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ON SOME INFINITE PRODUCT IDENTITIES

SHAUN COOPER AND MICHAEL HIRSCHHORN

ABSTRACT. Uniform proofs of several identities of Bleck-
smith, Brillhart and Gerst and two new identities are given.

1. Introduction. This paper has two main purposes. The first is
to present two new identities:

∞∑
n=−∞

qn2
+

∞∑
n=−∞

q2n2
= 2

(q3, q5, q8; q8)∞
(q, q4, q7; q8)∞

(1)

∞∑
n=−∞

qn2 −
∞∑

n=−∞
q2n2

= 2q
(q, q7, q8; q8)∞
(q3, q4, q5; q8)∞

.(2)

These identities are similar to those in [3], [4] and were apparently
missed by these authors. As in [3], [4], identities (1) and (2) were
found by computer investigation.

Specifically we use a computer program written by Garvan [7] to
check whether certain series were likely to factor into nice products.
Here is a sample session using the program to convert the series∑10

n=−10 qn2
+

∑10
n=−10 q2n2

into a product:

> with(qseries):

> prodmake(1/2*(sum(q∧(n∧2),n=-10..10)+sum(q∧(2*n∧2),
n=-10..10)),q,40);

(1 − q3)(1 − q5)(1 − q8)(1 − q11)(1 − q13)(1 − q16)(1 − q19)(1 − q21)

(1 − q24)(1 − q27)(1 − q29)(1 − q32)(1 − q35)(1 − q37)/((1 − q)
(1 − q4)(1 − q7)(1 − q9)(1 − q12)(1 − q15)(1 − q17)(1 − q20)
(1 − q23)(1 − q25)(1 − q28)(1 − q31)(1 − q33)(1 − q36)(1 − q39)).
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From this output we conjecture equation (1). Equation (2) was ob-
tained similarly.

The second purpose of this paper is to prove (1) and (2). In fact,
we shall show that these and all of the main theorems in [3], [4] are
corollaries of an identity for sigma functions due to Weierstrass [13,
p. 451], which has recently been brought into prominence by Richard
Lewis [1], [8], [9], [10].

2. Notation and the main tool. Let q be a complex number
satisfying |q| < 1, and set

(a; q)∞ =
∞∏

j=0

(1 − aqj)

(a1, a2, . . . , an; q)∞ = (a1; q)∞(a2; q)∞ · · · (an; q)∞


a1, a2, · · · , an

; q
b1, b2, · · · , bn




∞

= (a1, a2, . . . , an; q)∞/(b1, b2, . . . , bn; q)∞

[a; q]∞ = (a; q)∞(a−1q; q)∞
[a1, a2, . . . , an; q]∞ = [a1; q]∞[a2; q]∞ · · · [an; q]∞.

We will use the standard properties

[x−1; q]∞ = −x−1[x; q]∞ = [qx; q]∞(3)
[x, qx; q2]∞ = [x; q]∞(4)
[x,−x; q]∞ = [x2; q2]∞.(5)

The main tool that we shall use is

Lemma. Suppose a1, a2, . . . , an; b1, b2, . . . , bn are nonzero complex
numbers which satisfy

(i) ai �= qnaj for all i �= j and all n ∈ Z,

(ii) a1a2 · · · an = b1b2 · · · bn.

Then
n∑

i=1

∏n
j=1[aib

−1
j ; q]∞∏n

j=1,j �=i[aia
−1
j ; q]∞

= 0.
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This lemma appears in [13, p. 451] (where the infinite products are
expressed in terms of sigma functions), [11], [12] and [6, p. 138]. A
simple proof is given in [9].

3. The identities.

Theorem 1.

∞∑
n=−∞

qn2
+

∞∑
n=−∞

q2n2
= 2




q3, q5, q8

; q8

q, q4, q7




∞

,

∞∑
n=−∞

qn2 −
∞∑

n=−∞
q2n2

= 2q




q, q7, q8

; q8

q3, q4, q5




∞

.

Theorem 2 [3, Theorem 1].
∞∑

n=−∞
(−1)nq2n2

+
∞∑

n=−∞
(−1)nqn2

= 2(q; q)∞/(q4, q6, q8, q10, q22, q24, q26, q28; q32)∞,

∞∑
n=−∞

(−1)nq2n2 −
∞∑

n=−∞
(−1)nqn2

= 2q(q; q)∞/(q2, q8, q12, q14, q18, q20, q24, q30; q32)∞.

Theorem 3 [3, Theorem 3].

∞∑
n=−∞

qn2
+

∞∑
n=−∞

q3n2
= 2




q2, q6, q10, q12

; q12

q, q3, q9, q11




∞

,

∞∑
n=−∞

qn2 −
∞∑

n=−∞
q3n2

= 2q




q2, q6, q10, q12

; q12

q3, q5, q7, q9




∞

.



134 S. COOPER AND M. HIRSCHHORN

Theorem 4 [4, Theorem 3].

∞∑
n=−∞

qn2
+

∞∑
n=−∞

q5n2
= 2




q2, q8, q10, q12, q18, q20

; q20

q, q4, q9, q11, q16, q19




∞

,

∞∑
n=−∞

qn2−
∞∑

n=−∞
q5n2

= 2q




q4, q6, q10, q14, q16, q20

; q20

q3, q7, q8, q12, q13, q17




∞

.

Theorem 5 [4, Theorem 1].
∞∑

n=−∞
q2n(n+1) +

∞∑
n=−∞

q6n(n+1)+1

= 2




q2, q5, q7, q12, q17, q19, q22, q24

; q24

q, q4, q6, q11, q13, q18, q20, q23




∞

,

∞∑
n=−∞

q2n(n+1) −
∞∑

n=−∞
q6n(n+1)+1

= 2




q, q10, q11, q12, q13, q14, q23, q24

; q24

q4, q5, q6, q7, q17, q18, q19, q20




∞

.

Theorem 6 [4, Theorem 4].
∞∑

n=−∞
qn(n+1) +

∞∑
n=−∞

q5n(n+1)+1

= 2




q3, q7, q10, q13, q17, q20

; q20

q, q6, q9, q11, q14, q19




∞

,

∞∑
n=−∞

qn(n+1) −
∞∑

n=−∞
q5n(n+1)+1

= 2




q, q9, q10, q11, q19, q20

; q20

q2, q3, q7, q13, q17, q18




∞

.
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Proof of Theorem 1. We manipulate the identities in Theorem 1 into
a pair of equivalent identities, which are then shown to be true.

Adding the identities in Theorem 1 and dividing by 2 gives

(6)
∞∑

n=−∞
qn2

=
(q3, q5, q8; q8)∞
(q, q4, q7; q8)∞

+ q
(q, q7, q8; q8)∞
(q3, q4, q5; q8)∞

.

By the Jacobi triple product identity, the lefthand side is

∞∑
n=−∞

qn2
= (−q,−q, q2; q2)∞

=
(q2; q2)∞(q2, q2; q4)∞

(q, q; q2)∞

=
(q2, q2, q2, q4, q6, q6, q6, q8; q8)∞
(q, q, q3, q3, q5, q5, q7, q7; q8)∞

.

Substituting this into (6) and multiplying both sides by

(q, q, q3, q3, q4, q5, q5, q7, q7; q8)∞
/

(q8; q8)∞

gives

(q2, q2, q2, q4, q4, q6, q6, q6; q8)∞
= (q, q3, q3, q3, q5, q5, q5, q7; q8)∞

+ q(q, q, q, q3, q5, q7, q7, q7; q8)∞,

or

(7) [q2, q2, q2, q4; q8]∞ = [q, q3, q3, q3; q8]∞ + q[q, q, q, q3; q8]∞.

Similarly, subtracting the identities in Theorem 1 and performing
similar manipulations to the above, gives

(8) [q, q3, q4, q4; q8]∞ = [q2, q2, q3, q3; q8]∞ − q[q, q, q2, q2; q8]∞.

In the lemma, replace q with q8 and take n = 3. Then (7) and
(8) follow by taking (a1, a2, a3; b1, b2, b3) = (1, q, q3; q2, q4, q−2) and
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(a1, a2, a3; b1, b2, b3) = (1, q2, q6; q, q3, q4), respectively, and simplifying
using (3).

Theorem 1 follows by working backwards through the above, starting
with (7) and (8).

Proof of Theorem 2. Adding the two identities in Theorem 2 and
applying the Jacobi triple product identity on the left gives

(q2, q2, q4; q4)∞ = (q; q2)∞(q16; q16)∞[(q2, q12, q14, q18, q20, q30; q32)∞
+ q(q4, q6, q10, q22, q26, q28; q32)∞].

Use

(q2, q14, q18, q30; q32)∞ = [q2; q16]∞
(q6, q10, q22, q26; q32)∞ = [q6; q16]∞

(q12, q20; q32)∞ = [q6,−q6; q16]∞
(q4, q28; q32)∞ = [q2,−q2; q16]∞

and divide by (q; q2)∞(q16; q16)∞ to get

(q2, q2, q4; q4)∞
(q; q2)∞(q16; q16)∞

= [q2, q6,−q6; q16]∞ + q[q2,−q2, q6; q16]∞.

Multiply this by [q3,−q4, q5; q16]∞/[q2, q6; q16]∞ and simplify to obtain

(9)

[−q, q6,−q7, q8; q16]∞= [q3,−q4, q5−q6; q16]∞+q[−q2, q3,−q4, q5; q16]∞.

If the identities in Theorem 2 are subtracted instead, then manipula-
tions like those above lead to

(10)
[q, q6, q7, q8; q16]∞ = [−q3,−q4,−q5,−q6; q16]∞

− q[−q2,−q3,−q4,−q5; q16]∞.

In the lemma, replace q with q16 and take n = 3. Then (9) and (10)
follow by taking (a1, a2, a3; b1, b2, b3) = (1,−q2, q3; q6, q8,−q−9) and
(a1, a2, a3; b1, b2, b3) = (1,−q2,−q3; q6, q8, q−9), respectively (or notice
that (10) is just (9) with q replaced with −q). Theorem 2 then follows
from (9) and (10).
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The proofs of Theorems 3 6 are similar to the above, so we give
outlines only.

Proof of Theorem 3. By addition and subtraction, Theorem 3 is
equivalent to

[q2, q2, q4, q6; q12]∞ = [q, q3, q5, q5; q12]∞ + q[q, q, q3, q5; q12]∞
(11)

and

[q, q5, q6; q12]∞ = [q2, q3, q5; q12]∞ − q[q, q2, q3; q12]∞.(12)

In the lemma, replace q with q12 and take n = 3. Then (11) and
(12) follow by taking (a1, a2, a3; b1, b2, b3) = (1, q, q2; q3, q5, q−5) and
(a1, a2, a3; b1, b2, b3) = (1, q, q2; q4, q5, q−6), respectively, and simplify-
ing.

Proof of Theorem 4. By addition and subtraction, Theorem 4 is
equivalent to

(13)
[q2, q2, q2, q4, q4,q6, q6, q6, q8, q8, q10; q20]∞

= [q, q2, q3, q3, q5, q5, q7, q7, q8, q8, q9; q20]∞
+ q[q, q, q3, q4, q4, q5, q5, q6, q7, q9, q9; q20]∞

and

(14)
[q, q3, q4, q7, q8, q9, q10; q20]∞ = [q2, q3, q5, q5, q7, q8, q8; q20]∞

− q[q, q4, q4, q5, q5, q6, q9; q20]∞.

These can be manipulated to

(15)

[q2, q2,−q3,−q5; q10]∞ = [q, q3,−q4,−q4; q10]∞+q[q, q,−q2,−q4; q10]∞

and
(16)

[q2,−q2, q3,−q5; q10]∞ = [−q, q3, q4,−q4; q10]∞−q[q,−q,−q2, q4; q10]∞,
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respectively. In the lemma replace q with q10 and take n = 3. Then (15)
and (16) follow by taking (a1, a2, a3; b1, b2, b3)=(1,−q5, q; q−1,−q−2, q9)
and (a1, a2, a3; b1, b2, b3) = (1,−q5, q6; q−1,−q−2, q14), respectively,
and simplifying.

Proof of Theorem 5. By addition and subtraction, Theorem 5 is
equivalent to

[−1,−q4, q4, q6; q12]∞ = [−q,−q3, q3, q5; q12]∞ + [q, q3,−q3,−q5; q12]∞

(17)

and

q[−1,−q2, q2, q6; q12]∞= [−q,−q3, q3, q5; q12]∞− [q, q3,−q3,−q5; q12]∞.

(18)

In the lemma replace q with q12 and take n = 3. Then (17) and
(18) follow by taking (a1, a2, a3; b1, b2, b3) = (1,−1, q9; q5,−q, q3) and
(a1, a2, a3; b1, b2, b3) = (1,−1, q3, q5,−q, q−3), respectively.

Proof of Theorem 6. By addition and subtraction, Theorem 6 is
equivalent to

[−1,−q4, q4, q4; q10]∞ = [−q,−q3, q3, q3; q10]∞ + [q, q3,−q3,−q3; q10]∞

(19)

and

q[−1,−q, q, q4; q10]∞ = [−q,−q2, q2, q3; q10]∞ − [q, q2,−q2,−q3; q10]∞.

(20)

In the lemma replace q with q10 and take n = 3. Then (19) and
(20) follow by taking (a1, a2, a3; b1, b2, b3) = (1,−1, q7; q3,−q, q3) and
(a1, a2, a3; b1, b2, b3) = (1,−1, q2; q3,−q, q−2), respectively.

Remarks. Equations (19) and (20) are due to Lewis [8] who used
them to compute the two-dissection of Ramanujan’s continued fraction.
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Bhargava, Adiga and Somashekara [1] have given proofs of Theorems
2, 3 and 4 using theta functions of Ramanujan. Blecksmith, Brillhart
and Gerst [2] used the ideas of Bhargava et al. [1] to give new proofs
of Theorems 5 and 6.
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