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UNIFORM DIFFERENTIABILITY

Abstract

The concept of uniform differentiability is introduced to characterize
sequences of McShane and Henstock equi-integrable functions.

1 Introduction

In [14], the McShane derivative is introduced. It deviates from the ordinary
definition by using McShane interval-point pairs. The same derivative is also
called strong derivative in [2, 6, 14]. Chew in [5] characterized the Lebesgue
and Bochner integrals using strong derivatives together with inner variation
and Lusin condition.

Equi-integrability is relatively well-known (see [13, 15]). In [13], a conver-
gence theorem is proved for a sequence of McShane integrable functions based
on equi-integrability and this convergence theorem is equivalent to the Vitali
convergence theorem.

In this paper, we introduce the concept of uniformly strongly differentiable
functions, and investigate the McShane and Henstock integrals in terms of
equi-integrability and uniform strong differentiability.
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Let us revisit the following definitions. See [9, 10, 11, 13].

Definition 1. Let δ be a positive function on a closed interval [a, b]. A tagged
division D = {([u, v], ξ)} of [a, b] is said to be a McShane δ-fine division of
[a, b] if [u, v] ⊂ (ξ − δ(ξ), ξ + δ(ξ)) and ξ ∈ [a, b] for every ([u, v], ξ) ∈ D. A
function f : [a, b] → R is said to be McShane integrable to a real number A
on [a, b] if for each ε > 0, there exists δ(ξ) > 0 on [a, b] such that whenever
D = {([u, v], ξ)} is a McShane δ-fine division of [a, b], we have∣∣∣(D)

∑
f(ξ)(v − u)−A

∣∣∣ < ε.

If we choose ξ ∈ [u, v] for every interval-point pair in any δ-fine division
D = {[u, v]; ξ}, we obtain the definition of the Henstock integral. We use the
symbols

(M)

∫ b

a

f and (H)

∫ b

a

f

to denote the McShane integral and Henstock integral of f on [a, b], respec-
tively.

Definition 2. A sequence {fn} of McShane (resp. Henstock) integrable func-
tions on [a, b] is equi-integrable on [a, b] if for any ε > 0, there exists δ(ξ) > 0
such that ∣∣∣∣∣(D)

∑
fn(ξ)(v − u)− (M)

∫ b

a

fn

∣∣∣∣∣ < ε, for all n

(
resp.

∣∣∣∣∣(D)
∑

fn(ξ)(v − u)− (H)

∫ b

a

fn

∣∣∣∣∣ < ε, for all n

)
whenever D = {([u, v], ξ)} is a McShane (resp. Henstock) δ-fine division of
[a, b].

2 McShane integral

In this section, we shall characterize the McShane equi-integrability in terms
of uniform strong differentiability.

Definition 3. Let {Fn} be a sequence of functions defined on [a, b]. We say
that {Fn} is uniformly strongly differentiable at x ∈ [a, b], with fn being the
strong derivative of Fn, if for each ε > 0, there exists δ(x) > 0 such that for
each n, we have

|Fn(v)− Fn(u)− fn(x)(v − u)| < ε|v − u|
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whenever [u, v] ⊂ (x − δ(x), x + δ(x)). {Fn} is said to be uniformly strongly
differentiable on X ⊆ [a, b] if it is uniformly strongly differentiable at every
x ∈ X. We denote the difference Fn(v)− Fn(u) by Fn(u, v).

Consider the following example.

Example 4. Let Fn(x) = 1
n+1x

n+1 and fn(x) = xn for x ∈ [0, a] with a < 1.

Given ε > 0, define δ : [0, a] → R+ by δ(x) = 1
2ε(1 − a). Let n be any

positive integer and ([u, v], x) be any interval-point pair such that [u, v] ⊂
(x − δ(x), x + δ(x)). Applying the Mean Value Theorem to gn(x) = xn+1

defined on [0, a], we can find w ∈ (u, v) such that

g′n(w) =
gn(v)− gn(u)

v − u
=
vn+1 − un+1

v − u
that is,

(n+ 1)wn =
vn+1 − un+1

v − u
.

Since x,w ∈ (x− δ(x), x+ δ(x)), we have

|wn − xn| ≤ |w − x| ·
n∑

k=1

|w|n−k|x|k−1 < 2δ(x) ·
∞∑
k=1

(
1n−k · ak−1

)
=

2δ(x)

1− a
.

Hence,∣∣∣Fn(u, v)− fn(x)(v − u)
∣∣∣ =

∣∣∣∣∣ vn+1

n+ 1
− un+1

n+ 1
− xn(v − u)

∣∣∣∣∣
=
|v − u|
n+ 1

·

∣∣∣∣∣vn+1 − un+1

v − u
− xn(n+ 1)

∣∣∣∣∣
=
|v − u|
n+ 1

·
∣∣∣(n+ 1)wn − (n+ 1)xn

∣∣∣
= |v − u| ·

∣∣wn − xn
∣∣

< |v − u| · 2δ(x)

1− a
= |v − u| · 2

1− a
· ε(1− a)

2
< ε|v − u|.

Therefore, {Fn} is uniformly strongly differentiable on [0, a] for a < 1. J

As seen in the above example, {Fn} is uniformly strongly differentiable on
the compact interval [0, 1] except at the point 1.

We now introduce the concept of “covering relation”, see [12].
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Definition 5. Let I be the collection of all closed interval in R and E ⊆ R.
A covering relation β on E is a subset of I × E with the property that for
each x ∈ E there exists I ∈ I such that (I, x) ∈ β.

Note that x is not necessarily in I; whence, we call β as McShane covering
relation on E. If x ∈ I, then we call β as Henstock covering relation on E. A
covering relation β is said to be fine at a point x if for each δ(x) > 0, there
exists a interval-point pair ([y, z], x) ∈ β such that [y, z] ⊂ (x− δ(x), x+ δ(x)).
β is a fine covering relation on a set E if it is fine at each point of E. Henstock
refers to a fine covering relation on E as an inner covering of E.

We now give the definition of inner variation zero.

Definition 6. Let E be a set of real numbers. For a covering relation β on
E, we define V ar(β) = sup

∑
(I,x)∈P |I|, where the supremum is taken over all

partial divisions P ⊆ β. Let IV (E) = inf V ar(β), where the infimum is taken
over all McShane (resp. Henstock) inner coverings β on E. We say that E is
of McShane (resp. Henstock) inner variation zero if IV (E) = 0.

In R1, Henstock inner variation zero is equivalent to measure zero, see [4].
However, a set of McShane inner variation zero may not be of measure zero,
as was pointed out by Henstock in [7, p.136]. Example 12 below shows the
Cantor set P of positive measure to be of McShane inner variation zero, as
was also implicitly proved in [14].

Using the above definition, it is easy to check the following lemma.

Lemma 7. A set E ⊂ R is of McShane (resp. Henstock) inner variation
zero if and only if for each ε > 0 there exists a McShane (resp. Henstock)
inner covering β0 of E such that for each partial division P = {([u, v], ξ)}
with P ⊆ β0, we have

(P )
∑
|v − u| < ε.

The following result was proved in [8].

Theorem 8. If f is McShane integrable on [a, b], then its primitive F has
strong derivative F ∗(x) and F ∗(x) = f(x) everywhere except on a set of Mc-
Shane inner variation zero.

We now state and prove our main results.

Theorem 9. If {fn} is McShane equi-integrable on [a, b] with primitives Fn,
then {Fn} is uniformly strongly differentiable on [a, b]rS, where S is a set of
McShane inner variation zero.
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Proof : Let S be the subset of [a, b] where {Fn} is not uniformly strongly
differentiable. Then for each x ∈ S, there exists η(x) > 0 such that for each
δ(x) > 0, there exist m and a McShane δ-fine interval-point pair ([u, v], x)
such that ∣∣∣Fm(u, v)− fm(x)(v − u)

∣∣∣ ≥ η(x) · |v − u|. (1)

Now, fix k ∈ N. Let

Sm,k =
{
x ∈ S : there exists m such that (1) holds and η(x) ≥ 1

k

}
.

Then S =
⋃

m,k Sm,k. To show that S is of McShane inner variation zero, it
suffices to show that each Sm,k is of McShane inner variation zero.

Fix m and k. Let ε > 0. Since {fn} is equi-integrable, there exists δ(ξ) > 0
such that for each n and for any McShane δ-fine division D = {([u, v], ξ)} of
[a, b], we have

(D)
∑∣∣∣Fn(u, v)− fn(ξ)(v − u)

∣∣∣ < ε

k
.

Let Cm,k(ε) be the set of all interval-point pairs ([u, v], x) such that ([u, v], x)

is McShane δ-fine and
∣∣∣Fm(u, v)− fm(x)(v−u)

∣∣∣ ≥ 1
k |v−u|. Then Cm,k(ε) is a

McShane inner covering of Sm,k. Let P = {([u, v], x)} be any McShane δ-fine
partial division with P ⊂ Cm,k. Then for any ([u, v], x) ∈ P , we have∣∣∣Fm(u, v)− fm(x)(v − u)

∣∣∣ ≥ 1
k · |v − u|.

Thus,

ε

k
> (P )

∑∣∣∣Fm(u, v)− fm(ξ)(v − u)
∣∣∣ ≥ 1

k · (P )
∑
|v − u|,

that is,

(P )
∑
|v − u| < ε.

Thus, Sm,k is of McShane inner variation zero. �

In [11], it is shown that if fk : I → R are McShane integrable over I
with fk(t) ↑ f(t) ∈ R for every t ∈ I and supk

∫
I
fk < ∞, then {fk} is

equi-integrable over I. It is also shown that if fk, g : I → R are McShane
integrable over I with |fk| ≤ g on I and fk → f pointwise on I, then {fk} is
equi-integrable over I. Thus, we have the following corollaries.
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Corollary 10. Let {fn} be an increasing sequence of McShane integrable
functions on [a, b] with primitives Fn and fn → f pointwisely on [a, b]. If

sup
{

(M)

∫ b

a

fn : n ∈ N
}
<∞, then {Fn} is uniformly strongly differentiable

on [a, b] except on a set of McShane inner variation zero.

An analogous result also holds for a decreasing sequence.

Corollary 11. Let {fn} be a sequence of McShane integrable functions on
[a, b] with primitives Fn and fn → f pointwisely on [a, b]. If g : [a, b] → R
is McShane integrable on [a, b] and |fn − fm| ≤ g for each n,m, then {Fn}
is uniformly strongly differentiable on [a, b] except on a set of McShane inner
variation zero.

We refer to the preceding two corollaries being the Monotone Convergence
Theorem and the Dominated Convergence Theorem, respectively.

Example 12. Let 0 < α < 1. A Cantor set P ⊂ [0, 1] can be constructed
as follows (see [3]): From the interval [0, 1], remove an open interval, centered
at 1

2 whose length is 1
2α. Thus, leaving two closed intervals (each of length

1
2 −

1
4α). Let P1 be the union of the two closed intervals. At the second

stage, we shall remove from P1 two further open intervals (each of length 1
8α),

one from each of the two closed intervals, leaving P2 consisting of four closed
intervals (each of length 1

4 −
3
16α). We proceed inductively and at the nth

stage, we are left with Pn consisting of 2n closed intervals (each of length
1
2n −

2n−1
22n α). We define P as the intersection of all the Pn’s. The set P is

nowhere dense (see [3]). Define the sequence {fn} by

fn(x) =

{
1, x ∈ Pn,
0, x /∈ Pn.

Then {fn} is a decreasing sequence of McShane integrable functions on [0, 1]
and fn → f pointwisely on [0, 1], where f is the function defined by

f(x) =

{
1, x ∈ P,
0, x /∈ P.

Moreover, (M)

∫ 1

0

fn(x) dx = 1− α+
α

2n
for each n. Thus,

lim
n→∞

(M)

∫ 1

0

fn(x) dx = 1− α <∞.



Uniform Differentiability 457

Hence, by Corollary 10, the sequence of primitives {Fn} of fn is uniformly
strongly differentiable on [0, 1] except on a set S of McShane inner variation
zero. Next, we will show that S is indeed P .

Let S be the set of all x ∈ [0, 1] such that {Fn} is not uniformly strongly
differentiable at x. Note that x ∈ S if and only if there exists η(x) > 0 such
that for each δ(x) > 0, there exist m ∈ N and a McShane δ-fine interval-point
pair ([u, v], x) such that∣∣∣Fm(u, v)− fm(x)(v − u)

∣∣∣ ≥ η(x) · |v − u|.

If x ∈ P , then x ∈ Pn for each n; so fn(x) = 1 for each n. Take η(x) = 1
2

and consider any δ(x) > 0. Since P is nowhere dense in [0, 1], the interval
(x − δ(x), x + δ(x)) has a subinterval (u, v) containing no points of P . Note
that x may not be in (u, v). Hence,

∅ = (u, v) ∩
( ∞⋂

n=1

Pn

)
=

∞⋂
n=1

(
Pn ∩ (u, v)

)
.

Since Pn+1 ⊂ Pn for each n, there exists m ∈ N such that Pm ∩ (u, v) = ∅.
Thus, fm(t) = 0 for each t ∈ (u, v). Therefore,∣∣∣Fm(u, v)− fm(x)(v − u)

∣∣∣ =
∣∣∣(M)

∫ v

u

fm(t)dt− 1 · (v − u)
∣∣∣

= |v − u|
≥ η(x) · |v − u|.

This implies that x ∈ S. Hence, P ⊆ S.
Now, we shall prove that S ⊆ P . Let x ∈ S and suppose x ∈ [0, 1]rP .

Let ε > 0. Then there exists N ∈ N such that x /∈ PN . Since Pn+1 ⊂ Pn

for each n, it follows that x /∈ Pn for each n ≥ N . Define δ(x) > 0 such
that (x− δ(x), x+ δ(x)) contains no points in PN . Thus, (x− δ(x), x+ δ(x))
contains no points in Pn for each n ≥ N and so, fn(x) = 0 for each n ≥ N .
If [u, v] ⊂ (x − δ(x), x + δ(x)), then [u, v] contains no points in Pn for each
n ≥ N . Hence, for each n ≥ N , Fn(u, v) = 0 implying that∣∣Fn(u, v)− fn(x)(v − u)

∣∣ = 0 < ε · |v − u|.

Suppose k < N . To show that Fk is strongly differentiable on [0, 1]rP , let
x0 ∈ [0, 1]rP . Let m be the least positive integer such that x0 /∈ Pm. If m ≤ k,
then fk(x0) = 0. Define δk(x0) > 0 such that (x0− δk(x0), x0 + δk(x0))∩Pk =
∅. Thus, for each [u, v] ⊂ (x0 − δk(x0), x0 + δk(x0))∣∣Fk(u, v)− fk(x0)(v − u)

∣∣ = 0 < ε · |v − u|.
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On the other hand, if m > k, then x0 ∈ Pk. Moreover, x0 is not an endpoint of
Pk. Thus, fk(x0) = 1. Define δk(x0) > 0 such that (x0−δk(x0), x0+δk(x0)) ⊂
Pk. Hence, for each [u, v] ⊂ (x0 − δk(x0), x0 + δk(x0)), we have fk(t) = 1 for
each t ∈ [u, v] and∣∣Fk(u, v)− fk(x0)(v − u)

∣∣ =
∣∣∣(M)

∫ v

u

fk(t)dt− fk(x0)(v − u)
∣∣∣

=
∣∣∣(M)

∫ v

u

dt− (v − u)
∣∣∣

= 0

< ε · |v − u|.

In either case, we have∣∣Fk(u, v)− fk(x0)(v − u)
∣∣ < ε · |v − u|.

Thus, Fk is strongly differentiable on [0, 1]rP for each k < N . Consequently,
{Fn} is uniformly strongly differentiable on [0, 1]rP . This is impossible because
x ∈ S. Hence, x ∈ P ; that is, S ⊆ P . Accordingly, S = P . J

Next, we formulate the converse. We start with the following definition.

Definition 13. Let {Fn} be a sequence of functions defined on [a, b] and
X ⊂ [a, b]. {Fn} is said to be uniformly McShane (resp. Henstock) AC(X)
if for each ε > 0, there exist η > 0 and δ(ξ) > 0 on X such that for any
McShane (resp. Henstock) δ-fine partial division P = {([u, v], x)} with x ∈ X
and (P )

∑
|v − u| < η, we have

(P )
∑∣∣Fn(v)− Fn(u)

∣∣ < ε, for all n.

In Theorem 9, we defined the set S as follows: x ∈ S if and only if there
exists η(x) > 0 such that for each δ(x) > 0, there exist m and a McShane
δ-fine interval-point pair ([u, v], x) such that∣∣∣Fm(u, v)− fm(x)(v − u)

∣∣∣ ≥ η(x) · |v − u|. (2)

The idea of the following proof follows that of a single function used in
[4, 5]. In the following result, let β(η, δ) denotes the collection of all McShane
δ-fine interval-point pair ([u, v], x) with x ∈ S such that inequality (2) holds.

Theorem 14. Let {fn} be a sequence of McShane integrable functions on [a, b]
and lim

n→∞
fn(x) = f(x) pointwisely on [a, b]. If the sequence {Fn} of primitives

of fn is uniformly strongly differentiable on [a, b]rS and suppose the following
conditions hold:
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(i) for each ε > 0, there exists δ(x) > 0 on S such that for any McShane
δ-fine partial division P = {([u, v], x)} with P ⊆ β(ε, δ), we have

(P )
∑
|v − u| < ε, and

(ii) {Fn} is uniformly McShane AC(S).

Then {fn} is equi-integrable on [a, b].

Proof : Let ε > 0. Since {Fn} is uniformly strongly differentiable on [a, b]rS,
for each x ∈ [a, b]rS there exists δ0(x) > 0 such that whenever ([u, v], x) is a
McShane δ0-fine interval-point pair with x ∈ [a, b]rS, we have

|Fn(v)− Fn(u)− fn(x)(v − u)| < ε · |v − u|, for each n. (3)

Since fn → f pointwisely on [a, b], so for each x ∈ [a, b], {fn(x)} is bounded.
For each i ∈ N, let

Si = {x ∈ S : i− 1 ≤ |fn(x)| < i, 1 for all n}.

Then S =

∞⋃
i=1

Si. Since {Fn} is uniformly McShane AC(S), {Fn} is also

uniformly McShane AC(Si) for each i. Hence, for each i, there exist ηi > 0
and δi(x) > 0 on Si such that for any McShane δi-fine partial division Pi =

{([u, v], x)} with x ∈ Si and (Pi)
∑
|v − u| < ηi, we have

(Pi)
∑∣∣Fn(v)− Fn(u)

∣∣ <
ε

2i
for each n.

For each i, let µi = min
{ ε

i2i
, ηi

}
. Since Si ⊆ S for each i, condition (i) also

holds. Thus, there exists a positive function δ′i(x) ≤ δi(x) on Si such that for
any McShane δ′i-fine partial division Pi = {([u, v], x)} with Pi ⊆ β(ε, δi), we
have

(Pi)
∑
|v − u| < µi ≤

ε

i2i
.

Note that if x ∈ S, then there exists i such that x ∈ Si. Define δ : [a, b] → R
by

δ(x) =

{
δ0(x) , if x ∈ [a, b]rS,
min{δ0(x), δi(x), δ′i(x)} , if x ∈ Si.

Let D = {([uj , vj ], xj)}rj=1 be any McShane δ-fine division of [a, b]. Let

D1 = {([uj , vj ], xj) ∈ D : xj /∈ S},
D2 = {([uj , vj ], xj) ∈ D : xj ∈ S and ([uj , vj ], xj) satisfies (3)} and

D3 = {([uj , vj ], xj) ∈ D : xj ∈ S and ([uj , vj ], xj) ∈ β(ε, δ)}.
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Then, for each n

(D1 ∪D2)
∑∣∣Fn(vj)− Fn(uj)− fn(xj)(vj − uj)

∣∣
< (D1 ∪D2)

∑(
ε · |vj − uj |

)
≤ ε · (b− a). (4)

Note thatD3 is a McShane δ-fine partial division withD3 ⊆ β(ε, δ) and xj ∈ S.
So D3 can be expressed as the union of some McShane δ′i-fine partial divisions
Pi = {([u, v], x)} with Pi ⊆ β(ε, δi) and (Pi)

∑
|v − u| < µi. Thus, for each n

(D3)
∑∣∣Fn(vj)− Fn(uj)

∣∣ =
∑[

(Pi)
∑∣∣Fn(v)− Fn(u)

∣∣]
<

∑ ε

2i

≤ ε

and

(D3)
∑(

|fn(xj)| · |vj − uj |
)

=
∑[

(Pi)
∑(

|fn(xj)| · |v − u|
)]

≤
∑(

i · (Pi)
∑
|v − u|

)
<

∑(
i · µi

)
≤

∑(
i · ε
i2i

)
≤ ε.

Thus, for each n

(D3)
∑∣∣Fn(vj)− Fn(uj)− fn(xj)(vj − uj)

∣∣
≤ (D3)

∑∣∣Fn(vj)− Fn(uj)
∣∣+ (D3)

∑(
|fn(xj)| · |vj − uj |

)
< 2ε. (5)

Hence, by (4) and (5), for each n
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∣∣∣∣∣
r∑

j=1

fn(xj)(vj − uj)− (M)

∫ b

a

fn

∣∣∣∣∣
≤ (D1 ∪D2)

∑∣∣fn(x)(v − u)− Fn(v) + Fn(u)
∣∣

+(D3)
∑∣∣fn(x)(v − u)− Fn(v) + Fn(u)

∣∣
< ε · (b− a) + 2ε

= ε(b− a+ 2).

This shows that {fn} is equi-integrable on [a, b]. �

3 Henstock Integral

Now we consider similar results for the Henstock integral.

Definition 15. Let {Fn} be a sequence of functions defined on [a, b]. We say
that {Fn} is uniformly differentiable at x ∈ [a, b], with fn being the derivative
of Fn, if for each ε > 0 there exists δ(x) > 0 such that for each n, we have

|Fn(u, v)− fn(x)(v − u)| < ε|v − u|

whenever x ∈ [u, v] ⊂ (x − δ(x), x + δ(x)). {Fn} is said to be uniformly
differentiable on X ⊆ [a, b] if it is uniformly differentiable at every x ∈ X.

By considering, in the proof of Theorem 9, interval-point pairs ([u, v], ξ)
with ξ ∈ [u, v], the following result holds for the Henstock integral.

Theorem 16. Let {fn} be a sequence of Henstock integrable functions on
[a, b] with primitives {Fn}. If {fn} is equi-integrable on [a, b], then {Fn} is
uniformly differentiable on [a, b]rS, where S is a set of Henstock inner vari-
ation zero.

As pointed out earlier, in R1, Henstock inner variation zero is equivalent
to measure zero. The sequence {fn} defined in Example 12 is uniformly dif-
ferentiable on [0, 1] except on a set of measure zero.

The result of Theorem 14 for Henstock integrable functions is proved in
[1].
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