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RESTRICTIONS OF ESSENTIALLY
NORMAL OPERATORS

L.R. WILLIAMS

Let H be a complex, infinite dimensional Hilbert space and let L(H)
denote the algebra of all bounded linear operators on H. Let C denote
the ideal of all compact operators in L(H), and let π denote the natural
quotient map of L(H) onto the Calkin algebra L(H)/C. For T in L(H),
let T̃ = π(T ). Recall that an operator T in L(H) is called essentially
normal if T̃ is normal, or, equivalently, if the self-commutator T ∗T−TT ∗

is compact. Let T be an operator in L(H) that is unitarily equivalent
to the bilateral shift of infinite multiplicity. There exists an invariant
subspace M for T such that T |M is unitarily equivalent to the unilateral
shift of infinite multiplicity. Note that T is essentially normal (it’s
normal), but T |M is not essentially normal. Thus the restriction of an
essentially normal operator to an invariant subspace is not necessarily
essentially normal.

Recall that an operator S in L(H) is said to be subnormal if it has a
normal extension. Bunce and Deddens proved in [2] that an operator S
in L(H) is subnormal if and only if, for each B0, B1, . . . , Bn in C∗(S),
the C∗-algebra generated by S and 1H, (or equivalently in L(H)),

(1)
n∑

k=0

n∑
j=0

B∗
j S∗kSjBk ≥ 0H.

(See also [4]). This characterization of a subnormal operator is com-
pletely algebraic, and Bunce has used it to define a subnormal element
of an abstract C∗-algebra [1]. Accordingly, we shall say that an ele-
ment S of the Calkin algebra is subnormal if, for each B0, B1, . . . , Bn

in L(H)/C, (1) holds. An operator S in L(H) is said to be essentially
subnormal if S̃ is a subnormal element of the Calkin algebra. Observe
that each essentially normal operator is essentially subnormal. We no-
ticed above that the restriction of an essentially normal operator to an
invariant subspace is not necessarily essentially normal. However, it fol-
lows readily that the restriction of an essentially normal operator to an
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invariant subspace is essentially subnormal. These observations suggest
the following question:

Question A. Does each essentially subnormal operator in L(H) have
an essentially normal extension?

Let S be a subnormal operator in L(H). Halmos showed in [5] that the
minimal normal extension of S is unitarily equivalent to the operator

(2)
[

S X
0 T ∗

]

in L(H ⊕ H). The operator T is called the dual of S. (See [3] for a
discussion of the dual of a subnormal operator.) Since the matrix in (2)
is normal, a calculation shows that S∗S − SS∗ = XX∗, T ∗T − TT ∗ =
X∗X, and XT = S∗X. We shall say that an element T̃ of the Calkin
algebra A is an algebraic dual of a subnormal element S̃ of A if there
exists X̃ in A such that

(3) S̃∗S̃ − S̃S̃∗ = X̃X̃∗, T̃ ∗T̃ − T̃ T̃ ∗ = X̃∗X̃, and X̃T̃ = S̃∗X̃.

In [6], it was shown that two algebraic duals of a subnormal element of
a C∗-algebra need not be unitarily equivalent. Also in [6], an abstract
C∗-algebra is defined to be dual closed if it contains an algebraic dual of
each of its subnormal elements. The C∗-algebra L(H) is obviously dual
closed. The following question appears in [6].

Question B. Is the Calkin algebra dual closed?

The purpose of this note is to show that Questions A and B are
equivalent.

We shall begin with the following theorem.

THEOREM 1. Suppose that S ∈ L(H) and S has an essentially normal
extension. Then S has an essentially normal extension in L(H⊕H).

Theorem 1 follows easily from the following two lemmas.
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LEMMA 2. Suppose that S ∈ L(H) and S has an essentially normal
extension in L(H ⊕ H0), where H0 is a Hilbert space and dim(H0) ≤
dim(H). Then S has an essentially normal extension in L(H⊕H).

PROOF. Let N be an essentially normal extension of S in L(H⊕H0).
Then N is unitarily equivalent to

[
S A
0 B

]

on H⊕H0. Let M = N ⊕ 0H on (H⊕H0)⊕H. Then M is essentially
normal and is unitarily equivalent to

⎡
⎣S A 0

0 B 0
0 0 0

⎤
⎦

on H ⊕ H0 ⊕ H. Since dim(H0 ⊕ H) = dim(H), then M is unitarily
equivalent to an operator of the form

[
S A0

0 B0

]

on H⊕H. Hence S has an essentially normal extension on H⊕H.

LEMMA 3. Suppose that S ∈ L(H) and S has an essentially normal
extension on H ⊕ H0, where H0 is a Hilbert space and dim(H) ≤
dim(H0). Then S has an essentially normal extension on H⊕H.

PROOF. Let N be an essentially normal extension of S in L(H⊕H0).
Now N is unitarily equivalent to the operator

[
S A
0 B

]

on H⊕H0. Let

Λ = {B∗mkBnk . . . B∗m1Bn1 : mi, ni ∈ Z+ ∪ {0}, i = 1, . . . , k, k ∈ Z+}.
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and let M = span{Rx : R ∈ Λ and x ∈ ker(A)⊥}. Since Λ is
countable, dim(M) ≤ max{χ0, dim(ker(A)⊥, }. But, since range (A) ⊆
H, dim(ker(A)⊥) = dim(range (A)−) ≤ dim(H). Hence dim(M) ≤
dim(H). Also, since M reduces B, the operator N is unitarily equivalent
to ⎡

⎣S A0 0
0 B0 0
0 0 B1

⎤
⎦

on H⊕M⊕ (H0 �M). It follows that the operator[
S A0

0 B0

]

is an essentially normal extension of S on H ⊕ M. Since dim(M) ≤
dim(H), Lemma 1 implies that S has an essentially normal extension
on H⊕H.

We shall use the following notation and terminology. Let A be a C∗-
algebra. Recall that an element W of A is called an isometry if W ∗W =
1. A pair of isometries W1 and W2 in A is said to be complementary
if W1W

∗
1 + W2W

∗
2 = 1. Let W1 and W2 be a pair of complementary

isometries in L(H). Define a linear map Γ : L(H) → L(H⊕H) by

Γ(T ) =
[

W ∗
1 TW1 W ∗

1 TW2

W ∗
2 TW1 W ∗

2 TW2

]
.

Let U : L(H) → L(H ⊕ H) be defined by Ux = W ∗
1 x ⊕ W ∗

2 x. Note
that W ∗

2 W1 = W ∗
1 W2 = 0H. Thus U∗(x ⊕ y) = W1x + W2y, U∗U =

1H, UU∗ = 1H⊕H, and Γ(T ) = UTU∗ for each T in L(H). Hence Γ is
implemented by a Hilbert space isomorphism, and thus is a ∗-algebra
isomorphism of L(H) onto L(H ⊕ H). Furthermore, Γ(T ) is unitarily
equivalent to T for each T in L(H).

Let A = L(H)/C. There exists a Hilbert space K and a ∗-algebra
isomorphism δ : A → L(K). Let φ : L(H) → L(K) be the ∗-algebra
homomorphism defined by φ = δoπ, where π : L(H) → A is the Calkin
map. For T in L(H), let T̂ = φ(T ).

Now define a map Φ : L(H⊕H) → L(K ⊕K) by

Φ

([
A B
C D

])
=

[
Â B̂
Ĉ D̂

]
.
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It is routine to verify that Φ is a ∗-algebra homomorphism.

Note that Ŵ1 and Ŵ2 is a pair of complementary isometries in L(K).
Thus we define Γ̂ : L(K) → L(K ⊕K) by

Γ̂(T ) =
[

Ŵ ∗
1 TŴ1 Ŵ ∗

1 TŴ ∗
2

Ŵ ∗
2 TŴ1 Ŵ ∗

2 TŴ2

]

for each T in L(K). As above, Γ̂ is a ∗-algebra isomorphism of L(K)
onto L(K ⊕ K) that is implemented by a Hilbert space isomorphism.
Thus Γ̂(T ) is unitarily equivalent to T for each T in L(K).

The proof of the following lemma is self-evident.

LEMMA 4. The following diagram is commutative.

L(H) �
Γ

�

φ

L(H⊕H)

�

Φ

L(K) �

Γ̂
L(K ⊕K).

Observe that an operator S in L(H) is essentially subnormal if and
only if Ŝ is subnormal.

The following theorem shows that Questions A and B are equivalent.

THEOREM 5. Suppose that S ∈ L(H). Then S has an essentially
normal extension if and only if S is essentially subnormal and the Calkin
algebra contains an algebraic dual of S.

PROOF. Suppose that N, T , and X belong to L(H) and

Γ(N) =
[

S X
0 T ∗

]
.

Then using Theorem 1 and Lemma 4, we can show that N is essentially
normal if and only if

Γ̂(N̂) =
[

Ŝ X̂
0 T̂ ∗

]
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is normal in L(K ⊕K) if and only if S̃, T̃ , and X̃ satisfy (3).

Note that a compact perturbation of a subnormal operator is essen-
tially subnormal. Let V be the unilateral shift of multiplicity one, and
let S = V ∗. Then S is essentially subnormal (it’s essentially normal).
But since the Fredholm index of S equals one and the Fredholm index
of a Fredholm subnormal operator is less than or equal to zero, S is not
equal to a subnormal operator plus a compact operator. Thus an essen-
tially subnormal operator need not be equal to a subnormal operator
plus a compact.
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