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INTEGER SOLUTIONS TO
THE EQUATION 32 = z(2? & p¥)

P.G. WALSH
1. Introduction. Let p be a prime number and £ > 1 an integer.

In a recent paper [8], Draziotis determines the integer solutions (z,y),
with y > 0, to the diophantine equations

(1.1) y? = z(z +p") (@ —p"),
(1.2) y? = z(z? — p*), (kodd)
and

(1.3) y? = z(z? + p").

Note that if (z,y) is a solution to any one of these equations, then
(p*z,p3y) is a solution to the same equation, but with k replaced by
k + 4. This remark motivates the notion of a primitive integer solution
to the above equations.

Definition. An integer solution (z,y) to a Diophantine equation of
the form y? = 3 & p*z is primitive if y > 0 and p? does not divide .
If p? divides x, then (x,y) is referred to as an imprimitive solution.

In order to determine all of the integer solutions to the equations
above, it is sufficient to determine the primitive and imprimitive inte-
ger solutions. In [8], there are a number of shortcomings in the state-
ments of the results that we endeavor to clarify and sharpen. In par-
ticular, no consideration to the concept of primitive solutions is given,
thereby resulting in an algorithm which has endless running time (as
k goes to infinity), and repeatedly finds imprimitive points of the form
(p*'z, p3ty) for some positive integer ¢. Furthermore, the description
of the integer solutions to (1.1)—(1.3) in [8] is given in terms of the
solutions (a,b) to the equation a* + b* = p¥, which seems to simply be
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essentially a restatement of the original problem, rather than an actual
determination of the integer solutions.

There are four goals of the present paper. The first goal is to
determine a bound for the number of primitive integer solutions to
(1.1)—(1.3) for a given prime p and exponent k > 0 (there are evidently
no such solutions for £ = 0). The second goal is to show that there is
an upper bound on k for the existence of primitive integer solutions.
Since a primitive integer solution to any one of (1.1)—(1.3) gives rise to a
p-integral point on the corresponding curve (1.1)—(1.3) with 0 < k& < 3,
there are only finitely many primitive integer solutions on the union
of all curves (1.1)—(1.3) for k£ ranging from 0 to infinity. Therefore,
for k£ sufficiently large, there cannot be a primitive integer solution
on any of (1.1)—(1.3). Such an upper bound of computable type can
be obtained using methods and results from transcendence theory (in
particular the work of Brindza [4]), but the shortcoming is that such a
bound depends on the prime p. Recent applications of modular curves
to Diophantine analysis shows that there is an upper bound for & which
is absolute, that is, independent of p. At the moment however, such an
absolute upper bound is not computable. The third goal is to describe
the source of primitive integer solutions when they do exist.It will be
evident from the proofs given here that, typically, all such solutions can
be obtained by a combination of computing the fundamental unit in
the ring of integers in Q(,/p), and by writing p* as a sum of squares.
Finally, the last goal is to describe the source of imprimitive solutions
and give evidence that all such solutions have y = 0.

We first make a passing remark in order to deal with the case p = 2
once and for all. As noted earlier, a primitive integer solution to one
of equations (1.1)—(1.3), with p = 2, gives rise to a 2-integral point on
a curve of the form (1.1)—(1.3), but with 0 < k£ < 3. Using any one of
several programs to do this (we use Magma), we found that equation
(1.1) has no primitive integer points, equation (1.2) has the primitive
integer points coming from (z,k) € {(-1,1),(2,1),(9,5),(338,1)},
and that equation (1.3) has the primitive integer point coming from
(x,k) = (2,2). For the remainder of the paper, we restrict our attention
to the case that p is an odd prime.
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Theorem 1. Let p denote an odd prime number.

(i) If k = 1, then equation (1.1) has at most two primitive integer
solutions.

(ii) If k > 1, then equation (1.1) has at most one primitive integer
solution.

(iii) There is a computable constant ¢c; = ¢1(p), depending only on
p, and an absolute constant c}, for which if k > min(c;(p),ct), then
equation (1.1) does not have any primitive integer solutions. Moreover,
(1.1) has no primitive integer solutions if k is divisible by 2,3,5,7, or
a prime q > 211.

(iv) If p = 3 (mod 4), then there is at most one primitive integer
solution when k = 1, and no primitive integer solutions when k > 1.
A primitive integer solution exists when k = 1 only if p*> = 2u® — 1 for
some integer u.

Remark. For p = 41 and k = 1, there are two solutions to (1.1), and
so the result is sharp.

Theorem 2. Let p denote an odd prime number.

(i) If k = 1, then equation (1.2) has at most four primitive integer
solutions.

(il) If k > 1 is odd, then equation (1.2) has at most three primitive
integer solutions.

(iii) There is a computable constant co = ca(p), depending only on
p, and an absolute constant ck, for which if k > min(caz(p),ch), then
equation (1.2) does not have any primitive integer solutions. Moreover,
(1.2) has no primitive integer solutions if k is divisible by 5,7, or a
prime q > 211.

(iv) If p = 3 (mod 4), then there is at most one primitive integer
solution when k = 1, and no primitive integer solutions when k > 1.
A primitive integer solution exists when k = 1 only if p = 2u® — 1 for
some integer u.

Remark. For p = 17 and k = 1, there are indeed four primitive integer
solutions to (1.2), namely z = —4,—1,9,17.
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There is currently work in progress’ by Bennett et al. [2] to com-
pletely solve X2 +Y* = Z™ for all n > 4, and in particular, show that
there are in fact no nontrivial solutions for those values of n. This
result would substantially improve part (iii) of both Theorems 1 and 2.

Theorem 3. Let p denote an odd prime number.

For p = 3, the only primitive integer solutions to (1.3) come from

(z,k) =(1,1),(3,1),(4,2),(121,5). Assume now that p > 3.

(i) If k = 1, then equation (1.3) has at most two primitive integer
solutions.

(ii) If k = 2, then equation (1.3) has at most two primitive integer
solutions.

(iii) For k > 2, there are no primitive integer solutions to equation
(1.3).

The above theorems provide fairly sharp estimates for the number of
primitive integer points. We are left with the problem of determining
the imprimitive integer points. Imprimitive integer points on any curve
of the form y? = x3 —p¥z with k > 3 are of the form (z,y) = (p?u, p*v)
for some integer point (u,v) on the curve y? = 2% — p¥~*z. Therefore,
we may restrict our attention to the case that 0 < k < 3. For this,
we remind the reader of the Ankeny-Artin-Chowla conjecture (AAC)
[1], which states that if p =1 (mod 4) is prime, and (X,Y) = (T,U)
is the fundamental solution to the Pell equation X2 — pY2 = 1, then
p does not divide U. Despite the restriction to primes p = 1 (mod 4)
in the original AAC conjecture, there is no known counterexample to
the conjecture if one allows p to range over the set of all odd primes.
Therefore, in reference to the AAC conjecture, we will allow p to be
any odd prime.

Theorem 4. If the Ankeny-Artin-Chowla conjecture is true, then all
imprimitive integer solutions to an equation of the form y? = x> — p*z,
with 0 < k < 3, have y = 0.

From a computational perspective, in order to determine the imprim-
itive integer points with 0 < k£ < 3, it will be apparent from the proof
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of this theorem that one only needs to compute the fundamental unit
in the quadratic field Q(,/p). In so doing, one simply verifies the AAC
conjecture, in which case no imprimitive solutions occur for 0 < k£ < 3.
On the other hand, if an imprimitive solution were to exist, it can be
written explicitly in terms of this fundamental unit.

2. The equation z2 + y* = 27. It is well known, see for example

[5, Lemma 3.2.3], that for 1 < n < 3, the equation z? + y* = 2" has
infinitely many solutions in coprime integers x, y, z. On the other hand,
for n = 4 there are no coprime solutions, as proved by Fermat, and
similarly for n = 5 and n = 6, which was proved by Bruin in his thesis
[5]. Recently, Ellenberg [9] has proved that for all primes p > 211, the
equation 2 + y* = 2P has no solutions in coprime integers, and so, to
completely solve 2% + y* = 2™, it remains to deal with n = 9, and n
prime between 7 and 211. This is work which is currently underway in
[2]. Such a result would entail a considerable sharpening of Theorems
1 and 2, and in fact, it would likely imply that the constants c(p)
and ¢} in the statement of Theorems 1 and 2 would be replaced by 3.
However, we do have the following now, which enables us to include 7
in part (iii) of Theorems 1 and 2. We are grateful to Andrew Bremner
for suggesting the argument given below.

Proposition 1. Ifz,y, z are coprime integers satisfying 2> +y* = 27,

then xy = 0.

Proof. The equation z? + y* = 27 with z, y, 2z coprime integers leads
by unique factorization in Z[i] to an equation of type z+iy? = n(a+bi)7
for coprime integers a, b, and unit n = +1,+i of Z[i]. Comparing
imaginary coefficients,

y? = £b(7a® — 35a*6* + 21ab* — b°),
or

y? = +a(a® — 21a*b? + 35a%b* — 7b°).

By symmetry in a, b, it is only necessary to find all solutions to the
first of these two equations. Now the greatest common divisor of b and
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7a® — 35a*b? + 21a2b* — b divides 7, so necessarily
7a® — 35a%b? + 21a%b* — b8 = du?, b= dv?,

where d = £1,£7. Now (X,Y) = (7da?/b?,7d*u/b?) is a rational point
on the elliptic curve

X3 —35dX?% + 147d* X — 494> = Y?,

and, for d = £7, the rational rank of this curve is 0, and the rational
torsion group is trivial. No solutions for a, b arise. Furthermore,
(X,Y) = (—db*/a?,d*u/a?) is a rational point on the elliptic curve

X3 4+21dX? +35d°X + 7d® =Y?,

which for d = —1 has rational rank 0 and trivial rational torsion. Again,
no solutions for a, b arise. It remains to consider the case d = 1, namely,
finding all rational points on

7a® — 35a*b? + 21a%b* — b8 = 2.

However, this equation is 2-adically insolvable. Congruences modulo 4
show that a and b must both be odd, forcing v = 0 (mod 4). Put
b=a+ 2c, u=4v, to give

a® — 2a%c — 38a*c? — 64a3c® — 12a°c* + 24ac® + 8¢5 = 202,

contradicting a being odd.

3. Proof of Theorem 1. We will first consider the case that = > 0.
Let dy,ds,ds denote square-free positive integers, and u, v, w positive
integers for which

z = diu?, z + pF = dyv?, z — p* = dsw?.

Let ¢ denote a prime factor of d;. Equation (1.1) implies that ¢ divides
dsds, and so it divides one of dy or ds. Since g divides x, and also one
of x & p*, the only possibility is that ¢ = p. Since d; is square-free, it
follows that either d; = 1 or d; = p, and so either z = u2 or z = pu?.
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Case 1.1. z = u?. Since the d; are square-free, d;dds is a square,
and d; = 1 by assumption, it follows that dg = d>. We conclude that

(3.1) uw? + p* = dyv?,u? — pF = dyu?,
and so subtracting these two equations shows that
(3.2) 20" = da(v? — w?).

Therefore, do is one of 1,2,p,2p, each of which will be dealt with
separately.

Case 1.1a. dy = 2p. Equation (3.2), with dy = 2p, shows that
pP~1 = v? — w?, from which it follows that & > 1. Since z arises
from a primitive solution to (1.1), we have that p? does not divide z,
and it follows that ged(v,w) = 1 Consequently, v = (p*~! + 1)/2 and
w = (p¥~! —1)/2. Equation (3.1) gives the relation 2u? = 2p(v? + w?),
and so letting u; = u/p, which is an integer, we get that pu? = v2+w? =
(p?*=2 4+ 1)/2, which is not possible.

Case 1.1b. dy = p. In this case we have 2pF 1 = v2 — w?, which is

not possible modulo 4.

Case l.lc. dy = 1. Equation (3.1) becomes u? + p*¥ = v? and
u? — p* = w?, and so p* = v? — u? = u? — w? shows that p can be
written in two distinct ways as a difference of coprime squares, which
is not possible, as p¥ = X2 — Y2 with X,Y positive coprime integers
implies that X = (p*¥ +1)/2 and Y = (p* — 1)/2 for any odd prime p
and k£ > 1.

Case 1.1d. dy = 2. We obtain u?+p* = 2v? and u?—p* = 2w?, from
which it follows that 2p* = 2v% — 2w? = 2(v? — w?), and by the remark
in the preceding case, v = (p* +1)/2 and w = (p¥ — 1)/2. Substituting
v = (p*+1)/2 in u?+p* = 2v? gives the equation u? = (p?* +1)/2. The
results in [3] imply that the equation X™ +Y™ = 272 has no nontrivial
solutions for n > 2 and even. Therefore, the relation p** 4+ 1 = 2u?
implies that £ = 1, and so a primitive integer point arises only in the
case k = 1, provided that p? is of the form 2u® — 1.
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Case 1.2. z = pu®. As before, let = + p* = dov? and = — p* = dw?
with ds and d3 positive square-free integers. Since pdsds is a square,
it follows that dads = pz? for some integer z. In particular, this forces
either d3 = pds or do = pds, and without loss of generality, we will
assume the former case, as the latter case is proved in exactly the same
way.

Therefore, analogous to equation (3.1), we have
pu? +p* = dpv®,  pu® —p" = pdaw?,
from which it follows that p?(u* — p**~2) = p(davw)?. This shows that
(devw)/p is an integer, and that u* — p?*=2 = p((davw)/p)?. If k > 1,
then p divides u, and hence p? divides z, contradicting primitivity.

Therefore, k = 1, and we obtain the equation u* — 1 = p((dzvw)/p)?.
By a result of Samuel [17], p =5 and u = 3, or p = 29 and u = 99.

Case 1.3. z = —u?. In this case we obtain that
(3.3) —u? 4 p* = dyo?, —u? — pF = —dyw?,

with ds a square-free positive integer, and v, w positive integers which
are coprime if £ > 3. Furthermore, as in Case 1.1, d5 is one of 1,2, p, 2p.

Case 1.3a. dy = ¢p, ¢ =1 or 2. Equation (3.3) becomes
(3.4) —u? 4+ pF = epv?, —u® — pF = —cpw?.

Adding these two equations gives —2u? = cp(v? — w?), which shows p?
divides z, contradicting primitivity.

Case 1.3b. dy = 1. Equation (3.3) becomes
(3.5) —u? 4+ p* =2, —u? —pF = —w?
Therefore, 2p* = v2 + w? and —2u? = v — w?. Note that v and w

are necessarily odd, and they are also coprime because of primitivity.
The equation —2u? = v? — w? implies that there are coprime integers
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m,n, m odd, for which w + v = 2m? and w T v = 4n?%. From this, it
follows that w = m?+2n? and v = +(—m? + 2n?), and by substituting
these expressions into 2p* = v? 4+ w? gives p¥ = m* + 4n*. Since
m* + 4n* = (m? — 2mn + 2n?)(m? 4+ 2mn + 2n?), and the two factors
are coprime, it follows that 1 = m? — 2mn + 2n% = (m — n)? + n?.
Therefore, one deduces that m = n =1, w = 3,v = 1, v = 2 and
pF = 5.

Case 1.3c. dz = 2. In this case, equation (3.3) becomes
(3.6) —u? + pF =202, —u? — pF = —2uw?,

which give the equations p* = v? + w? and —u? = v? — w?. Note
that by primitivity, we have that ged(v,w) = 1. Thus, (u,v,w) form
a primitive pythagorean triple with w odd, and consequently, v even.
Therefore, there are coprime integers m,n for which w = m? + n2,
v = 2mn, u = m? —n?, and by substituting v and w into pF = v2 + w?
shows that p* = m?* + 6m?n? + n*. When p* is of this form, then
x = —(m? —n?)? is the unique corresponding primitive integer solution
to equation (1.1). Note that there is at most one representation of p*
in the form m* + 6m?n? + n?, and from the fact that x = —(m? — n?),
such a representation gives only one solution to equation (1.1). It
follows that for p and k fixed, there is at most one primitive integer
solution to equation (1.1) arising from representations of p* in the form
m* 4+ 6m?n? +n?. Note that equation (3.6) implies that u* + (2vw)? =
p?*, and so by the proposition above, k is not divisible by 2,3, 5,7 or
any prime g > 211. For k not divisible by such a prime, a computable
upper bound c;(p) for k follows from the work of Brindza [4]. Also,
for the remaining ternary equations of the form X2 + Y* = Z9, with
g prime and 7 < g < 211, the result of Darmon and Granville in [7]
implies that the set of coprime integer solutions (X,Y, Z) to this finite
set of equations is finite, from which it follows that %k is bounded by
some absolute constant ¢j which is independent of the prime p.

Case 1.4. = = —pu?. In this case we have that dods = —pz? for
some integer z. Since d; and d3 are positive and square-free, we may
assume that d3 = —pdy. Equation (3.1) in this case becomes

—pu? +pF =dy?,  —pu® - p* = —pdow?,
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and so after some deductions, it follows that u*—p?* 2= —p((d2vw) /p)?.
As in Case 1.2, a descent argument shows that u is divisible by
p*=1/2 and so by putting u; = u/p(k_l)/Q, it follows that uf — 1 =
—p((davw)/p*)?, which is not possible.

Part (iv) is a consequence of the above analysis, as only in Case 1.1d
can a primitive integer solution exist.

4. Proof of Theorem 2. Equation (1.2) implies that there is a
square-free integer d, and positive integers u, v for which = = du? and
2?2 — pF = dv®. Combining these two equations gives

(4.1) d*u* — pF = dv?,

and since d is square-free, it follows that d is one of 1, —1,p, —p. We
will deal with each of these cases separately.

Case 2.1. d = 1. In this case, equation (4.1) gives u* — v? = p*. By

primitivity, we may assume that gcd(u,v) = 1. Therefore, u? + v = p*
and u? — v = 1, from which it follows that 2u? — 1 = p*. By a recent
result of Bennett and Skinner [3], there is no solution for k¥ > 3. If
k = 3, then (u, p) is an integer point on the elliptic curve 2X2—1 = Y3,
which implies that p = 23. In the case k = 1, p is therefore of the form
2u? — 1, giving the unique solution x = (p + 1)/2.

Case 2.2. d = p. In this case, equation (4.1) gives p*u? — p* = pv?,
and it follows from primitivity that £ = 1. Dividing through by p gives
the equation pu*—1 = v2. This equation was solved completely by Chen
and Voutier in [6]. In particular, when this occurs, (X,Y) = (v,u?)
must be the fundamental solution to the Pellian equation X2 — pY?2 =
—1.

Case 2.3. d = —1. In this case, equation (4.1) gives u? — p* = —v?,

and so p* has the representation as a sum of squares p* = u?* + v
This representation is evidently unique, and so at most one solution
can arise in this case, unless only if v is a square, that is, p* = u* + v{
for positive integers u,v;, in which case two solutions to (1.2) arise.
Finally, by the aforementioned results in [5, 9], if k is divisible by 5,7
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or a prime ¢ > 211, then p* = u*+v? is not solvable. For k not divisible
by such a prime ¢, then a computable upper bound ¢y (p) for k follows
from the results of [4], and as in the proof of Theorem 1, an absolute
bound ¢} for k exists in light of the results in [7].

Case 2.4. d = —p. In this case, equation (4.1) gives p?u* — pF =
—pv?, and by primitivity, it follows that k£ = 1. Dividing through by p
gives the equation pu* — 1 = —v?, which is clearly not possible.

For part (iv) of the theorem, the above analysis, with p = 3 (mod 4),
shows that a primitive solution can exist only in Case 2.1.

Remark. We conjecture that the Diophantine equation X2 —p*Y*4 =
—1 has no positive integer solutions for any prime p if £ > 1 is odd.
Moreover, in Case 2.3, it is likely that no primitive solution can arise.
This would follow if the result of Ellenberg is extended to cover all
primes ¢ > 5. Therefore, we conjecture that for k£ > 3, there are no
primitive integer solutions to equation (1.2).

5. Proof of Theorem 3. Throughout the proof, we let v and v
be positive integers for which z = du?, z? + p* = dv?, with d > 0 and
square-free. Evidently, the only possible values for d are 1 and p.

We first show that there is no solution to equation (1.3) for k£ > 3.
In the case d = 1, we obtain the equation u* + p* = v?, and so
(v —u)(v + u) = p*, forcing v = w? + 1 and p* = 2u® + 1. By the
result in [3], this equation is not solvable for & > 3. In the case d = p,
we obtain the equation p?u* +p* = pv?. If k > 3, then p divides v, and
hence p divides u, contradicting primitivity.

We now consider the cases k € {1, 2,3} separately.

Assume first that £ = 1 and d = 1. Then we have the equation
u* + p = v2. It follows, as in previous cases, that v = u? + 1 and
p = 2u? + 1. Conversely, for p of the form 2u? + 1, then x = u? gives
a primitive integer solution to (1.3). For k = 1 and d = p, we obtain
the equation p?u* + p = pv?, which can be rewritten as pu? + 1 = v2.
For p = 3, there is a solution u = 2; hence, x = 12 yields a solution to
equation (1.3). Assume that p > 3. By the result of [15], the equation
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pu* + 1 = v? has at most one solution in positive integers, and such a
solution must come from the minimal solution to X2 — pY2 = 1. Note
that when a solution to pu* + 1 = v? does exist (with v > 0), then
x = pu? gives rise to a primitive integer solution to equation (1.3).

Now assume that £k = 2 and d = 1. Then we have the equation
u* + p? = v, which evidently implies that gcd(u,v) = 1. Moreover,
from the factorization p? = (v —u?)(v + u?), it follows that v —u? = 1,
and hence p? = v+u? = 2u% +1. Conversely, if an odd prime p satisfies
the equation p? = v+u? = 2u%+1, then x = u? gives rise to a primitive
integer solution to equation (1.3) with k = 2. If k = 2 and d = p, then
we obtain the quartic equation p?u* + p? = pv?, from which it follows
that p divides v, and that u* + 1 = p(v/p)2. By a classical result of
Ljunggren [11], there is at most one positive integer solution to this
quartic equation, and if a solution exists, it can be determined explicitly
from the fundamental solution of the Pell equation X? — pY2 = —1.

We consider the case £k = 3. If d = 1, we obtain the equation
u* + p® = v2. By primitivity, p does not divide ged(u,v), and so it
follows that v — «? = 1 and v + 2 = 2u® + 1 = p>. Since there are no
integer points (X,Y) on the curve 2Y?+1 = X3 with Y > 0, there are
no solutions to (1.3) arising from this case. If d = p, then we obtain
the equation p?u* + p® = pv?, from which it follows that p divides v,
and u. Hence, the solution is imprimitive. Thus, there are no primitive
solutions to equation (1.3) when k£ = 3.

6. Proof of Theorem 4. We deal with the equations y?> =
z(z? — pF) and y? = (2% + p*) separately. We may assume throughout
the proof that & > 0, since all of the rational points on the curves
y? = 23+ z have y = 0.

Assume first that (z,y), y > 0, is an imprimitive integer solution to
the equation y? = x(x? — p¥), with 0 < k < 3. Then there is a positive
integer u for which z is of one of the forms u?, pu?, —u?, —pu?, and by
assumption, p divides u. In the case z = u?, we see that u* — pF = v?
for some positive integer v and notice that p divides v. Therefore,
k = 1 is not possible since p? divides the other two terms. If k = 2,
then dividing u* — p? = v? through by p? gives p?(u/p)* — 1 = (v/p)?,
which is not possible. If k¥ = 3, then dividing u* — p® = v? through
by p? gives p(u/p)* — 1 = p(v/p?)?, which again is not possible. The
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cases r = —u? and x = —pu? are also straightforward to dismiss, as one
obtains equations of the form u* —p* = —v? (in the case z = —u?), and
upon dividing through by p* (k = 1,2,3), it becomes evident that the
left side cannot be negative. Therefore, we may assume that z = pu?,
for some positive integer u which is divisible by p. We then obtain the
equation p*u* — p* = pv?, with 1 < k < 3. The case k = 2 is evidently
not possible, since upon dividing through by p? in this case, exactly
two of the terms in the expression are divisible by p. So we are left
with the cases £k =1 and k = 3.

If £ =1, then we obtain the equation
(6.1) put —1=0% (p|uw).

By the main result of [6], equation (6.1) implies that v + u?/p is the
fundamental solution to the Pell equation X% — pY? = —1. Moreover,
as p | u, such a solution to equation (6.1) is a counterexample to the
Ankeny-Artin-Chowla conjecture. If £ = 3, then p divides v, and so by
letting u3 = u/p,v; = v/p, we obtain the equation

(6.2) pPuf —1 =0k

The main result of [6] implies that v, —l—u%p\/]_) is either the fundamental
solution, or the pth power thereof, to the Pellian equation X2 —
pY?2 = —1. The former case would violate the Ankeny-Artin-Chowla
conjecture, and so we need only consider the latter case.

Assume that v, +u%p\/ﬁ is the pth power of the fundamental solution
to the Pell equation X2 — pY?2 = —1. Let a = T + U,/p denote the
fundamental solution to the Pellian equation X2 — pY? = —1, and for
i>1,put ot =T+ Ui\/p. Thus, we are assuming that U, = pu?.
By the divisibility properties of the sequence {U;}, it is easy to deduce
that either U; = s? or U; = ps? for some integer s. If U; = ps?, then
the AAC conjecture is violated. If U; = s?, then U,/U; = p(u1/s)?,
which is not possible by a result of Rotkiewicz, see [16, Theorem 5].

Now assume that (z,y) is an imprimitive solution to the equation
y? = 2% + pPz with 1 < k < 3. In this case, either z = u? or z = pu?
for some integer u which is divisible by p. The case x = u? leads to
u* + p* = v? for some integer v, also divisible by p, and by an analysis
similar to that given above, it is seen that this case is not possible. In
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the case that z = pu? for some integer u divisible by p, we obtain the
equation p?u* + p¥ = pv?, and as above, it is readily verified that k = 2
is not possible.

If £ = 1, then dividing through by p gives pu® + 1 = v%. By the
main result of [14], it follows that (X,Y) = (v,u?) is the fundamental
solution to X2 — pY2? = 1, provided that p > 3, which we may assume
since we have verified that the corresponding equations for p = 3
have no imprimitive integer solutions. Since p divides u, we obtain
a counterexample to the AAC conjecture.

Assume that k& = 3. Then dividing the equation p?u* + p* = puv?
by p?® (recall that p divides u), yields p®(u/p)* + 1 = (v/p)?, that is,
(X,Y) = (v/p, (u/p)) is a solution to X2—p3Y* = 1. By the main result
of [15], it follows that v/p + p(u/p)?\/p is the fundamental solution to
X? — p?Y? = 1. By the divisibility properties of solutions to the Pell
equation, it follows that v/p + p(u/p)?,/p is the fundamental solution,
or pth power thereof, to X2 —pY? = 1. If it is the fundamental solution,
then we have a counterexample to the AAC conjecture. Therefore, we
will assume that v/p + p(u/p)./p is the pth power of the fundamental
solution.

We first show that v is even. Recall that (X,Y) = (v/p, (u/p)) is a
solution to X2 — p®Y* = 1. If v is odd, then there are integer r, s with
u/p = 2rs, such that one of the following holds

v/px1=2p" wv/pF1l=_8s"
or

v/pt1=28p*r* w/pF1l=2s"
It follows that one of the following four equations holds

45t — 1= p31‘4, st-1= 4p31"4,

45t +1=p3rt, s+ 1=4prt
It is easy to see that the first two are not possible, since they give rise to
solutions to the Pell equation X? — pY? =1 of which v/p + p(u/p)\/P

is the square, contradicting the fact that it is the pth power of the
fundamental solution (with p odd). As the equation s* + 1 = 4p3r? is
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not possible modulo 4, we are left to consider the equation 4s* + 1 =
p>r?. Notice that 4s* +1 = (25 + 25 +1)(2s? — 25 + 1), from which it
follows that for some choice of sign, 252 £+ 2s + 1 = t* for some positive
integer ¢. This equation can be rewritten as (2s+1)%+1 = 2t*, and by
Ljunggren’s result in [12] on the equation X2 — 2Y* = —1, it follows
that ¢ = 1 or ¢t = 13, leading to the possibilities s = 0, 1,119, 120, none
of which giving solutions to an equation of the form 4s* + 1 = pr%.
Therefore, we may henceforth assume that v above is even.

Since (v/p)? — 1 = p3(u/p)*, there are odd integers 7, s for which
v/pt1 =r*and v/pF 1 = p3s*. Therefore, (X,Y) = (r?,ps?) is a
solution to the Pellian equation X2 — pY? = +2. By the relationship
between this equation, and the equation X? — pY? = 1 (see, for
example, [13]), it follows that (X,Y) = (r2,ps?) is the pth power of
the fundamental solution to the equation X2 — pY? = 42. It follows
from the divisibility properties of solutions to these Pell equations that
the fundamental solution to X2 — pY? = =42 is either of the form
(X,Y) = (r2,ps?), or of the form (X,Y) = (r?,5?). In the first case,
the fundamental solution T+ U,/p = (r} + ps3/p)* to X2 —pY? =1
violates the AAC conjecture. In the second case, we must appeal to
[12, Theorem 1] as follows. Let oo = r? + s7,/p denote the fundamental
solution to X? — pY? = £2. Then of = r? + ps*,/p. Also, let 8 =
r{—s},/p. The Lehmer sequence {U;} defined by U; = (o’ — ") /(a—3)
satisfies the conditions of [12, Theorem 1]. We deduce from that
theorem that the equation U,/U; = pz? is not solvable for p > 3.
In our situation, we have precisely that U, = p(s/s1)?, a contradiction.
This completes the proof of Theorem 4. o

7. Determining all integer points. The proofs of the above
theorems allow one to completely solve the respective Diophantine
equations (1.1), (1.2) and (1.3). Evidently, one needs to determine
all primitive and imprimitive integer solutions. As remarked in the
introduction, imprimitive integer solutions to one of (1.1)—(1.3), with
k > 3, arise from primitive integer solutions to the same equation, but
with k replaced by k—4i for some 1 < i < k/4. Therefore, the procedure
is simply to determine the primitive integer solutions to (1.1)—(1.3) with
exponents k,k —4,... ,k—4t, where 0 < k — 4t < 3, and then multiply
the x and y coordinates of all found points with the appropriate powers
of p to form the corresponding imprimitive solutions at exponent k.



1300 P.G. WALSH

Example 1. We show how the results obtained are used to determine
all integer points on y? = z(2? — 7°).

Part (iv) of Theorem 2 shows that this equation has no primitive
integer solutions. Imprimitive integer solutions arise from integer
solutions to the equation y? = z(z? — 7). Also from part (iv) of
Theorem 2, the only possible primitive integer solution to y? = z(2?—7)
can arise from a representation of the from 7 = 2u? —1, and evidentally,
such a representation exists with u = 2. This gives the integer solutions
(z,y) = (4,£6) to y* = z(x? — 7), and hence the integer solutions
(z,y) = (4-7%,£6-7%) to y* = z(2*>—7°). As for the imprimitive integer
solutions to y* = z(x? — 7), they are either the point (z,y) = (0,0),
or they arise from solutions to the Pellian equation X2 — 7Y? = —1,
which is not possible. We conclude that the integer solutions (z,y) to
y? = z(x? — 7°) are (0,0),(4-7%,6-73),(4-7%,—6 - 73).

Example 2. We determine the integer solutions to y? = z(z? —137).

The proof of Theorem 2 shows that primitive integer solutions arise
from solutions to either of the equations 137 = X4 +Y?2, X2 -137y* =
—1. The proposition shows that the first equation is not solvable. For
the second equation, we need only compute the minimal solution to
X2 —13Y? = —1 and verify that the value of Y is not a square. Thus,
it is readily verified that there are no primitive integer solutions to
y? = x(x? — 137). The imprimitive integer solutions to this equation
come from integer solutions to y? = z(z? — 133). Similarly, going
through the different cases in the proof of Theorem 2 shows that
the only case that gives rise to a primitive integer solution is the
case stemming from the representation of 133 as a sum of squares.
In particular, since 133 = 3* 4 462, this gives the integer solutions
(z,y) = (—9,£138). Moreover, as in the previous example, it is readily
verified that the only imprimitive integer solution to y? = z(z% — 133)
is (z,y) = (0,0). We conclude that the only integer solutions (z,y) to
y? = z(z? — 137) are (0,0), (—9- 132,138 - 13%), (=9 - 132, —138 - 133).
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ENDNOTES

1. Note added in proof: Bennett, Ellenberg and Ng have since
completed the proof that the equation 2 4+ y* = 2™ has no nontrivial
integer solutions for n > 4. This result substantially improves part (iii)
of both Theorems 1 and 2 in that the equations being considered in
these theorems have primitive integer solutions for all k£ > 3.
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