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A FEW REMARKS ON METRIC DENSITY
AND SET POROSITY THAT ARE SIMPLE
AND INTERESTING CONSEQUENCES OF

WELL KNOWN RESULTS

Abstract

To every Lebesgue measurable subset of R is associated a certain sub-
collection of points where the given measurable set possesses a density.
By virtue of Lebesgue’s famous theorem on metric density, this associ-
ated set is a set of full measure in R and is hence measure-theoretically
very large. But are these sets also topologically large? In Lebesgue’s
theorem, the set is kept fixed while the point is allowed to vary. If
instead, we keep the point fixed a vary the set, then we may have corre-
sponding to each point in R a certain subclass of measurable sets each
member of which possesses a density at that point. How large is this
subclass in the “topology of measurable subsets of R”? In this paper,
in an endeavour to seek out answers to the questions set above, we have
arrived at certain interesting and significant conclusions. Somewhat
similar conclusions have been derived over analogous questions relating
to ‘set-porosity’.

1 Introduction.

Apart from the ones introduced (when required) in the sequel, we will be using
in general the following set of symbols
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(i) N for the set of naturals.

(ii) µ,M for the Lebesgue measure, the class of Lebesgue measurable sets
of finite measure, and K for the class of compact subsets of R.

(iii) A \B (resp, A∆B) for the difference (resp, symmetric difference) of two
sets A and B.

(iv) C(X) for the class of real-valued continuous functions on any general
topological space X.

(v) E(x) and E(y) for the x-section (x ∈ X) and the y-section (y ∈ Y ) of
any set E ⊆ X × Y .

(vi) f(x, .) and f(., y) for the x-section (x ∈ X) and the y-section (y ∈ Y ) of
any function f : X × Y → Z.

And also the following definitions.

Definition 1. A set E ⊆ X is called meagre (or, of first category) with respect
to some topology on X if we can express E as E =

⋃
n
En where each En(n ∈ N)

is a nowhere dense subset of X.

Definition 2. A set E ⊆ X is called co-meager (or, residual) with respect to
some topology on X if X \ E is a meager subset of X.

Definition 3. In a topological space X, a subset E is said to have the “prop-
erty of Baire” (see [8]) if E = G4P , where G is open and P is meager in
X.

Definition 4. (see [1]) Let (X,Σ) be a measurable space and Y, Z are topo-
logical spaces with BZ as the σ-algebra of Borel subsets of Z. A function
f : X × Y → Z is called a “Carathéodory function” provided that

(i) for each x ∈ X, the function f(x, .) : Y → Z is continuous and

(ii) for each y ∈ Y , the function f(., y) : X → (Z,BZ) is measurable.

Metric density (or, simply ‘density’) of a set (see [6]) in R is defined as
follows. For each E ∈M and x ∈ R, we write

Dx(E) = lim sup
I→x

µ(E ∩ I)

|I|
= sup
{Ik}

{
lim sup
k→∞

µ(E ∩ Ik)

|Ik|
: Ik → x

}
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and

Dx(E) = lim inf
I→x

µ(E ∩ I)

|I|
= inf
{Ik}

{
lim inf
k→∞

µ(E ∩ Ik)

|Ik|
: Ik → x

}
to denote respectively the ‘upper’ and ‘lower’ densities of E at x, where I → x
means that I, Ik are non-degenerate intervals in R such that x ∈ Ik(k ∈ N),
|I|, |Ik| stands for their Lebesgue measures and the diam(Ik) → 0. The
common value of the two limits (whenever it exists) is called the “Density
of E at x” and is denoted by the symbol Dx(E). Now let D(E) = {x ∈
R : Dx(E) exists} and D∗(E) = {x ∈ R : Dx(E) = 0 or 1}. Evidently,
D∗(E) ⊆ D(E).

Lebesgue’s famous theorem on metric density states that given a Lebesgue
measurable subset E of R, there is a subcollection of points of full measure in
R at each of which the density of E is either 0 or 1. In a more concise form,
this may be expressed as: for any E ∈M, µ(R\D∗(E)) = 0 and consequently,
µ(R \ D(E)) = 0 since D∗(E) ⊆ D(E).

Thus according to the above theorem, “the set of all points at which E has
a density” is measure-theoretically very large in R in the sense that its com-
plement in R is a set of measure zero (or in other words, measure-theoretically
small). But are these sets also topologically large?

Goffman (see [3]) showed that for Lebesgue measurable subsets of R, the
set D(E) \D∗(E) = {x : 0 < Dx(E) < 1} is meager. But the fact that this set
is also of measure zero is an immediate consequence of Lebesgue’s theorem.
Thus Goffman’s result exhibits the topological smallness of a set which is also
measure-theoretically small.

Again, Martin (see [7]) proved that given any Fσ subset Z of R with µ(Z) =
0 and a real number γ(0 < γ < 1), there exists a set E ∈ M such that
Dx(E) = γ for each x ∈ Z. But being an Fσ set of measure zero, Z is also
meager (by Baire’s theorem). Also by Goffman’s result stated above, it is a
subset of the set D(E) \ D∗(E). But unfortunately, these results of Goffman
and Martin are not enough to produce a proper answer to the questions raised
above.

None the less it was shown in [5] that we can always construct sets E
for which D(E) is meager. What has been shown there amounts to the fact
that corresponding to every Z ∈ M in R with µ(Z) = 0, a set E can be
constructed such that Dx(E) = 1 and Dx(E) = 0 for every x ∈ Z. But
as Z can be so chosen that it is a also co-meager (owing to an important
decomposition theorem stated in Chapter 1 (see [8]) which shows that R can
be decomposed into a meager set and a set of measure zero), the set E so
constructed is such that Dx(E) exists for at most a collection of points x
which constitutes a meager subset of R.
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The above example shows that there are sets E in M for which D(E) is
meager and therefore topologically small in R. More explicitly, given any co-
meager set of measure zero such a set can always be constructed. Thus such
sets may even exist in uncountably infinite numbers. But the major question
still remains unanswered. How large is this collection in the topology of M?
Where by the topology of M is meant the topology that is induced by the
metric τ (on M) defined by
τ(E,F ) = µ(E∆F ) for E,F ∈M (see [8])

In the density theorem of Lebesgue, the set is kept fixed while the point is
made to vary. If instead, we keep the point fixed and vary the set, then there
exists corresponding to each x ∈ R, a certain subclass {E ∈M : Dx(E) exists}
which we denote by the symbol Dx. One may note here that the class Dx and
the set D(E) are dual of each other, as one may be obtained from the other by
simply interchanging the roles played by the ‘set’ and the ‘point’. It is already
known by Lebesgue’s theorem that D(E) is measure theoretically very large
in R. Is Dx also topologically large in M.

The concept of density of a set was originally introduced by Lebesgue.
Lebesgue found that points in whose immediate neighbourhood a measur-
able set is either “highly concentrated” or “highly rarefied” occur in measure-
theoretic abundance and this was made precise in a remarkable theorem by
him mention of which is already made at the beginning of this article. A some-
what different notion of “set-porosity”, on the other hand, was introduced by
Denjoy whose aim was to obtain a classification for perfect sets in R in terms
of the relative sizes of the complementary intervals. Delzhenko introduced the
notion of σ-porous (countable union of porous sets) sets which forms a sub-
class of both the classes of “measure zero sets” and “meager sets”. However
since its inception, the concept of set-porosity has always played a significant
role in answering numerous question in real analysis.

The general definition for “set-porosity” (see [4]) is as follows. Let (X, ρ)
be a metric space. If U(x, r) stands for the open ball centred at x and of
radius r > 0, x ∈ X,M ⊆ X,R > 0 and we set λ(M,x,R) = sup({r > 0 :
there is an y ∈ X such that U(y, r) ⊆ U(x,R) \M} ∪ {0}), then the number

Π(M,x) = lim sup
R→0+

λ(M,x,R)
R defines what is called the “porosity of M at x”.

In connection with the above definition, a subset M of X is called porous
at x provided Π(M,x) > 0. It is called non-porous at x provided Π(M,x) = 0
and superporous if Π(M,x) = 1.

If X is the real line R with its usual metric, then λ(M,x,R) takes the form
λ(M,x,R) = sup({r > 0 : there is y ∈ R such that (y − r, y + r) ⊆ (x −
R, x + R) \ M} ∪ {0}) but instead of λ(M,x,R), here we prefer using the
symbol λ(M,x, (x−R, x+R)) which is same as writing λ(M,x, I) where I is
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a non-degenerate interval having its center at x. This slight change of notation
helps explain how the definition of linear porosity Px(E) given below depends
on the previously made observations. There is an extra advantage to using
a notation similar to that of linear density Dx(E) given above. It is that by
doing so we may frame the definition of porosity much in the same manner as
that of density.

Thus we define Px(E) for any E ⊆ R at x ∈ R as follows

Px(E) = lim sup
I→x

2λ(E, x, I)

|I|
= sup
{Ik}

{
lim sup
k→∞

2λ(E, x, Ik)

|Ik|
, Ik → x

}
where I, Ik are nondegenerate intervals having their common centers at x such
that Ik → x in the sense introduced earlier and that λ(E, x, Ik) is interpreted
as above.

If Px(E) > 0, then the set E is said to be porous at x. In particular, if
Px(E) = 1, then E is called “strongly porous” at x. It is called “non-porous”
at x provided Px(E) = 0.

2 Results on Metric Density.

In this paper, some interesting and significant conclusions with regard to the
questions raised above in connection with measurability and density have been
drawn. In addition, to this, we have also deduced somewhat similar type of
results on set-porosity using analogous procedures. In both cases, apart from
the essential use of other technical devices, our proofs also rests heavily on an
important theorem in topology known as the ”Kuratowski-Ulam’s theorem”
and its partial converse (see Theorem 15.1, theorem 15.4, pg. 56-57, [8]).

KURATOWSKI-ULAM’S THEOREM
Let X and Y be topological spaces with Y having a countable base. If
E ⊆ X × Y is a meager set, then the sets E(x) = {y ∈ Y : (x, y) ∈ E}
are meager (in Y ) for all x except possibly those lying in a meager subset of
X. Similarly the sets E(y) = {x ∈ X : (x, y) ∈ E} are meager (in X) for all y
except possibly those lying in a meager subset of Y .

The following result is a partial converse of the above theorem
If E ⊆ X × Y has the property of Baire and E(x) ⊆ Y is meager for all x

except possibly those lying in a meager subset of X, then E is also meager in
the product topology of X × Y .

In the first part of this paper which deals with metric density, we prove
the following two theorems.



430 S. Basu

Theorem 1. For each x ∈ R, the class Dx is meager in the topology of M.

Let = ⊆ R × M be defined by = = {(x,E) : Dx(E) exists }. Then
clearly =(x) = Dx and =(E) = D(E) are the two sections of = in R ×M.

Now for each x ∈ R, both Dx and Dx are actually functions from M to
R. Upon writing J for the class of all non-degenerate intervals in R and for

each k ∈ N, J (k)
x =

{
I ∈ J : x ∈ I and 1

k+1 ≤ |I| <
1
k

}
, and Φ(k)(x,E) =

sup
{
µ(E∩I)
|I| : I ∈ J (k)

x

}
, Ψ(k)(x,E) = inf

{
µ(E∩I)
|I| : I ∈ J (k)

x

}
we may note

that both Φ(k) and Ψ(k) are functions from R×M to R such that the identities
Dx = lim sup

k→∞
Φ(k)(x, .) and Dx = lim inf

k→∞
Ψ(k)(x, .) hold true. Moreover, the

following set of propositions follow

Proposition 2. For each k ∈ N, both Φ(k)(x, .),Ψ(k)(x, .) ∈ C(M) and
Φ(k)(., E),Ψ(k)(., E) ∈ C(R) and therefore Borel measurable.

Proof. Since for any E,F ∈M,

|Φ(k)(x,E)−Φ(k)(x, F )| =
∣∣∣sup

{
µ(E∩I)
|I| : I ∈ J (k)

x

}
− sup

{
µ(F∩I)
|I| : I ∈ J (k)

x

}∣∣∣ ≤
sup

{
µ(E∆F )
|I| : I ∈ J (k)

x

}
≤ (k + 1)τ(E,F ), the function Φ(k)(x, .) is continu-

ous on M.
Similarly, as

|Ψ(k)(x,E)−Ψ(k)(x, F )| =
∣∣∣inf

{
µ(E∩I)
|I| : I ∈ J (k)

x

}
− inf

{
µ(F∩I)
|I| : I ∈ J (k)

x

}∣∣∣ ≤
sup

{
µ(E∆F )
|I| : I ∈ J (k)

x

}
≤ (k+ 1)τ(E,F ), the function Ψ(k)(x, .) is also con-

tinuous on M. Thus both Φ(k)(x, .), Ψ(k)(x, .) ∈ C(M).
Again for x, y ∈ R,
|Φ(k)(x,E)− Φ(k)(y,E)|
=
∣∣∣sup

{
µ(E∩I)
|I| : I ∈ J (k)

x

}
− sup

{
µ(E∩I)
|I| : I ∈ J (k)

y

}∣∣∣
=
∣∣∣sup

{
µ(E∩I)
|I| : I ∈ J (k)

x

}
− sup

{
µ(E∩(I+z))

|I| : I ∈ J (k)
x

}∣∣∣ (where z = y − x)

5 (k + 1)|y − x|
Likewise, |Ψ(k)(x,E)−Ψ(k)(y,E)| 5 (k + 1)|x− y|.
So both Φ(k)(., E) and Ψ(k)(., E) ∈ C(R). Moreover, they are uniformly con-
tinuous.

As a consequence of the above result, we derive
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Proposition 3. For any r ∈ R, the sets {E ∈ M : Dx(E) = r} and {E ∈
M : Dx(E) 5 r} are both Gδ in M.

Proof. Since Dx = lim sup
k→∞

Φ(k)(x, .) and Dx = lim inf
k→∞

Ψ(k)(x, .), so {E ∈

M : Dx(E) ≥ r} =
⋂
p

⋂
q

⋃
k≥q
{E ∈M : Φ(k)(x,E) > r − 1

p} and also {E ∈M :

Dx(E) ≤ r} =
⋂
p

⋂
q

⋃
k≥q
{E ∈ M : Ψ(k)(x,E) < r + 1

p} , the result therefore

follows by using proposition 2.

Proof of Theorem 1. Now Dx = M \ {E ∈ M : Dx(E) < Dx(E)} =
M\

⋃
k

{E ∈ M : Dx(E) < rk < Dx(E)}, where {rk : k ∈ R} is the set of all

rationals in R.
But for any k ∈ N the class

{E ∈ M : Dx(E) < rk < Dx(E)} = {E ∈ M : Dx(E) < rk}
⋂
{E ∈ M :

Dx(E) > rk} =
⋃
p

⋃
q

[{E ∈ M : Dx(E) ≤ rk − 1
p}
⋂
{E ∈ M : Dx(E) ≥

rk + 1
q}] and is hence Gδσ in M by proposition 3.

Thus Dx is Fσδ. A concrete representation of Dx as an Fσδ set follows from the
fact that Dx =M\{E ∈M : Dx(E) < Dx(E)} =M\

⋃
r,s
{E ∈M : Dx(E) 5

r < s 5 Dx(E)} =
⋂
r,s

({E ∈M : Dx(E) > r}∩{E ∈M : Dx(E) < s}) (where

r, s runs over the set of rationals in R) and both the sets {E ∈M : Dx(E) > r}
and {E ∈M : Dx(E) < s} are Fσ in M by virtue of proposition 3.

Consequently we can write Dx as Dx =
⋂
Dr,sx , where Dr,sx =

⋂
r,s
{E ∈

M : Dx(E) > r} ∩ {E ∈ M : Dx(E) < s}. We claim that each Dr,sx is
meager in the topology of M. For otherwise, each Dr,sx and hence each of
the sets {E ∈ M : Dx(E) > r} and {E ∈ M : Dx(E) < s} will be a
Fσ set of second category in M. Consequently for any r (or, equally for
any s) there should exist at least one E0(∈ M) and an r0(> 0) such that
{E ∈ M : τ(E,E0) < r0} ⊆ {E ∈ M : Dx(E) > r}. But this is impossible
due to the reason that the value of Dx(E) can be made to alter drastically
by either adding or deleting a set of sufficiently small measure containing x.
Hence Dx is meager which finally proves Theorem 1.

Theorem 4. The class of all those sets E ∈ M for which D(E) is meager
(in R) is co-meager in the topology of M.

Proof. In order to prove theorem 4 which is stated below, our first attempt
would be to show that the set = is a set with the Baire-property in the product
topology of R×M by showing that it is Borel.
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Proposition 2 shows that Φ(k) and Ψ(k) are both Carathéodory functions
in the sense given by Definition 4 (in the introduction) and so are Borel mea-
surable (see pg. 156, [1])

Certainly then both the functions Φ : R ×M → R and Ψ : R ×M → R
defined by Φ = lim sup

k→∞
Φ(k) and Ψ = lim inf

k→∞
Ψ(k) are Borel measurable and so

also is the function h : R×M→ R defined by h = Φ−Ψ. But = = {(x,E) ∈
R ×M : h(x,E) = 0}. So = is a Borel subset of R ×M and hence has the
property of Baire.

We have already established that for each x ∈ R, the set Dx (or equiv-
alently, the section =(x)) is meager in M. So by applying the converse of
Kuratowski-Ulam’s theorem (in the product topology of R ×M), it follows
that = is meager. Now upon applying Kuratowski-Ulam’s theorem, it again
follows that the sections =(E) are meager (in R) for all E except possibly those
which constitute a meager subset of M. But =(E) = D(E) and this finally
proves the theorem.

The following theorem is in fact a corollary of Lebesgue’s theorem and
theorem 4. But judging by its importance in the present context, we present
it here as a theorem.

Theorem 5. For each member E belonging to a co-meager subclass of M,
there corresponds a decomposition of R into D(E) and its complement R\D(E)
the first of which is meager while the second is of Lebesgue measure zero.

The above theorem shows that there exists a subclass of measurable sets
in R which is topologically very big (i.e., co-meager) in the class of measurable
sets such that for each of its member E the corresponding setsD(E) andD∗(E)
both exhibit a completely contrasting character in respect of topology and
measure by being topologically small whereas at the same time also measure-
theoretically very big. Thus every such set initiates a decomposition of R into
mutually disjoint sets one of which is meager (i.e., small in the topological
sense) while the other of Lebesgue measure zero (i.e., small in the measure-
theoretic sense). Examples of such decompositions of R may be found in the
first two chapters of the classic book of Oxtoby (see [8]). In particular, the
example presented in Chapter 2 of this book shows that the set of Lioville
numbers and its complement in R can induce such a decomposition. But the
above theorem is far strong enough for it suggests that in the real line for each
and every set inM which occur in topological abundance such decompositions
are possible. Apart from this, theorem 4 also enriches Goffman’s result (stated
in the introduction) significantly by showing that not only D(E) \ D∗(E) but
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even D(E) (which is evidently a much larger collection) is meager for every
set E the class of which constitutes a co-meager collection in M.

Theorem 1 on the otherhand shows that Dx (which is the dual of D(E)) is
topologically a very small set (in M) for each x ∈ R, something which stands
in contradistinction to the measure-theoretic largeness of the set D(E). Martin
(see [6]) observed that in the context of the real line R, Dx is a “finitely sub-
additive outer measure function” onM with range in [0, 1] and its restriction
Dx on the class Dx is a finitely additive, subtractive, monotone, non-negative
set function which is also onto. But it is not a finitely additive measure for
although Dx is closed under the formation of complements, proper difference
and disjoint union, it fails to be so with respect to intersection (see [6]). He
however established in (see [6]) that the class of Dx-measurable sets is pre-
cisely the collectionMx = {E ∈M : Dx(E) = 0 or 1}. So from what we have
deduced above, it follows that not only the class Mx of all Dx-measurable
sets but even a much larger collection such as Dx is topologically small inM.

3 Results on Set Porosity.

In this part we show that results somewhat analogous to that of theorem 1
and theorem 4 can be formulated in the case of set-porosity. We begin by
setting

For each x ∈ R,P(0)
x = {E ∈ K : Px(E) = 0} and P(1)

x = {E ∈ K : Px(E) =
1}. Also, for each E ∈ K, let us write
P(0)(E) = {x ∈ R : Px(E) = 0} and P(1)(E) = {x ∈ R : Px(E) = 1}.
Thus P(0)

x = {E ∈ K : E is non-porous at x} and

P(1)
x = {E ∈ K : E is strongly porous at x}; and also for any E ∈ K,P(0)(E)

(resp, P(1)(E)) is the set of all points in R at which E is non-porous (resp,
strongly-porous).

As in the measure-theoretic case, here also we like to know: are the classes

P(0)
x and P(1)

x small in the topology of K? and also what can be said regarding
the topological size of the collection comprising of those sets E (in the topology
of K) for which the corresponding sets P(0)(E) and P(1)(E) are meager in
R. Here by the topology of K is meant the topology that is induced by the
“Hausdorff metric” h defined by
For any A,B ∈ K,
h(A,B) = inf{δ > 0 : A ⊆ Bδ and B ⊆ Aδ}, where Aδ (resp, Bδ) is the union
of closed intervals of length 2δ centred at the points of A (resp, B).

The following two theorems answers these questions much in the same
manner in which the corresponding measure-theoretic situation is dealt with.
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Theorem 6. For each x ∈ R, the class P(0)
x (resp, P(1)

x ) is meager in the
topology of K.

and

Theorem 7. The class of sets E (in K) for which P(0)(E) (resp, P(1)(E)) is
meager (in R) is co-meager in the topology of K.

Let H ⊆ R×K and G ⊆ R×K be defined by

H = {(x,E) : E ∈ P(0)
x exists } and G = {(x,E) : E ∈ P(1)

x exists }.

But this means that H(x) = P(0)
x and H(E) = P(0)(E) are the two sections of

H in R × K. Similarly, G(x) = P(1)
x and G(E) = P(1)(E) are the two sections

of G in R×K.
Now for a fixed x ∈ R, Px is a set function from K to R. Upon writing

η(k)(x,E) = sup
{

2λ(E,x,I)
|I| : I ∈ J (k)

x

}
(for each k ∈ N) we note that η(k) is

a function from R × K to R such that Px = lim sup
k→∞

η(k)(x, .) (which may be

easily checked). Moreover

Proposition 8. For each k ∈ N, η(k)(x, .) ∈ C(K) and η(k)(., E) ∈ C(R) and
therefore Borel measurable.

Proof. For any E,F ∈ K,

|η(k)(x,E)−η(k)(x, F )| =
∣∣∣sup

{
2λ(E,x,I)
|I| : I ∈ J (k)

x

}
− sup

{
2λ(F,x,I)
|I| : I ∈ J (k)

x

}∣∣∣ ≤
2(k + 1)h(E,F )
Hence η(k)(x, .) ∈ C(K).
Since for x, y ∈ R,
|η(k)(x,E)− η(k)(y,E)|
=
∣∣∣sup

{
2λ(E,x,I)
|I| : I ∈ J (k)

x

}
− sup

{
2λ(E,y,I)
|I| : I ∈ J (k)

y

}∣∣∣
=
∣∣∣sup

{
2λ(E,x,I)
|I| : I ∈ J (k)

x

}
− sup

{
2λ(E,x,(I+z))

|I| : I ∈ J (k)
x

}∣∣∣ (wherez = y −
x)
5 2(k + 1)|y − x|, so η(k)(., E) ∈ C(R). Even more it is uniformly continu-
ous.

Therefore

Proposition 9. For any r∈R, {E ∈ K : Px(E) = r} is Gδ in K.
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Proof. Since Px = lim sup
k→∞

η(k)(x, .), it follows that

{E ∈ K : Px(E) ≥ r} =
⋂
p

⋂
q

⋃
k≥q
{E ∈ K : η(k)(x,E) > r − 1

p}

whereupon the result is obtained by using proposition 8.

proof of Theorem 6. Now, P(0)
x = K \ {E ∈ K : Px(E) > 0} = K \

⋃
k

{E ∈

K : Px(E) ≥ rk > 0}, where rk > 0 are rational in R. Hence by proposition

9, P(0)
x is Fσδ in the topology of K. Again as P(1)

x = {E ∈ K : Px(E) = 1} =
{E ∈ K : Px(E) = 1}, it is also Fσδ by virtue of the same proposition (since
in any metric space every Gδ is also Fσδ).

A more concrete description of P(0)
x as an Fσδ set also follows from the fact

that P(0)
x =

⋂
k

{E ∈ K : Px(E) < rk}, where each {E ∈ K : Px(E) < rk} is Fσ

in K by proposition 9. In a similar manner, P(1)
x =

⋂
p
{E ∈ K : Px(E) > 1− 1

p}

is also Fσδ in K where each {E ∈ K : Px(E) > 1− 1
p} is Fσ in K.

Each of the classes P(0)
x and P(1)

x are also meager in the topology of K.
For on the contrary, there should exists E0, E1 ∈ K, t0, t1 > 0 such that
{E ∈ K : h(E,E0) < t0} ⊆ {E ∈ K : Px(E) < rk} and also {E ∈ K :
h(E,E1) < t1} ⊆ {E ∈ K : Px(E) > 1− 1

p}. But as the value of Px(E) can be
made to alter drastically either by adding or by deleting a small non-degenerate
interval centered at x, such inclusions as indicated above are impossible. This
proves theorem 6.

proof of Theorem 7. We now start proving theorem 7 by showing that the
set H is with Baire-property in the product topology of R×K by showing that
it is Borel.

Proposition 8 shows that, η(k) is a Carathéodory function in the sense given
by definition 4 (introduction) and is hence Borel measurable (see pg. 156, [1])

Certainly then the function η : R × K → R defined by η = lim sup
k→∞

η(k) is

also Borel measurable. As {H = {(x,E) ∈ R×K : η(x,E) = 0}, H is a Borel
subset of R × K and consequently has the property of Baire in the product
topology.

We have already established (by proving theorem 6) that for each x ∈ R,

the set P(0)
x (or, equivalently the set H(x)) is meager, in H. So by applying the

converse of Kuratowski-Ulam’s theorem (in the product topology of R × K),
it follows that H is meager. But then (by Kuratowski-Ulam’s theorem again),
it follows that the sections H(E) are meager in R for all E except those which
constitute a meager subset of K. As H(E) = P(0)(E), we finally derive that
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the class of sets (in K) for which P(0)(E) is meager (in R) is co-meager in the
topology of K. In a similar manner, we may also prove that the class of sets
(in K) for which P(1)(E) is meager (in R) is co-meager in the topology of K.
This proves theorem 7.

4 Some Final Remarks.

Since η(., E) = lim sup
k→∞

η(k)(., E), so from proposition 8 it follows that the

function η(., E) is lower semi-Borel function of class 2. Such conclusion holds
irrespective of whether E is compact or not, for it may be noted from the proof
of proposition 8 that it makes no use of the fact that E is a member of the
class K. Infact proposition 8 helps illustrating the lower semi-Borel character
of η(., E) in a much simpler fashion than given by lemma 3.6 (see [2]).

Just as Dx and D(E)(E ∈ M), so are P(0)
x and P(0)(E)(E ∈ K) and like-

wise P(1)
x and P(1)(E)(E ∈ K) the dual of each other as one may be obtained

from the other by simply interchanging the roles played by the ‘set’ and the
‘point’. Moreover both D(E) and Dx are Fσδ subsets of their respective spaces.
The first one is a consequence of the identity D(E) = {x ∈ R : η(x,E) = 0}
and proposition 2, whereas the second one is a direct outcome of the proof of

theorem 1. Likewise, both P(0)(E) and P(0)
x are Fσδ subsets of their respec-

tive spaces. The first one is a consequence of the identity P(0)(E) = {x ∈ R :
η(x,E) = 0} and proposition 8, whereas the second one is a direct outcome of
the proof of theorem 6.
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