
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 25, Number 1, Winter 1995

EVOLUTIONARY STABILITY FOR
TWO-STAGE HAWK-DOVE GAMES

R. CRESSMAN

ABSTRACT. Although two individuals in a biological species
often interact with each other more than once, standard evo-
lutionary game theory does not allow behaviors to depend on
past interactions. This paper analyzes two-stage games where
pairs of individuals compete twice. It is shown that evolu-
tionary stability follows from a rational backwards induction
procedure that first establishes stability at the second stage.
All examples are of the hawk-dove type.

1. Introduction. Evolutionary game theory has primarily modelled
the frequency evolution of strategy types in a single species where an
individual’s fitness (i.e., reproductive success) depends on the payoff it
obtains in a single contest with a random opponent. In such single-
stage games, the ESS (evolutionarily stable strategy) stability concept
[3] has three intuitive interpretations. Maynard Smith’s [4] original
ESS definition relies on the intuition that a population will be stable if
it cannot be successfully invaded by a few individuals using a mutant
strategy. For the second interpretation, ESS’s indeed become stable
equilibria [6] for the continuous pure-strategy dynamic (Section 3) that
involves no conscious decisions on strategy use by individuals in the
population. This paper emphasizes a third interpretation, specifically,
an ESS is the strategy a rational individual will choose against a
rational opponent (Section 2).

The ESS concept has had limited success in predicting the outcome
of evolutionary games where contestants remember previous competi-
tions. For instance, in iterated prisoner’s dilemma, cooperative strate-
gies such as Tit-for-Tat may evolve but are typically not ESS’s [3]. In
this paper we analyze evolutionary games where the same pair of indi-
viduals compete in two consecutive (i.e., two-stage) hawk-dove games.
In Sections 3 and 4, we show dynamic stability follows from rational
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decisions made at each stage of the game. Section 2 first briefly sum-
marizes the standard single-stage hawk-dove game, emphasizing the
different interpretations of an ESS mentioned above.

2. The single-stage hawk-dove game. Here hawks (H) and
doves (D) compete over a resource of value 2V . A contest of hawk
versus dove results in the hawk winning the resource at no cost. On
the other hand, two hawks will fight over the resource, each expecting
a payoff V while incurring a cost C of fighting. Lastly, two doves will
split the resource evenly. This information is contained in the 2 × 2
payoff matrix A given by

(2.1)
( H D

H V − C 2V
D 0 V

)
.

An ESS is then a (possibly mixed) strategy p∗ in the frequency simplex
Δ2 = {(p1, p2) | p1 + p2 = 1, pi ≥ 0} that satisfies

(i) p∗ · Ap∗ ≥ q · Ap∗ for all q ∈ Δ2
(2.2)

(ii) p∗ · Aq > q · Aq for any q �=p∗ with equality in (i).
(2.3)

Here q · Ap is the expected payoff to an individual using strategy q
against one using p. For instance, a hawk versus a dove has payoff
(1, 0) · A(0, 1) = (1, 0) · (2V, V ) = 2V from (2.1).

This paragraph develops the rational interpretation of the above ESS
conditions; that is, an interpretation whereby a rational player in a
contest against a rational opponent chooses the ESS strategy. For
this development, it is important to realize that evolutionary games
used to model interactions in a single species are symmetric and that
only game-theoretic symmetric solutions [5, 7] in the strategy simplex
are considered. This means that both players have the same list of
possible strategies and, furthermore, that both players use the same
strategy at a solution p∗ that represents the average strategy (or state)
of the single-species population. The (symmetric) Nash equilibrium
condition (2.2) then asserts there is no incentive to unilaterally alter
your strategy to q if you and your opponent are currently using the ESS
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p∗. However, if (2.2) is indifferent to unilateral change (i.e., if there is
equality in (2.2)), the Nash condition does not give a reason to remain
at p∗. Suppose, in this case, you contemplate a shift from p∗ to q. By
symmetry, the population state would also shift to q. At this point,
the stability condition (2.3) would intervene to give you an incentive
to return to p∗. In other words, the rational decision is to stay at
p∗. That is, for single-stage, symmetric, evolutionary games, rational
players should adopt the ESS strategy. (Notice that the pronoun “you”
is often used in discussing rational players. This is a common feature
throughout the paper.)

It is well known [3] that all 2 × 2 payoff matrices
(

a b

c d

)
of the form

(2.1) where b > d have a unique ESS; namely, (1, 0) if a ≥ c and
(1/(b−d+c−a))(b−d, c−a) if a < c. Thus, the hawk-dove game (2.1)
has two qualitatively different ESS’s depending on the relative values
of V and C. If V > C, a rational player will always play H (i.e., (1, 0)
is the unique ESS). On the other hand, if V < C, you play H with
probability V/C and D the rest of the time (i.e., (1/C)(V, C − V ) is
the ESS).

The dynamic interpretation of an ESS is also well-known [3] for hawk-
dove games. Any initial polymorphic population (i.e., one made up of
a mixture of individuals who are always hawks or always doves) will
evolve under the continuous pure-strategy dynamic (equation (3.2) be-
low) to a population where hawks and doves are at their respective
ESS frequencies. In other words, a population of individuals who all
use one of the two pure strategies evolves under frequency-dependent
selection given in (3.2), that assumes individuals do not make con-
scious decisions, to a population whose frequencies can be predicted by
considering competition between two rational players.

3. A second stage for doves. The simplest evolutionary game
model that involves a second stage is the case of two individuals
engaging in a repeated contest if they both played the same particular
strategy (e.g., both were doves) at the first stage. This game is depicted
most concisely by its extensive form game tree (Figure 1). Important
features of general symmetric extensive games are given in the following
two paragraphs with reference to Figure 1. A complete description is
in [5].
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FIGURE 1. The extensive form of a two-stage game where doves compete in
a second stage.

The extensive form emphasizes the sequential nature of the game in
Figure 1. At stage 1, player 1 makes the first choice, between H and D,
at the vertex enclosed in the dashed curve containing u1 that is called
the information set u1. Player 2 then chooses between H and D at the
information set u2. Since u2 contains both vertices that branch from
u1, player 2 makes this choice without knowing what player 1 already
chose. If both players choose D at stage 1, the game continues to a
second stage where another hawk-dove game is played at information
sets u3 and u4 that represent the respective choices of players 1 and 2
at stage 2.

Evolutionary games also feature a symmetry between the situations
of players 1 and 2. This is indicated by double arrows, ↔, in Figure
1. For instance, information sets u3 and u4 are symmetric. At u4,
player 2’s choice, between H and D, is based on knowing both it and
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its opponent chose D at stage 1. Player 1 finds itself in the same
situation at u3. Finally, extensive games indicate payoffs above each
endpoint of the game tree. For instance, if both players choose D at
stage 1 followed by choices H and D by players 1 and 2, respectively, at
stage 2, the game reaches the third endpoint from the right in Figure
1. The payoff in this case,

∣∣∣ 2V

0

∣∣∣, means player 1 receives payoff 2V

whereas player 2 receives 0. The payoffs given in Figure 1 correspond
to playing the hawk-dove game of Section 2 at stage 1 except when
both chose Dove in which case another hawk-dove is played at stage 2
with payoff matrix (2.1).

The remainder of this section analyzes the game from two perspec-
tives; first as a symmetric game between two rational players, then as
an evolutionary game where dynamic stability is of utmost importance.

Suppose the game is played by two rational opponents and that
V < C. The backwards induction procedure of Selten [5] finds the
solution as follows. If the game reaches the second stage, the subgame
that starts at u3 is the single-stage hawk-dove game of Section 2. Thus,
at stage 2, both rational players should adopt the ESS of (2.1); namely,
the mixed strategy p∗ = (1/C)(V, C − V ). In particular, both will
receive an expected payoff of p∗ · Ap∗ = (V/C)(C − V ). The complete
two-stage game is now reduced to a single-stage game formed from
Figure 1 by replacing the subgame that starts at u3 with an endpoint
having payoffs ∣∣∣∣ (V/C) (C − V )

(V/C) (C − V )

∣∣∣∣ .

What remains is a single-stage game that has payoff matrix

[
V − C 2V

0 (V/C)(C − V )

]
.

Both rational players will then choose the ESS of this 2 × 2 ma-
trix. Thus, at stage 1, backwards induction yields the mixed strategy
(1/(V 2 +C2))(V 2 +V C, C2−V C). That is, a rational individual plays
H with probability (V 2 + V C)/(V 2 + C2) at stage 1 and, if the game
reaches stage 2, plays H with probability V/C there.

This same backwards induction procedure described in [5] can be
applied to the case V > C where it implies you should always play
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H at stage 1. Even though stage 2 is then never reached, the method
suggests H should also be played there.

How do these rational outcomes compare with the evolutionary out-
come of the pure-strategy dynamic? There are now three pure strate-
gies for this two-stage evolutionary game that will be denoted

H play H at stage 1
[D; H] play D at stage 1 and H at stage 2
[D; D] play D at both stages.

The 3 × 3 payoff matrix A, given by

(3.1)

⎡
⎣V − C 2V 2V

0 V − C 2V
0 0 V

⎤
⎦ ,

is called the normal form [3, 5, 7] of the game in Figure 1. If pi,
i = 1, 2, 3, is the frequency of individuals using pure strategy i in the
population at time t, the continuous dynamic [6] is

(3.2) ṗi = pi(ei − p) · Ap

where p = (p1, p2, p3) ∈ Δ3 and ei is the ith unit coordinate vector.

It is not difficult to show that
(

V 2 + V C

V 2 + C2
,
V

C

C2 − V C

V 2 + C2
,
C − V

C

C2 − V C

V 2 + C2

)

and (1, 0, 0), respectively, are the unique ESS’s in Δ3 of (3.1) when
V < C and V > C, respectively. Moreover, these ESS’s are the globally
stable equilibria of (3.2) for any initial polymorphism in their respective
cases. On the other hand, they are precisely the strategies described
earlier in this section as the solution reached by rational players. That
is, the evolutionary outcome matches the rational outcome in this two-
stage game.

The backwards induction procedure does not always lead to an ESS of
the normal form game [7]. This is true even for the game tree of Figure
1 if the payoffs are chosen appropriately. For instance, if C = 2V in
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the first stage and the second stage is replaced by values and costs four
times those in Figure 1, the payoff matrix (3.1) is altered to

(3.3)

⎡
⎣−V 2V 2V

0 −4V 8V
0 0 4V

⎤
⎦ .

In this case, backwards induction implies D should always be played
at stage 1 followed by D at stage 2 half the time. This strategy, in
normal form p∗ = (0, 1/2, 1/2), is not an ESS of (3.3) since it does not
satisfy (2.3) for q = (1/2, 1/2, 0). In fact, (3.3) has no ESS. On the
other hand, p∗ is the globally stable equilibrium of (3.2) for any initial
polymorphism. That is, the evolutionary outcome and the rational
outcome match in this example as well.

In summary, for two-stage hawk-dove games where the second stage
is reached only when both individuals were doves at the first stage, the
backwards induction procedure of Selten [5] predicts the evolutionary
outcome but may or may not yield an ESS of the pure-strategy payoff
matrix.

4. The two-stage hawk-dove game. A more substantial test of
Selten’s procedure is the two-stage game where all individuals engage in
a second contest irrespective of their choice at the first stage. Figure 2
depicts such a game in extensive form where payoffs are cumulative and
the same values of V and C are used for both stages. An added feature
of this game tree is the asymmetry that connects the subgames that
begin at information sets u4 and u5 (indicated by ↔). The asymmetry
refers to the fact that your choice at u4 is based on the same knowledge
as your choice at u9; namely, that you used H and your opponent D
at stage 1. In this asymmetric hawk-dove subgame, an asymptotically
stable evolutionary outcome must be a two-species ESS [3] given by
a pure strategy for each species. Again, the outcome depends on the
relative sizes of V and C.

For V > C, the only two-species ESS is to play H at u4 and u5. From
Section 3, it is clear that H must be played at u3 and u6 as well. The
reduced game is thus a single-stage game with payoff matrix

[
2(V − C) 2V + V − C
V − C V + V − C

]
.
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Therefore, backwards induction implies a rational player will use H at
stage 1 as well. That is, Selten’s method predicts hawk will always be
played at both stages.

For V < C, there are two ESS’s for the asymmetric subgame; namely,

(i) Play H at u4 and D at u5

(ii) Play D at u4 and H at u5.

At u3 and u6, you must play the mixed strategy ESS (1/C)(V, C − V )
given in Section 3. The respective reduced single-stage games for these
two possibilities have payoff matrices[

V − C + V
C (C − V ) 2V + 2V

0 V + V
C (C − V )

]

and [
V − C + V

C (C − V ) 2V

2V V + V
C (C − V )

]

that imply rational players use the ESS strategies

(4.1)
(V 2 + 2V C, (C − V )2)

2V 2 + C2
and

(V 2, 2V C + (C − V )2)
2V 2 + C2

,

respectively, at stage 1.

The exact form of these rational outcomes is less important from
the perspective of this paper than the question of whether they are
also the evolutionary outcomes. To test this, the relevant evolu-
tionary game now has eight pure strategies: [H; H, H], [H; H, D],
[H; D, H], [H; D, D], [D; H, H], [D; D, H], [D; H, D], [D; D, D] where
[a; b, c] means play a at stage 1, b at stage 2 if your opponent plays H,
c at stage 2 if your opponent plays D. The 8 × 8 payoff matrix is

(4.2)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(V − C) 2(V − C) 3V − C 3V − C 3V − C 4V 3V − C 4V

2(V − C) 2(V − C) 3V − C 3V − C 2V 3V 2V 3V

V − C V − C 2V − C 2V − C 3V − C 4V 3V − C 4V

V − C V − C 2V − C 2V − C 2V 3V 2V 3V

V − C 2V V − C 2V 2V − C 2V − C 3V 3V

0 V 0 V 2V − C 2V − C 3V 3V

V − C 2V V − C 2V V V 2V 2V

0 V 0 V V V 2V 2V

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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If V > C, a careful analysis of the eight-dimensional dynamic (3.2) by
means of dominated strategies [1] shows that any initial polymorphism
evolves to an equilibrium strategy of the form (p∗1, 1−p∗1, 0, 0, 0, 0, 0, 0).
A population in this state will always play H at both stages the
same result predicted by backwards induction. That is, although the
evolutionary outcome is not an ESS (it is not even an ES Set as was
erroneously asserted for a similar situation in [3]), it remains the same
as the rational outcome.

For V < C, (4.2) has exactly two ESS’s that can be found as in [2,
3]. To simplify these mathematically without qualitatively changing
the discussion, let us assume C = 2V . Then the two ESS’s are

p∗ =
1
12

(5, 0, 5, 0, 0, 1, 0, 1)

q∗ =
1
12

(0, 1, 0, 1, 5, 0, 5, 0)

and these are both locally asymptotically stable under the dynamic
(3.2). It is straightforward to verify that p∗ and q∗ correspond to the
two rational outcomes developed earlier in this section. For instance, p∗

always plays H at u4 and D at u5 since it only involves the four pure
strategies [H; H, H], [H; D, H][D; D, H] and [D; D, D]. Furthermore,
p∗ uses H at u1 with probability (1/12)(5+5) = 5/6 which matches that
of the first mixed strategy of (4.1), (1/6V 2)(5V 2, V 2), when C = 2V .
Computer simulations of the dynamic (2.3) reported in [2] suggest
essentially all initial polymorphisms evolve to either p∗ or q∗. In this
sense, the rational and evolutionary outcomes of the two-stage hawk-
dove game coincide.

5. Discussion. The backwards induction procedure suggested by
Selten [5] does not, in general, determine the ESS structure of two-
stage evolutionary games. On the other hand, it does determine the
evolutionary outcome for all the examples of hawk-dove games analyzed
in this paper. Since the primary goal of evolutionary game theory is to
predict evolution outcomes based on biological intuition, the procedure
is indeed a success for these games. Moreover, its rational foundation
should provide a means to analyze more complicate multi-stage games.

Acknowledgment. This research was partially supported by Nat-
ural Sciences and Engineering Research Council of Canada Research



STABILITY FOR TWO-STAGE GAMES 155

Grant GP7822. Revisions suggested by an anonymous referee have
made the paper accessible to a wider audience.

REFERENCES

1. E. Akin, Domination or equilibrium, Math. Biosci. 50 (1980), 239 250.

2. C. Cannings and J.C. Whittaker, A two-trial two-strategy conflict, J. Theoret.
Biol. 149 (1991), 281 286.

3. R. Cressman, The stability concept of evolutionary game theory (A dynamic
approach), Lecture Notes in Biomathematics, Volume 94, Springer-Verlag, Berlin,
1992.

4. J. Maynard Smith, Evolution and the theory of games, Cambridge University
Press, Cambridge, 1982.

5. R. Selten, Evolutionary stability in extensive two-person games, Math. Social
Sci. 5 (1983), 269 363.

6. P.D. Taylor and L.B. Jonker, Evolutionarily stable strategies and game dy-
namics, Math. Biosci. 40 (1978), 145 156.

7. E. van Damme, Stability and perfection of Nash equilibria, Springer-Verlag,
Berlin, 1987.

Department of Mathematics, Wilfrid Laurier University, Waterloo,
Ontario, Canada N2L 3C5


