the infection-free
periodic solution (S(t),0,0,(A/b) — Sc(t)) of system (1.1) is globally
attractive. The proof of Theorem 3.1 is completed. ]

According to Theorem 3.1, we can easily obtain the following result.
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Corollary 3.1. Assume b > ne~". The infection-free periodic

solution (Se(t),0,0,(A/b) — Se(t)) of system (1.1) is globally attractive
provided that 0 > 0*, where
B b2(b+e)(b+ a+7v)et™ — BeA(b+ne ") (e’ — 1)

" =1
b2(b+e)(b+a+7)

Remark 3.1. Theorem 3.1 determines the global attractivity of the
IFPS of system (1.1) on Q for case Ry < 1. Its epidemiological
implication is that the infectious population vanishes, i.e., the disease
dies out. Corollary 3.1 implies that the disease will disappear if the
pulse vaccination rate is larger than 6*.

4. Permanence of disease. In this section, we say the disease
becomes endemic if the infectious population persists above certain
positive level for a long period.

Definition 4.1. In system (1.1), the disease is said to be permanent
if there is a positive constant ¢ such that lim inf;_, |, I(¢) > ¢ holds for
any positive solution (S(t), E(¢), I(t), R(t)) of system (1.1) with initial
condition (1.3).

Denote two quantities

BeA(1 —0)(1 —e?7)

(4.1) R = )b+ at )= =) )
and
(4.2) r=2®, 1)

B

Theorem 4.1. If Ry > 1, then there exists a positive constant q
such that every positive solution (S(t), E(t), I(t), R(t)) of system (1.1)
satisfies I(t) > q for t large enough.

Proof. Since R2 > 1, we easily see that I* > 0. Then there exists a
sufficiently small € > 0 such that

Bed
Gro)braty)

(4.3)
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where .

AL - 9)(1 — e A7)

T b+ BI)(1— (1—6)e GHBIT) ~ ©
By (4.3), there exist 7; and r2 > 0 such that

)
I} >r_2>b+a
b+a+vy n €

(4.4)

We claim that it is impossible that I(t) < I'* for all ¢ > (o is any
nonnegative number). Suppose the contrary. Then, as t > ¢
S'(t) = A —bS(t) — BS(t)I(t) + ne " R(t — 7)
>A—(b+pI")S(t).

Consider the following comparison system

V() =A—(b+BI*)v(t) t#kr,keN
(45) { o(t+) = (1 — 0)o(?) L= kr.

By Lemma 2.3, we obtain

4 *
“pipr T (” T b+ Bl

is the unique globally asymptotically stable periodic solution of system
(4.5). Here

De(t) >e(b+m*)(t’”), kr <t <(k+1)r

A1 = 0)(1 — e~ OHBIT)T)
(b+ BI*)(1 — (1 — 0)e (+BI")T)’
Thus, there exists a 71 > 0 satisfying

*

(4.6) S(t) > Ve(t) —e>v" —e=94
for all t > tg + T7.
Let us define
V(t) =riE(t) + r2L(t).

Then, along the solutions of (1.1), we have
(4.7)
V'(t) =rBSE)I(t) —ri(b+¢e)E(t) + r2eE(t) — ro(b+ a +v)I(t)
2 [rag = r1(b+ )| E(t) + [r180 — ra(b + a + 7)|1(¢)
> pV()
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for all t > ty + T, where

ri(b+¢e)—ree B0 —ro(b+a+7)

(4.8)  p=min { : } > 0.

T1 2

This implies V(¢) — 400 as ¢ — +oco. This is contrary to V(¢)
< (rq + r2)(A/b) for large enough t. Hence, the claim is proved. mi

From the claim, we will discuss the following two possibilities.
(i) I(t) > I* for all large t;

(ii) I(¢) oscillates about I* for all large .

Since p > 0, we can choose a large enough 75 > 0 satisfying
rol*epTe=(tat )T 5 () 4 1y)(A/b). Finally, we will show that
I(t) > I*e~(tatN(itT) & ¢ a5 ¢ is sufficiently large. Evidently,
we only need consider case (ii). Let ¢; and to be sufficiently large times

satisfying
I(t;) = I(t2) = I",
I(t) <I*aste (tl,tg).

In the following, we will show that to—t; < T7+175. In fact, assume that
to —t; > Ty + T5. Thus, proceeding exactly as the proof for the above
claim, we see that S(t) > 6 for all ¢ € [t; + T4,ta]. Further, I'(¢) >
—(b4+a+7)I(t) and I(t;) = I* imply I(t, +Ty) > I*e~ CtetNT1 By
(4.7), we know that V'(t) > pV(¢) for all ¢ € [t; + T1,t2]. Integrating
from t; + T} to ts, we obtain

V(ty) > V(ty 4+ T)ePt2==T) > o [(t) 4 T)er™2
> ppl*ePTe—(brat T 5 (o) 4 7“2)%.
This is a contradiction with V(t) < (r1 + r2)(A/b). So, I'(?)

>
—(b+a+)I(t), I(t1) =I* and t2 — t1 < Ty + Ty can derive I(t) > ¢
for all ¢ € [t1,t2]. The proof of Theorem 4.1 is completed. o

Denote

b(b+e)(b+ a+7)e’”
b(b+e)(b+a+)+ BeA(eb™ — 1)

f.=1-—
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FIGURE 1. Movement paths of S and I as functions of time ¢. Here, the initial
functions are ¢1(u) = 0.5 4+ 0.5sin(27u), ¢2(u) = 1 + cos(2wu), ¢p3(u) = 2 and
¢a(u) = 0.3 + 0.3sin(27u) for u € [—4,0]. The infection-free periodic solution is
GA.

and

oL [BeA0 =) —b(bte)(b+at)

b [(1—60)(BeA—bb+e)(b+a+7)]

Corollary 4.1. Assume that 0 < 6, or 7 > 7. Then the disease is
permanent.

Remark 4.1. If we set A =0.8,b=10.2, 8 =0.5,¢c =0.1, a = 0.2,
v=0.3,7=0.2,0 =0.6 and 7 = 4, then R; = 0.9266 < 1. According
to Theorem 3.1, we know that the disease will disappear (see Figure 1).
Ifweset A=1,b6=02,8=06,e =01, a=02~v=0.1,n=0.1,
0 = 0.2 and 7 = 4, then Ry = 1.1004. According to Theorem 4.1,
the disease will be permanent (see Figure 2). Computer observation
validates our theoretical result.

Let L = min{,T,O]{ge(t)}, where ge(t) is as in Theorem 3.1. By
Remark 2.2, we have L > 0.

Theorem 4.2. Ifb > ne~" and R3 > 1, then there exists a positive
constant q such that every positive solution (S(t), E(t),I(t),R(t)) of
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FIGURE 2. Movement paths of S, E, I and R as functions of time t. Here, the
initial functions are ¢1(u) = 0.5 + 0.5sin(27u), ¢2(u) = 1 + cos(27u), ¢3(u) = 2
and ¢4(u) = 0.3 + 0.3sin(2mu) for u € [—4,0]. The disease is permanent.

system (1.1) satisfies I(t) > q for t large enough. Here,

BeL
(b+e)b+a+y)

(4.9) Ry =

Proof. Since R3 > 1, then there exists a small enough ¢ > 0 such
that
Be

b+e)b+a+9)

where Ko =1+ (B(A/b) +ne~"" (3 + (a/b) + (BA/b?))/b — ne~"7).

We claim that it is impossible that I(t) < € for all ¢ > ¢y (o is any
nonnegative number). Suppose the contrary. Then, as t > tg, the
second equations of (1.1) and (1.2) imply that

(L — K()G) > 1,

A
E'(t) < ,6’36 —bE(t), N'(t) > A — bN(t) — ae.
From the above differential inequalities, there exists a Ty > 0 such that

E(t) < Bb—fe—i-e, N(t) 2%— <1+3>e
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for all t > to + Tp. Set M(t) = |S(t) — Se(t)|. Similarly to (3.15), there
is a T} > Ty satisfying

(4.10) M(t) < Koe
for all t > ¢ty + T1. Equation (4.10) implies that
S(t) > Se(t) — Koe > L — Koe

as t > tg + Ti. The rest of the proof is completely analogical
to Theorem 4.1. We omit it, i.e., we can easily obtain I(t) >
ce~(bTatN(TitT2) & ¢ 5 0. Here, Ty can be chosen similarly to the
proof in Theorem 4.1.

Conclusion. We have studied the dynamical behavior of a delayed
SEIRS epidemic model with pulse vaccination and saturation incidence
rate. We introduced some thresholds R; and R2 (see Theorems 3.1
and 4.1), and we further obtained that if Ry < 1 then the disease
will be extinct. If Ro > 1, then the disease will be permanent which
means that after some period of time the disease will become endemic.
Corollaries 3.1 and 4.1 show that § > 6* implies the disease will fade
out, whereas 6 < 0, or 7 > 7, implies that the disease will be uniformly
persistent. Our results indicate that a large pulse vaccination rate will
lead to eradication of the disease. Unfortunately, we cannot give the
explicit formula of L. Only from the mathematical point of view, we
prove the permanence of the disease as R3 > 1. Furthermore, we
cannot establish the comparison of R3 and R1, Ro.

In this paper, we have discussed two cases: (1) R1 <1 (or § > 6*),
(2) R2 > 1 (or 8 < 6,). Obviously, Ro < Ri. When Ry < 1 <
R1, the dynamical behavior of model (1.1) was not clear. For the
pulse vaccination rate between 6, and 6*, the extinction and uniform
persistence of the disease has not been obtained. This work will be left
to our future consideration.

REFERENCES

1. F. Brauer, Epidemic models in populations of varying size, in Mathematical
approaches to problems in resource management and epidemiology, C.C. Carlos,
S.A. Levin and C. Shoemaker, eds., Lecture Notes Biomath. 81, Springer, Berlin,
1989.



A DELAYED IMPULSIVE SEIRS MODEL 1861

2. F. Brauer and P. Van den Driessche, Models for transmission of disease with
immigration of infectives, Math. Biosci.171 (2001), 143-154.

3. H. Bremermann and H. Thieme, A competitive exclusion principle for pathogen
virulence, J. Math. Biol. 27 (1989), 179-190.

4. T. Burton, A fized-point theorem of Krasnoselskii, Appl. Math. Lett. 11 (1998),
85-88.

5. T. Burton and T. Furumochi, Krasnoselskii’s fixed point theorem and stability,
Nonlinear Anal. 49 (2002), 445-454.

6. O. Diekmann and J.A.P. Heesterbeek, Mathematical epidemiology of infectious
diseases: Model building, analysis and interpretation, John Wiley & Sons, LTD,
Chichester, New York, 2000.

7. S. Gakkhar and K. Negi, Pulse vaccination SIRS epidemic model with non
monotonic incidence rate, Chaos, Solitons Fractals 35 (2008), 626—638.

8. S. Gao, L. Chen and Z. Teng, Impulsive vaccination of an SEIRS model with
time delay and varying total population size, Bull. Math. Biol. 69 (2007), 731-745.

9. , Pulse vaccination of an SEIR epidemic model with time delay,
Nonlinear Analysis: Real World Appl. 9 (2008), 599-607.

10. L. Gao and H. Hethcote, Disease transmission models with density-dependent
demographics, J. Math. Biol. 30 (1992), 717-731.

11. D. Greenhalgh, Some threshold and stability results for epidemic models with
a density dependent death rate, Theoret. Pop. Biol. 42 (1992), 130-151.

12. H. Hethcote and P. Van den Driessche, Some epidemiological models with
nonlinear incidence, J. Math. Biol. 29 (1991), 271-287.

13. M. Kermark and A. Mckendrick, Contributions to the mathematical theory
of epidemics, Part I, Proc. Royal Soc. 115 (1927), 700-721.

14. Y. Kuang, Delay differential equation with application in population dynam-
ics, Academic Press, New York, 1993.

15. G. Li and Z. Jin, Global stability of a SEIR epidemic model with infectious
force in latent, infected and immune period, Chaos, Solitons Fractals 25 (2005),
1177-1184.

16. , Global stability of an SEI epidemic model with general contact rate,
Chaos, Solitons Fractals 23 (2005), 997-1004.

17. Z. Ma, Y. Zhou, W. Wang and Z. Jin, Mathematical modelling and research
of epidemic dynamaical systems, Science Press, Beijing, 2004 (in Chinese).

18. J. Mena-Lorca and H. Hethcote, Dynamic models of infectious diseases as
regulators of population biology, J. Math. Biol. 30 (1992), 693-716.

19. X. Meng, L. Chen and H. Chen, Two profitless delays for the SEIRS epidemic
disease model with nonlinear incidence and pulse vaccination, Appl. Math. Comput.
186 (2007), 516-529.

20. G. Pang and L. Chen, A delayed SIRS epidemic model with pulse vaccination,
Chaos, Solitons Fractals 34 (2007), 1629-1635.

21. B. Shulgin, L. Stone and Z. Agur, Pulse vaccination strategy in the SIR
epidemic model, Bull. Math. Biol. 60 (1998), 1123-1148.



1862 TAILEI ZHANG AND ZHIDONG TENG

22. D. Smart, Fized point theorems, Cambridge University Press, Cambridge,
1980.

23. L. Stone, B. Shulgin and Z. Agur, Theoretical examination of the pulse
vaccination policy in the SIR epidemic model, J. Math. Comp. Modelling 31 (2000),
207-215.

24. H. Thieme, Epidemic and demographic interaction in the spread of potentially
fatal diseases in growing populations, Math. Biosci. 111 (1992), 99-130.

25. W. Wang and S. Ruan, Bifurcations in an epidemic model with constant
removal rate of the infectives, J. Math. Anal. Appl. 291 (2004), 774-793.

26. T. Zhang and Z. Teng, Global asymptotic stability of a delayed SEIRS
epidemic model with saturation incidence, Chaos, Solitons Fractals 37 (2008),
1456-1468.

COLLEGE OF MATHEMATICS AND SYSTEM SCIENCES, XINJIANG UNIVERSITY,
UruMQI, 830046, P.R. CHINA
Email address: t.l.zhang@126.com

COLLEGE OF MATHEMATICS AND SYSTEM SCIENCES, XINJIANG UNIVERSITY,
UruMQI, 830046, P.R. CHINA
Email address: zhidong@xju.edu.cn




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


