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THE HAKE’S THEOREM AND
VARIATIONAL MEASURES

Abstract

We give a characterization of the Henstock-Kurzweil integral on Rm

in terms of variational measures. As an application of this we prove a
generalization of the Hake’s theorem to Rm.

1 Introduction

The Hake’s theorem on R asserts that in some sense there are no improper
Henstock-Kurzweil integrable functions, [4, Theorem 9.21]. More precisely,

Theorem 1.1 (Hake). A function f : [0, 1] → R is Henstock-Kurzweil inte-
grable if and only if f is Henstock-Kurzweil integrable over each subinterval
[c, 1] with 0 < c < 1 and the following limit exists

lim
c→0

∫ 1

c

f.

Some extensions of this theorem have been obtained by Muldowney and
Skvortsov in [9] and Faure in [2]. But both of these use an abstract concept
of integral convergence over a suitable increasing sequence of figures.

We prove a measure theoretic extension of this theorem on finite dimen-
sional Euclidean spaces using the variational measure WF , introduced by
Schwabik in [13]. This generalizes the following result [13, Theorem 3.11]:
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Theorem 1.2 (Schwabik). Let A be a closed subset of [a, b] ⊂ R1 and denote
by Comp([a, b], A) the family of all non-empty connected components of the
set [a, b] \A. Let f and F be two real valued functions on [a, b] satisfying
i) f.χA is Henstock-Kurzweil integrable,
ii) F is continuous on E,
iii) For every interval [c, d] ⊂ U ∈ Comp([a, b], A), the function f.χ[c, d] is

Henstock-Kurzweil integrable with
∫ d
c
f = F (d)− F (c).

Then f is Henstock-Kurzweil integrable over the interval [a, b] if and only
if WF (A) = 0.

Schwabik proved it using Theorem 1.1. The extensions given in [2] and [9]
can’t be used in that fashion, to prove a similar result for functions on Rm.

We first prove a measure theoretic characterization of the Henstock-Kurzweil
integral on Rm. Using that characterization we generalize Theorem 1.2 on Rm
and observe the redundancy of the continuity hypothesis. That may also be
considered as a generalization of the Hake’s theorem on Rm.

2 Preliminaries

Let m ≥ 1 be any integer, Rm be the m-dimensional Euclidean space and µ
be the Lebesgue measure on Rm. Let I be a compact interval in Rm and Ω
be the σ-algebra of Lebesgue measurable sets in I. For an interval J ⊂ I,
let Sub(J) and F(J) denote the family of compact subintervals of J and the
algebra generated by Sub(J), respectively and let F = F(I).

Let d be any given metric on Rm and B(x, r) denotes the open ball in
(Rm, d) with centre x and radius r, for x ∈ Rm and r > 0. By a figure E
in Rm, we mean a finite union of compact intervals in Rm. The Henstock-
Kurzweil integrability of a function f : I → R is defined as follows:

Definition 2.1. (i) A collection {(ti, Ii) : i = 1, 2, . . . , p} of point-interval
pairs is said to be a partial division in I if Ii’s are nonoverlapping in-
tervals in I and ti ∈ Ii, for each i. If further, ∪pi=1Ii = I, it is called a
division of I.

(ii) Given a positive valued function δ : I → (0,∞), a partial division
{(ti, Ii) : i = 1, 2, . . . , p} in I is said to be δ-fine if Ii ⊂ B(ti, δ(ti))
for each i.

(iii) A function f : I → R is said to be Henstock-Kurzweil integrable (or
simply HK-integrable), with A ∈ R as its integral, if for every ε > 0
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there is a function δ : I → (0,∞) such that the inequality∣∣∣∣ p∑
i=1

f(ti)µ(Ii)−A
∣∣∣∣ < ε

is satisfied for all δ-fine divisions {(ti, Ii) : i = 1, . . . , p} of I.

The Henstock-Kurzweil integral of f over I is denoted by (HK)
∫
I
fdµ. A

function F : F → R is called the primitive of f if F (J) = (HK)
∫
J
fdµ, for

each J ∈ F .
We shall use the following Saks-Henstock Lemma [12, Lemma 3.4.1.], in

our proofs.

Lemma 2.2 (Saks-Henstock). Let f : I → R be an HK-integrable function
with primitive F . Then for every ε > 0 there exists a function δ : I → (0,∞)
satisfying

p∑
i=1

∣∣f(ti)µ(Ji)− F (Ji)
∣∣ ≤ ε

for every δ-fine partial division {(ti, Ji) : 1 ≤ i ≤ p} of I.

The following proposition is an immediate consequence of the above lemma.

Proposition 2.1. Let f : I → R be an HK-integrable function satisfying
(HK)

∫
J
fdµ = 0, for each J ∈ Sub(I). Then f = 0 almost everywhere on I.

We now define the Henstock variational measure VF and the oscillatory
variational measure WF as follows:

Definition 2.3. Let F : F → R be a finitely additive set function.

(i) For J ∈ Sub(E), the oscillation of F at J , denoted by w(F, J), is defined
as w(F, J) := sup{|F (K)| : K ∈ Sub(J)}.

(ii) For M ⊂ E and a function δ : M → (0,∞), we define

V (F,M, δ) := supP

p∑
i=1

|F (Ii)| and W (F,M, δ) := supP

p∑
i=1

w(F, Ii),

where the supremum is taken over all δ-fine partial divisions
P = {(ti, Ii) : 1 ≤ i ≤ p} in E, such that each ti ∈M .

(iii) The Henstock variational measure VF and the oscillatory variational
measure WF on a subset M of E are defined as follows:
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VF (M) := infδV (F,M, δ) and WF (M) := infδW (F,M, δ)

where the infimum is taken over all the functions δ : M → (0,∞).

It can be easily seen that for a compact real interval M , both VF (M) and
WF (M) are equal to the standard total variation of F over M , [13, Lemma
2.2]. Throught this paper, we adopt the following notations from [5].

Notations 2.4. (i) For any α = (α1, .., αm) and β = (β1, .., βm) ∈ Rm,
define an interval [α, β] := {γ = (γ1, ..., γm) : αi ≤ γi ≤ βi for each 1 ≤
i ≤ m}. In this sense, we write I = [a, b], for some a, b ∈ Rm.

(ii) For a given set function F : F → R, define the corresponding point
function F0 : I → R as, F0(t) := F ([a, t]) for all t ∈ I = [a, b].

(iii) For a given point function F0 : I → R, define the corresponding set
function F1 : F → R as follows:

For J = [α, β] ∈ Sub(I), we set F1(J) =
∑
γ(−1)n(γ)F0(γ) where

the summation is taken over all vertices γ of the interval J in Rm, and
for γ = (γ1, .., γm) where γi = αi or βi for each 1 ≤ i ≤ m, n(γ) is the
cardinality of the set {i : γi = αi}. Then we extend F1 to F , naturally.

Note that if we start with a finitely additive set function F : F → R then
the set function F1, corresponding to the F0 function for F , will be identical
to the function F itself.

There are several definitions of continuity of additive interval functions.
The above notations are aimed at avoiding confusion over that. We shall deal
with the continuity of point functions only.

We say that VF is absolutely continuous with respect to µ, or simply
absolutely continuous when there is no ambiguity, if VF (N) = 0, for every
N ⊂ [0, 1] with µ(N) = 0. In that case we write VF � µ. Similarly, we define
WF � µ.

Remarks 2.5. (i) In [13], WF is defined for m = 1 and only for the func-
tions F for which the corresponding point function F0 is continuous.
However, we don’t assume any continuity hypothesis and shall extend
most of the results of [13] in next sections.

(ii) It follows from [3, Proposition 3.3] that VF is a metric outer measure.
The similar arguments prove that WF too is a metric outer measure.
Further, an application of [1, Theorem 3.7] shows that both VF and WF

are Borel measures.

(iii) It was proved in [6, Theorem 3.7] that if VF is absolutely continuous
then VF is a measure on Ω. The same result holds true for WF too.
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3 The interdependence of VF and WF

In [13], Schwabik had defined VF and WF for the case when m = 1 and proved
their interdependence (see Corollary 2.4, [13]). We here generalize that for
any m.

Lemma 3.1. Let F0 : I → R be a continuous point function, J ∈ Sub(I) and
t0 ∈ J . Then there exists J0 ∈ Sub(J) such that w(F0, J) ≤ 2|F1(J0)| and
t0 ∈ J0.

Proof. Write J = [α, β]; α, β ∈ Rm and consider a set A ⊂ R2m, defined as
A := {(a1, ..., a2m) : αi ≤ ai ≤ ai+m ≤ βi for every 1 ≤ i ≤ m}. Now define
maps φ : A→ R2m and ψ : φ(A)→ R as follows:

For a ∈ A, define φ(a) := (F0(b1), ..., F0(b2m)), where b1, ..., b2m are vertices
of the compact interval [(a1, ..., am), (am+1, ..., a2m)] in Rm, arranged in the
standard lexicographical order b1 ≤ b2 ≤ ... ≤ b2m . We now set

ψ(F0(b1), ..., F0(b2m)) =
∑

1≤i≤2m
(−1)n(bi)F0(bi).

Since F0 is continuous, the composite map ψoφ : A→ R is continuous. As
A ⊂ R2m is compact, there exists some a0 ∈ A where the supremum of ψoφ is
attained. Note that we have ψoφ(a) = F1[(a1, .., am), (am+1, .., a2m)]. Thus if
we write a0 := (a01, .., a

0
2m) and J ′ := [(a01, .., a

0
m), (a0m+1, .., a

0
2m)], we will have

J ′ ∈ Sub(J) and w(F1, J) = |F (J ′)|.
Now, if t0 ∈ J ′, we may take J0 := J ′. Otherwise choose two subintervals

J1 and J2 of J such that J ′ = J1 \ J2 and both J1 and J2 contain t0. Then

w(F1, J) = |F (J ′)| = |F1(J1)− F1(J2)| ≤ |F1(J1)|+ |F1(J2)|.

Now if |F1(J1)| ≥ |F1(J2)| then put J0 = J1, otherwise take J0 = J2. This
proves the result.

The above lemma immediately gives us the following.

Proposition 3.1. Let F0 : I → R and M ⊂ I. Then we have

(i) VF1(M) ≤WF1(M).

(ii) If F0 is continuous on I, then WF1
(M) ≤ 2VF1

(M).

Note that the first inequality follows directly. Next we present some char-
acterizations of the Henstock-Kurzweil integral.
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4 Variational measures and the HK-integral

The following measure theoretic characterization of the Henstock-Kurzweil
integral over finite dimensional Euclidean spaces is proved in [6].

Theorem 4.1. Let F : F → R be a finitely additive set function. Then
VF is absolutely continuous with respect to µ if and only if there exists an
Henstock-Kurzweil integrable function f : I → R with primitive F .

We shall prove a similar result for WF . This will generalize [13, Theorem
3.4] on Rm, proving the redundancy of the continuity hypothesis therein. First
we present the following extension of [4, Theorem 9.12] to finite dimensional
Euclidean spaces. A proof to this theorem can also be found in [8, Theorem
2.4.10], but our proof below is more direct.

Theorem 4.2. Let f : I → R be a Henstock-Kurzweil integrable function with
primitive F . Then the corresponding point function F0 : I → R is continuous.

Proof. Let t0 ∈ I and let ε > 0 be given. Choose a function δ : I → (0,∞)
so that the conclusion of the Saks-Henstock lemma holds true for this ε, that
is, the inequality

p∑
i=1

|f(ti)µ(Ii)− F (Ii)| ≤ 2ε

is satisfied for any δ−fine partial division {(ti, Ii) : 1 ≤ i ≤ p} of I. We define
another function δ0 : I → (0,∞) as follows:

δ0(t) =

{
min{δ(t), 12 ‖ t− t0 ‖} if t 6= t0
min{δ(t0), 12 ( ε

|f(t0)|+1 )
1
m } if t = t0

Now for any δ0-fine interval-point pair {(t0, I0)} such that t0 ∈ I0, we must
have I0 ⊂ B(t0, δ0(t0)) ⊂ B(t0, δ(t0)). So, by our choice of δ, we have

|f(t0)µ(I0)− F (I0)| ≤ 2ε.

Also note that if J0 is the cube centred at t0 with each of its sides equal
to 2δ0(t0), then

µ(I0) ≤ µ(B(to, δ0(t0))) ≤ µ(J0) <

[(
ε

|f(t0)|+ 1

) 1
m
]m

=
ε

|f(t0)|+ 1
.

In that case we have

|F (I0)| ≤ |F (I0)− f(t0)µ(I0)|+ |f(t0)|µ(I0) < 2ε+ |f(t0)| ε

|f(t0)|+ 1
< 3ε.
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Now we choose η > 0 so small that for any t ∈ B(t0, η), µ([0, t]4[0, t0]) <
δ0(t0), where 4 dentes the usual symmetric difference between the sets. Now
for any t ∈ B(t0, η), we claim that |F0(t) − F0(t0)| = |F ([a, t]) − F ([a, t0])| <
n(m)ε, where n(m) is a fixed number depending only on m.

We illustrate the argument for the case when m = 2. Write t0 = (t01, t
0
2)

and t = (t1, t2) and consider two cases: case(i): t01 ≤ t1 and t02 ≤ t2, and
case(ii): t01 ≤ t1 and t02 > t2. The other two cases can be handled similarly.

In case(i), we write, |F ([a, t]) − F ([a, t0])| = |F (I1 ∪ I2)|, where I1 :=
[(a1, t

0
2), t] and I2 := [(t01, a2), t]. Note that since t0 ∈ I1 ∩ I2 and µ(I1 ∪ I2) =

µ([0, t]4[0, t0]) < δ0(t0), we have

|F0(t)− F0(t0)| = |F ([a, t])− F ([a, t0])| = |F (I1 ∪ I2)| =
|F (I1)+F (I2)−F (I1∩I2)| ≤ |F (I1)|+|F (I2)|+|F (I1∩I2)| < 3ε+3ε+3ε = 9ε.

In case(ii) we write, F ([a, t])− F ([a, t0]) = F (J1 \ J2)− F (J3 \ J2), where
J1 := [(t01, a2), (t1, t

0
2)], J2 := [(t01, t2), (t1, t

0
2)] and J3 := [(a1, t2), (t1, t

0
2)]. Also

note that since t0 lies in each of these Ji’s and because of our choice of t, µ(Ji) <
δ0(t0), for each i. Therefore we have

|F0(t)− F0(t0)| = |F ([a, t])− F ([a, t0])| ≤ |F (J1 \ J2)|+ |F (J3 \ J2)| ≤
|F (J1)|+ |F (J1 ∩ J2)|+ |F (J3)|+ |F (J3 ∩ J2)| < 3ε+ 3ε+ 3ε+ 3ε = 12ε.

Thus for m = 2 we have established our claim with n(m) = 12. The similar ar-
guments would apply for any m. We only need to write |F ([a, t])−F ([a, t0])| ≤∑
K |F (K)| for some finitely many K ∈ Sub(I) (the maximum number of

such K’s would depend only on m) such that each such K contains t0 and
µ(K) < δ0(t0).

This proves continuity of F0 at t0. Thence F0 is continuous on I.

Theorem 4.3. Let F : F → R. The following are equivalent:
(i) WF is absolutely continuous.
(ii) VF is absolutely continuous.

Proof. First assume that WF is absolutely continuous with respect to µ
and take any M ⊂ I such that µ(M) = 0. Then WF (M) = 0 which implies
VF (M) = 0, as 0 ≤ VF (M) ≤WF (M) is always true.

For the converse, assume that VF is absolutely continuous with respect to
µ. Using Theorem 4.1, there exists an HK- integrable function f : I → R
such that F (J) = (HK)

∫
J
fdµ for J ∈ F . Now by Theorem 4.2, the corre-

sponding F0 is a continuous function on I. Further, using Proposition 3.1 we
have VF (M) ≤ WF (M) ≤ 2VF (M) for any M ⊂ I. Then, as above, WF is
absolutely continuous with respect to µ.
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The strong Lusin condition (or SL-condition), which was first considered
by Pfeffer in [11], is defined by Schwabik in [13] as follows:

Definition 4.4. A function F : [a, b]→ R is said to satisfy the SL-condition
(strong Lusin condition) if F is continuous and WF1

� µ.

As in the previous proof we have seen that WF � µ implies that the
corresponding function F0 is continuous. So even this continuity hypothesis
is not required to define the SL-condition. Thence we present the following
characterizations of the HK-integral on Rm.

Theorem 4.5. Let F : F → R be finitely additive. The following are equiva-
lent:

(i) F satisfies the SL-condition.

(ii) VF is absolutely continuous with respect to µ.

(iii) WF is absolutely continuous with respect to µ.

(iv) There exists an HK-integrable function f : I → R with primitive F .

5 The Hake’s theorem and variational measures

In this section we generalize the Hake’s Theorem for functions on finite dimen-
sional Euclidean spaces. We use Theorem 4.5 in our proofs. First we restate
the Hake’s theorem as follows:

Theorem 5.1. Let f and F be real valued functions over [0, 1] such that
for each interval [c, 1] with 0 < c < 1, f is HK-integrable over [c, 1] with

(HK)
∫ 1

c
f = F (1)− F (c).

Then f is HK-integrable over [0, 1] if and only if F is continuous at 0.

Moreover, in that case we have,
∫ 1

0
f = F (1)− F (0).

We extend the above version of the Hake’s theorem over Rm. That would
generalize Theorem 1.2 over Rm and also show the redundancy of the conti-
nuity hypothesis. We first prove a special case, which would be used to prove
the main result.

Let E be a compact figure in Rm, f : E → R and F(E) denote the algebra
generated by subintervals of E. Let F : F(E) → R be a finitely additive set
function.
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Theorem 5.2. Let I = [a, b] ⊂ E be a compact interval such that for every J ∈
Sub(I) satisfying J ∩ ∂I = ∅, f is HK-integrable over J with (HK)

∫
J
fdµ =

F (J).

Then f is HK-integrable over I if and only if WF (∂I) = 0. Moreover, in
that case we have, (HK)

∫
I
fdµ = F (I).

Proof. If f is HK-integrable over I then by Theorem 4.5, WF is absolutely
continuous with respect to µ and thus WF (∂I) = 0.

For the converse, assume that WF (∂I) = 0. We write a = (a1, . . . , am),
b = (b1, . . . , bm) and choose an increasing sequence of sets {An} such that for
each n ∈ N,

An =

[(
a1+

b1 − a1
n+ 1

, . . . , am+
bm − am
n+ 1

)
,

(
b1−

b1 − a1
n+ 1

, . . . , bm−
bm − am
n+ 1

)]
By our hypothesis, f is HK-integrable over each An. Using Theorem 4.5,

on subsets of An, WF is absolutely continuous with respect to µ. Now choose a
subset N of I satisfying µ(N) = 0 and write N = (N ∩ ∂I)∪ (∪∞n=1(N ∩An)).
Since WF is an outer measure, we have

WF (N) ≤WF (N ∩ ∂I) +

∞∑
n=1

WF (N ∩An) = 0

This proves that WF is absolutely continuous with respect to µ on I and
thence by Theorem 4.5 there exists an HK-integrable function g : I → R such
that F (J) = (HK)

∫
J
gdµ for all J ∈ F . Further an application of Proposition

2.1 proves this result.

In [13, Lemma 3.7] the following is presented for functions on real line.
We observe that Lemma 3.1 ensures its validity even over finite dimensional
Euclidean spaces.

Lemma 5.3. Assume that f : E → R is HK-integrable with (HK)
∫
J
f =

F (J), for every interval J ⊂ I. Then

WF (M) ≤ 2.µ(E).sup{|f(t)| : t ∈M}

holds for every M ⊂ E.

Next we prove a more generalized version of Theorem 5.2.
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Theorem 5.4. Let A ⊂ E be a closed set such that
(a) f is HK-integrable over A.
(b) For each compact interval J ⊂ E \ A, f is HK-integrable over J with
integral F (J).

Then WF (A) = 0 if and only if f is HK-integrable over E with

(HK)

∫
E

fdµ = F (E) + (HK)

∫
A

fdµ. (1)

Proof. Let ε > 0 be given. We write E \ A = ∪n∈NUn, where {Un} is a
collection of pairwise non-overlapping intervals in E. This is possible since
the intervals [(α1, . . . , αm), (β1, . . . , βm)] with rational αi’s and βi’s, form a
countable base in Rm.

We first consider the case when f(t) = 0, for all t ∈ A∪ (∪n∂Un). Let B =
A ∪ (∪n∂Un). If f is HK-integrable over E, Lemma 5.3 implies WF (A) = 0.

For the converse, we assume that WF (A) = 0. For any n ∈ N, we write
∂Un = (∂Un ∩ A) ∪ (∂Un ∩ (E \ A)). We find a compact figure J ⊂ (E \ A)
such that ∂Un ∩ (E \ A) ⊂ J . Using our hypothesis, f is HK-integrable
over J . Now by Theorem 4.5, we have WF � µ on subsets of J and thence
WF (∂Un ∩ (E \ A)) = 0. Since WF is an outer measure we have WF (∂Un) ≤
WF (∂Un∩A)+WF (∂Un∩(E \A)) ≤WF (A) = 0. Further, we have WF (B) ≤
WF (A) +

∑
nWF (∂Un) = 0.

Now as in Theorem 5.2, by a repeated application of Theorem 4.5, we prove
that f is HK-integrable over E with primitive F . Hence we have proved our
result for the case when f(t) = 0 for all t ∈ B.

For the general case, we define a function g : E → R as g = f − f.χB ,
where χB denotes the characteristic function of the set B. Then g(t) = 0 for
all t ∈ B and g(t) = f(t) for all t ∈ E \B.

Note that for any compact interval J ⊂ (E \ B) ⊂ (E \ A), since f is
HK-integrable over J with integral F (J) and f(t) = g(t) for almost all t ∈ J ,
g is HK-integrable over J with integral F (J).

Now as above, we have WF (A) = 0 if and only if g is HK-integrable over
E with (HK)

∫
E
gdµ = F (E), that is, if and only if f −f.χA is HK-integrable

over E with (HK)
∫
E

(f − f.χA)dµ = F (E).
Since f is given to be integrable over A we observe that WF (A) = 0 if and

only if f is HK-integrable over E with (HK)
∫
E

(f −f.χA)dµ = F (E), that is,

(HK)

∫
E

fdµ = F (E) + (HK)

∫
A

fdµ.
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6 Concluding Remarks

Schwabik has presented a general concept of integral in [14], using a functional
theoretic approach. He introduces a special class I of integrals and shows that
the Henstock-Kurzweil integral belongs to it. Using Theorem 4.5, we observe
that I is precisely the class of integrals weaker than the Henstock-Kurzweil
integral.

We also remark that equation (1) in Theorem 5.4 may appear a bit unin-
tuitive, as one would naturally expect (HK)

∫
E
fdµ = F (E) as the conclusion.

This happens since we are not given any information about the relationship
between f and F , on A. The set function F is given to be the primitive of f ,
only on the compact intervals inside E \A.

We also observe that our main theorems, that is, Theorem 5.2 and Theorem
5.4 hold valid with WF replaced by VF . Using similar steps one can also prove
the following version of the Hake-type theorem on Rm.

Theorem 6.1. Let F∞ denote the algebra generated by all subintervals of Rm

and F : F∞ → R be a given finitely additive set function. Let f : Rm → R
be a function such that for each compact interval I ⊂ Rm, f is HK-integrable
over I with integral F (I).

Then f is HK-integrable over Rm if and only if VF (Rm \Rm) = 0. More-
over, in that case we have, (HK)

∫
Rm fdµ = F (Rm).

In particular, it implies that the improper Riemann integrals over Rm
belong to the class of Henstock-Kurzweil integrable functions over Rm.

The above theorem can also be considered as another way to define the
Henstock-Kurzweil integral of a function over multidimensional unbounded
intervals.

Acknowledgment. The authors wish to thank the referees for their con-
structive critique of the first draft.
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