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Abstract

In this paper, we study the stochastic integral equation with its
stochastic integral defined using the Henstock approach, or commonly
known as the generalized Riemann approach, instead of the classical Itô
integral, which we shall call it the Itô-Henstock integral equation. Our
aim is to prove the existence of solution of the Itô-Henstock integral
equation using the well known method used in the existence theorem of
the ordinary differential equation, namely the Picard’s iteration method.

1 Introduction.

In the study of stochastic calculus, it is well known and often emphasized
in texts that the Riemann approach, which uses the uniform meshes, can-
not be used to define the stochastic integral which has integrator that is of
unbounded variation and highly oscillatory integrands. The deficiency of Rie-
mann approach is due to the uniform meshes used in the Riemann sums which
is unable to handle highly oscillatory integrators and integrands. However, this
shortcoming had been overcome by R. Henstock and J. Kurzweil in the late
1950s when they independently introduced the Riemann-type integral that
uses non-uniform meshes in the study of classical (non-stochastic) integral. It
turns out that this integral, known as the Henstock integral, is more general
than the classical Riemann integral and the Lebesgue integral (see [4], [7]).
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The Henstock approach which makes use of non-uniform meshes, has been
successfully used in giving an alternative definition to the the classical stochas-
tic integral ([2], [8], [9], [10], [11]), known as the Itô-Henstock integral. The
major advantage of this approach has been its explicitness and intuitiveness in
giving a direct definition of the integral rather than the classical non-explicit
L2-procedure thus making it easier for more people to understand. The work of
Toh and Chew ([2], [8]) had shown that the Itô-Henstock integral encompasses
the classical stochastic integral. The Henstock approach has also been used to
characterize stochastic integrable processes (see [8]), to derive an integration-
by-part formula for stochastic integral (see [9]) and also the Itô’s Formula (see
[10]).

In this paper, we shall extend the Itô-Henstock integral theory to prove
the existence of solutions to the stochastic differential equation of the form

dXt = f(t,Xt)dBt, X0 = φ

where Bt is a Brownian motion and the initial value X0 is a random variable.
The equation above can be written in the integral form,

Xt = X0 +

∫ t

a

f(s,Xs)dBs. (1)

In the classical case, the integral in (1) is understood as the classical Itô
integral. In this paper, we shall define the integral in (1) as the Itô-Henstock
integral, an extension on the existing theory developed by Toh and Chew ([8],
[9], [10], [11]) and prove the existence theorem for the equation.

2 Preliminaries.

Let R denote the set of real numbers and

[a, b] = {x ∈ R : a ≤ x ≤ b},
(a, b] = {x ∈ R : a < x ≤ b}.

Definition 2.1. The triple (Ω,F , P ) consisting of a sample space Ω, the σ-
algebra F of subsets of Ω and a probability measure P defined on F is known
as a probability space.

Definition 2.2. A filtration is a family {Ft}t>0 of increasing sub-σ-algebras
of F (i.e Ft ⊂ Fs ⊂ F for all 0 ≤ t < s < ∞). When the probability space
(Ω,F , P ) is complete, the filtration is said to satisfy the usual conditions if
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• Fs =
⋂
t>s Ft for all s ≤ 0 (the filtration is right-continuous);

• all A ∈ F with P (A) = 0 are contained in F0 (all null-set of F belong
to F0).

The probability space together with its family of increasing sub-σ-algebras
denoted by (Ω,F , {Ft}, P ) is called a standard filtering space.

Let (Ω,F , P ) be a probability space. A real-valued function X : Ω → R
is called F-measurable or random variable, if for all a ∈ R, {ω ∈ Ω : X(ω) ≤
a} ∈ F .

We further define E(X) to be
∫

Ω
XdP , for any random variable X.

A family of random variable {Xt, t ∈ I}, where I ⊂ R is an interval, defined
on a probability space (Ω,F , P ) and indexed by a parameter t where t takes
all possible values of I is called a stochastic process.

Let (Ω,F , {Ft}, P ) be a standard filtering space and I ⊂ R be an interval.
The stochastic process Xt is said to be {Ft}-adapted if for all t ∈ I, the
random variable Xt is Ft-measurable.

2.1 Brownian Motion.

Definition 2.3. Let (Ω,F , P ) be a complete probability space with a filtration
{Ft}t>0 satisfying the usual conditions. A canonical Brownian motion B =
{Bt, t ≥ 0} is a {Ft}-adapted stochastic process with the following properties:

1. B(0) = 0 (starting from the origin 0);

2. for all 0 ≤ s1 < t1 ≤ s2 < t2 : (Bt1 − Bs1) and (Bt2 − Bs2) are
independent (Independent increments property);

3. for all 0 ≤ s < t : Bt−Bs is N(0, t− s)-distributed (Normal distribution
with mean 0 and variance t− s);

4. it has continuous sample paths.

Some of the standard properties of Brownian motion are: (a) for any s, t ≥
0, E[BsBt] = min{s, t}, (b) for any t ≥ s, E[Bs] = E[E[Bt|Fs]] = E[Bt], (c)
for any a ≤ u < v ≤ s < t < b, E[(Bt −Bs)(Bv −Bu)] = 0.

It is also well-known, see for example Friedman [3], that a canonical Brow-
nian motion is a martingale. In fact, it is a square-integrable martingale with
E(B2

t ) = t, see property (a) defined above.
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2.2 The L2-space and L2-space.

Let L2(Ω,F , P ) or, if no ambiguity is possible, let L2 be the space of all F-
measurable random variables X ∈ Ω defined on the probability space (Ω,F , P )
such that

‖X‖2L2 =

∫
Ω

|X(ω)|2dP.

We denote by L2 the space of all {Ft}-adapted processes Xt for 0 ≤ t ≤ T
defined on the probability space (Ω,F , P ) such that

‖Xt‖2L2 =

∫ T

0

∫
Ω

|X(t, ω)|2dPdt

and using the notation that E[·] =
∫

Ω
·dP , we have

‖Xt‖2L2 =

∫ T

0

E|X(t, ω)|2dt <∞.

It can be easily shown that ‖ · ‖L2 is the norm on L2-space and the space
is complete (see [1]).

2.3 Itô-Henstock Integral.

Definition 2.4. Let D = {((ξi, vi], ξi)}ni=1 be a finite collection of interval-
point pairs of [a, b].

1. D is said to be a partial division of [a, b] if {(ξi, vi]}ni=1 are disjoint
subintervals of [a, b].

2. Let δ be a positive function on [a, b]. Then an interval-point pair ((ξ, v], ξ)
is said to be δ-fine belated if (ξ, v] ⊂ (ξ, ξ + δ(ξ)] whenever (ξ, v] ⊂ [a, b]
and ξ ∈ [a, b].

We call D a δ-fine belated partial division of [a, b] if D is a partial division of
[a, b] and for each i, ((ξi, vi], ξi) is δ-fine belated.

In addition, if
⋃n
i=1(ξi, vi]) = (a, b], then D is a full division of (a, b]. We

note that such a δ-fine belated full division may not exist, for example take
δ(ξ) = (b − ξ)/2. The point b is not covered by any finite collection of δ-fine
belated intervals. However, by virtue of Vitali’s covering theorem (see [4])
which states that if a closed interval [a, b] is covered by a collection of open
intervals, we can always make the part of [a, b] that is not covered arbitrarily
small.
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Definition 2.5. Given η > 0, a δ-fine belated partial division D is said to be
a (δ, η)-fine belated partial division of [a.b] if it fails to cover [a, b] by at most
a set of Lebesgue measure η, that is

|b− a− (D)
∑

(v − ξ)| ≤ η.

Definition 2.6 (Itô-Henstock Integral). (Toh and Chew [10, Definition
3])
Let f = {ft : t ∈ [a, b]} be a process adapted to the standard filtering space
(Ω,F , {Ft}, P ). Then f is said to be Itô-Henstock integrable (IH) on [a, b]
with respect to the Brownian motion B, if there exist an A ∈ L2 such that for
any ε > 0, there exists a positive function δ > 0 on [a, b] and a positive number
η > 0 such that for any (δ, η)-fine belated partial division D = {((ξi, vi], ξi) :
i = 1, 2, . . . , n} of [a, b], we have

E

(
n∑
i=1

fξi [Bvi −Bξi ]−A

)2

< ε.

It is not difficult to check that A is unique up to a set of probability measure
zero, whenever it exists (see Toh and Chew [9]). We call A the Itô-Henstock

integral of f and denote A by (IH)
∫ b
a
ftdBt.

As in the classical integration theory, the standard properties of integrals,
such as the additivity of the integral, integrability over subinterval and Cauchy
criterion, hold true for the Itô-Henstock integral. It can also be easily shown
that the classical Itô Isometry can be extended to the Itô-Henstock integral
presented below.

Theorem 2.7 (Itô-Henstock Isometry). (Toh and Chew [11, Theorem 17])
For f ∈ L2 and t ∈ [a, b],

E((IH)

∫ b

a

f(t, ω)dBt)
2 =

∫ b

a

E(f(t, ω)2)dt.

Lastly, in this section we append the Itô Formula and the Mean Conver-
gence Theorem in Itô-Henstock context as they are needed for subsequent
proofs.

Theorem 2.8 (Itô’s Formula (Henstock’s version)). (Toh and Chew [10,
Theorem 13])
Let F : R → R be a function whose second order partial derivatives are con-
tinuous. Suppose that
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(i) F2(t, Bt) is Itô-Henstock integrable;

(ii) E(F2(t, Bt))
2 is integrable over [a, b];

(iii) E(F2,2(t, Bt))
2 is integrable over [a, b].

Then for almost all ω ∈ Ω, we have

F (b, Bb)−F (a,Ba) = (R)

∫ b

a

[
F1(t, Bt) +

1

2
F2,2(t, Bt)

]
dt+

∫ b

a

F2(t, Bt)dBt.

Theorem 2.9 (Mean Convergence Theorem). (Toh and Chew [11, The-
orem 15])
Let f (n), n = 1, 2, . . . , be a sequence of IH-integrable processes on [a, b] and
f be a process on [a, b] adapted to the standard filtering space (Ω,F , {Ft}, P )
such that

(i) for almost all t ∈ [a, b], E(f
(n)
t − ft)2 → 0 as n→∞;

(ii) E(
∫ b
a

(f (n) − f (m))tdBt)
2 → 0 as n,m→∞.

Then f is IH-integrable on [a, b] and

E(

∫ b

a

(f (n) − f)tdBt)
2 →∞

as n→∞.

3 Existence and Uniqueness Theorems.

3.1 The setting of equations.

Consider a standard filtering space denoted by (Ω,F , {Ft}, P ) for t ∈ [a, b], Bt
a canonical Brownian motion (see Definition 2.3) and a stochastic differential
equation of the form

dXt = f(t,Xt)dBt, X0 = φ

where t ∈ [a, b] and the initial value X0 is a random variable.
Let f(t, x) be a measurable function on t ∈ [a, b] and x ∈ R. The above

stochastic differential equation can be written as the stochastic integral equa-
tion below

Xt = X0 + (IH)

∫ t

a

f(s,Xs)dBs (2)
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where X0 = φ ∈ L2 is a given initial condition which is F0-measurable, Xt

is a stochastic process and f(s,Xs) is Itô-Henstock integrable with respect to
the Brownian motion Bt.

Definition 3.1. A stochastic process Xt, a ≤ t ≤ b, is called a solution of the
stochastic integral equation (2), if it satisfies the following conditions:

1. f(t,Xt) ∈ L2 for t ∈ [a, b];

2. X0 is Fa-measurable with E(X0) ≤ ∞, i.e., X0 ∈ L2;

3. Xt is continuous and Ft-measurable for all t ∈ [a, b];

4. For each t ∈ [a, b] and Xt ∈ L2, f(t,Xt) is Ft-measurable.

Definition 3.2. (Klebaner [5]) A measurable function g(t, x) on [a, b]× R is
said to satisfy the Lipschitz condition in x, if there exists a constant C1 > 0
such that

|g(t, x)− g(t, y)| ≤ C1|x− y|, for all a ≤ t ≤ b, x, y ∈ R.

Definition 3.3. (Klebaner [5]) A measurable function g(t, x) on [a, b] × R
is said to satisfy the linear growth condition in x, if there exists a constant
C2 > 0 such that

|g(t, x)| ≤ C2(1 + |x|), for all a ≤ t ≤ b, x ∈ R.

The linear growth condition above guarantees that the solution does not
“explode” in a finite time interval.

3.2 Existence of solution.

Theorem 3.4. (Existence Theorem)
Let f(t, x) be a measurable function on [a, b]×R satisfying the Lipschitz condi-
tion (Definition 3.2) and linear growth condition (Definition 3.3). Suppose X0

is an F0-measurable random variable with E(X0)2 < ∞. Then the stochastic
integral equation (2)

Xt = X0 + (IH)

∫ t

a

f(s,Xs)dBs

has a continuous solution Xt.
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The proof of the existence theorem is modeled after the existence proof for
ordinary differential equations based on Picard’s iteration procedure.

Define a sequence {X(k)
t }∞k=0 of stochastic processes by setting X

(0)
t = X0

and, for k ≥ 0,

X
(k+1)
t = X0 + (IH)

∫ t

a

f(s,X(k)
s )dBs. (3)

The following lemmas are required to prove the Existence Theorem 3.4.

Lemma 3.5. The sequence {X(k)
t }∞k=0 belongs to the space L2.

Proof . We proof the lemma by induction.

It is clear that X
(0)
t ∈ L2. We now make the inductive assumption for

X
(k)
t ∈ L2 and show that X

(k+1)
t ∈ L2.

Applying the linear growth condition (Definition 3.3),

‖f(t,X
(k)
t )‖2L2 =

∫ b

a

E|f(t,X
(k)
t )|2dt

≤
∫ b

a

C2(1 + E|X(k)
t |2)dt

≤
∫ b

a

C2dt+

∫ b

a

C2E|X(k)
t |2dt

≤ C2(b− a) + C2‖X(k)
t ‖2L2

<∞.

We therefore have f(t,X
(k)
t ) ∈ L2.

Also, by the Itô-Henstock Isometry (Theorem 2.7), we have

E[(IH)

∫ t

a

|f(s,X(k)
s )|2dBs] = E[

∫ t

a

|f(s,X(k)
s )|2ds] <∞. (4)

Moreover,

‖X(k+1)
t ‖2L2 ≤ 2

(∫ b

a

E|X0|2dt+

∫ b

a

E|(IH)

∫ t

a

f(s,X(k)
s )dBs|2dt

)
≤ 2

(
‖X0‖2L2 + (b− a)‖f(s,X(k)

s )‖2L2

)
<∞

thereby completing our proof.
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Lemma 3.6. For k ≥ 0 and the sequence {X(k)
t }∞k=0 ⊂ L2, we have

‖X(k+1)
t −X(k)

t ‖2L2 ≤
(
Ck+1

2 (1 + ‖X0
t ‖k+2
L2 )(t− a)k+1(b− a)k+1

)
(k!)

. (5)

Proof . The proof can by carried out by induction as in Lemma 3.5, hence we
omit it.

Now, we shall proceed to prove Theorem 3.4.

Proof of Theorem 3.4. Let m > n ≥ 0, we have

‖X(m)
t −X(n)

t ‖2L2 = ‖X(m)
t −X(m−1)

t +X
(m−1)
t −X(n)

t ‖2L2

= ‖X(m)
t −X(m−1)

t +X
(m−1)
t −X(m−2)

t + . . .

+X
(n+1)
t −X(n)

t ‖2L2

= ‖Σm−1
k=nX

(k+1) −X(k)‖2L2

≤ Σm−1
k=n ‖X

(k+1) −X(k)‖2L2

≤ Σm−1
k=n

(
C

(k+1)
2 (1 + ‖X0

t ‖
(k+2)
L2 )(t− a)(k+1)(b− a)(k+1)

(k!)

)
.

It is easy to check that by the ratio test, the series on the right-hand side
of the inequality above is convergent. Thus we have

‖X(m)
t −X(n)

t ‖2L2 → 0 as m, n→∞. (6)

Therefore {X(k)
t }∞k=0 is a Cauchy sequence in L2.

Since L2 is complete, i.e. every Cauchy sequence is convergent, {X(k)
t }∞k=0

is convergent in L2.

Define Xt = lim
k→∞

X
(k)
t , where the limit is in L2.

Hence, Xt is continuous and since Xt ∈ L2, Xt is Ft-measurable for all t.

The next step is to show that the sequence {f(t,X
(k)
t )}∞k=0 converges. By

the Lipschitz condition (Definition 3.2),

‖f(t,X
(k)
t )− f(t,X

(k−1)
t )‖2L2 =

∫ b

a

E|f(t,X
(k)
t )− f(t,X

(k−1)
t )|2dt

≤ C2
1

∫ b

a

E|X(k)
t −X(k−1)

t |2dt

= C2
1‖X

(k)
t −X(k−1)

t ‖2L2 .
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Since by equation (6), we have ‖X(m)
t −X(n)

t ‖L2 → 0 as n,m → ∞. We
have

‖f(t,X
(k)
t )− f(t,X

(k−1)
t )‖2L2 → 0 as k →∞. (7)

Therefore, {f(t,X
(k)
t )}∞k=0 converges in L2.

Define f(t,Xt) = lim
k→∞

f(t,X
(k)
t ), where the limit is in L2.

Now, from the Itô-Henstock Isometry (Theorem 2.7) and (7) above, we
have

E

(
|(IH)

∫ t

a

f(s,X(k)
s )dBs − (IH)

∫ t

a

f(s,X(k−1)
s dBs|2

)
=

∫ t

a

E
(
|f(s,X(k)

s )− f(s,X(k−1)
s |2

)
ds

→ 0 as k →∞.

Therefore, by the Mean Convergence Theorem (Theorem 2.9), f(t,Xt) is
Itô-Henstock integrable and we define

(IH)

∫ t

a

f(s,Xs)dBs = lim
k→∞

(IH)

∫ t

a

f(s,X(k)
s )dBs

where the limit is in L2.
We conclude that for all t ∈ [a, b], we have

Xt = X0 + (IH)

∫ t

a

f(s,Xs)dBs

i.e. Xt satisfies equation (2).

3.3 Uniqueness Theorem.

Theorem 3.7 (Uniqueness Theorem). Let f(t, x) be a measurable function
on [a, b] × R satisfying the Lipschitz condition (Definition 3.2). Suppose X0

is an F0-measurable random variable with E(X0)2 < ∞. Then the stochastic
integral equation (2)

Xt = X0 + (IH)

∫ t

a

f(s,Xs)dBs

has a unique solution Xt up to probability measure zero.

To prove Theorem 3.7, we need Gronwall’s inequality presented below.
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Lemma 3.8. (Gronwall’s inequality)
Let M ≥ 0 be a constant, and let u(t) and v(t) be real-valued nonnegative
continuous functions such that

u(t) ≤M +

∫ t

t0

u(s)v(s)ds, t0 ≤ t < T (where T ≤ ∞).

Then

u(t) ≤M exp(

∫ t

t0

v(s)ds), t0 ≤ t < T.

Proof . A proof of the Gronwall’s inequality can be found in Kuo [6, page
188].

Proof of Theorem 3.7. Let Xt and Yt be two continuous solutions to the
stochastic integral equation (2), we shall prove that Xt = Yt.

From the representation given by the stochastic integral equation (2), we
know that the difference of any two solutions can be written as

Xt − Yt = (IH)

∫ t

a

(f(s,Xs)− f(s, Ys)) dBs.

Taking expectations, we have

E(|Xt − Yt|2) = E

(
(IH)

∫ t

a

(f(s,Xs)− f(s, Ys)) dBs

)2

=

∫ t

a

E [f(s,Xs)− f(s, Ys)]
2
ds

≤ C2
1

∫ t

a

E[Xs − Ys]2ds.

Let u(t) = E(|Xt − Yt|2), v(s) = C2
1 and M = 0. By the Gronwall’s

inequality (Lemma 3.8), u(t) = E(|Xt−Yt|2) = 0 for all t ∈ [a, b] and we have
Xt − Yt = 0 almost surely for each t ∈ [a, b]. Hence Xt and Yt are the same
continuous stochastic process completing the proof of the theorem.

4 Solution of Stochastic Differential Equation.

In this section, we will show an example of a stochastic differential equation
(or rather a stochastic integral equation) satisfy the Existence Theorem 3.4.

Consider the following stochastic differential equation
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dXt = XtdBt, X0 = 0 (8)

or in integral form,

Xt = X0 + (IH)

∫ s

0

XtdBt

for t ∈ [0, s].

To solve this equation, we let F (t, x) = exe−
1
2 . Then we have

F1(t, x) = −1

2
exe−

1
2 = −1

2
F (t, x)

F2(t, x) = exe−
1
2 = F (t, x)

F2,2(t, x) = exe−
1
2 = F (t, x).

Hence

1. F2(t, Bt) = eBte−
1
2 and

E(F2(t, Bt))
2 = E(eBte−

1
2 )2 = 1.

Thus E(F2(t, Bt))
2 is bounded over [0, s] and hence it is integrable on

[0, s], showing that F2(t, Bt) is Itô-Henstock integrable on [0, s].

2. Similarly, for F2,2(t, Bt) = eBte−
1
2 , E (F2,2(t, Bt))

2
is bounded over [0, s]

and thus F2,2(t, Bt) is integrable on [0, s].

Since the conditions of the Itô’s Formula (Henstock’s version) Theorem 2.8
are met, we apply the theorem to get

dXt = dF (t, Bt)

=

(
F1(t, Bt) +

1

2
F2,2(t, Bt)

)
dt+ F2(t, Bt)dBt

=

(
−1

2
F (t, Bt) +

1

2
F (t, Bt)

)
dt+ F (t, Bt)dBt

= F (t, Bt)dBt

= XtdBt.

Next we show that Xt is indeed an stochastic process, we have

E

∫ s

0

|Xt|dt =

∫ s

0

EeBte−
1
2 dt =

∫ s

0

dt = s <∞
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which proves that Xt belongs to L2.

We note that Xt is continuous since eBte−
1
2 is continuous.

Hence, the conditions of Definition 3.1 are satisfied. Therefore, Xt =
eBte−

1
2 is the solution to the stochastic differential equation (8).

5 Conclusion.

In this paper, we extended the Itô-Henstock integral theory on our study of
stochastic differential equations. Modeled after the classical existence theo-
rem proof of the ordinary differential equation, using Picard’s iteration, we
established an existence theorem for a stochastic differential equation under
the Itô-Henstock approach. However, we note that the conditions imposed on
the equation in this paper, namely the Lipschitz condition and linear growth
condition, may be too strict for practical purpose. We shall next look into
more relaxed conditions and establishing an existence theorem in a more gen-
eral setting for a larger class of stochastic differential equations defined in the
Itô-Henstock context, which will appear as a paper in the future.
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