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FUNCTIONS CONTINUOUS ON TWICE
DIFFERENTIABLE CURVES,

DISCONTINUOUS ON LARGE SETS

Abstract

We provide a simple construction of a function F : R2 → R discon-
tinuous on a perfect set P , while having continuous restrictions F � C
for all twice differentiable curves C. In particular, F is separately con-
tinuous and linearly continuous.

While it has been known that the projection π[P ] of any such set P
onto a straight line must be meager, our construction allows π[P ] to have
arbitrarily large measure. In particular, P can have arbitrarily large 1-
Hausdorff measure, which is the best possible result in this direction,
since any such P has Hausdorff dimension at most 1.

1 Introduction.

In this paper, a curve is understood as the range of a continuous injection
h = 〈h1, h2〉 of an interval J into the plane R2. A curve C is said to be smooth
(or C1), if the coordinate functions h1 and h2 are continuously differentiable
(i.e., are C1) and 〈h′1(t), h′2(t)〉 6= 〈0, 0〉 for every t ∈ J ; we say that C is twice
differentiable (or D2), when it is smooth (so, its derivative nowhere vanishes)
and the coordinate functions are twice differentiable. It has been proved by
Rosenthal [17] that
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(∗) For any function G : R2 → R, if its restriction G � C is continuous for
every smooth curve C, then G is continuous. However, there exists a
discontinuous function F : R2 → R with F � C continuous for all twice
differentiable curves C.1

The function F constructed by Rosenthal was discontinuous at a single point.
The function constructed in our Theorem 4 seems to be the first example of a
function with continuous restrictions to all twice differentiable curves, which
has uncountable set of points of discontinuity.

For a family C of curves C in the plane R2, we say that F : R2 → R is
C-continuous, provided its restriction F � C is continuous for every C ∈ C.
The C-continuous functions for different classes C of curves have been studied
from the dawn of mathematical analysis. For the class L0 of straight lines par-
allel to either of the axis, the L0-continuity coincides with separate continuity
(referring to maps F with section functions F (·, y) and F (x, ·) continuous for
every x, y ∈ R). Separately continuous functions have been investigated by
many prominent mathematicians: Volterra (see Baire [2, p. 95]), Baire (1899,
see [2]), Lebesgue (1905, see [13, pp. 201-202]), and Hahn (1919, see [9]). For
the class L of all straight lines, L-continuity is known under the name linear
continuity. It has been known by J. Thomae (1870, see [20, p. 15] or [11]) that
linearly continuous function need not be continuous. A simple example of such
a function, which can be traced to a 1884 treatise on calculus by Genocchi and

Peano [10], is defined as F (x, y) = xy2

x2+y4 for 〈x, y〉 6= 〈0, 0〉, and F (0, 0) = 0.

Scheeffer (1890, see [18]) and Lebesgue (1905, see [13, pp. 199-200]) have
also noticed that the continuity along all analytic curves does not implies con-
tinuity. The question for what classes C of curves does C-continuity imply
continuity, apparently addressed in all works cited above, has been elegantly
answered in 1955 by Rosenthal, as we stated in (∗).

A next natural question, in this line of research, is about the structure of the
sets D(F ) of points of discontinuity of C-continuous functions F for different
classes C of curves. Of course, every set D(F ) must be Fσ. This follows
from a well known result (see [14, thm. 7.1]) that, for arbitrary F : R2 → R,
D(F ) is a union of the closed sets Dn(F ) = {z ∈ R2 : ωF (z) ≥ 2−n}, where
ωF (z) = limδ→0+ sup{|F (z)−F (w)| : ||z−w|| < δ} is the oscillation of F at z.

The structure of sets D(F ) for separately continuous functions (i.e., for
C = L0) was examined by Young and Young (1910, see [21]) and was fully

1Clearly, for any such F , the composition F ◦ h is continuous, whenever h = 〈h1, h2〉 is
a coordinate system for a D2 curve. In fact, a little care in constructing such an F (e.g.
by using C∞ functions hn in Proposition 1) insures that F ◦ h is also D2. However, it is
important here, that the derivative h′ never vanishes, as it has been proved by Boman [3]
(see also [11]), that if F ◦ 〈h1, h2〉 is C1 for any C∞ functions h1, h2, then F is continuous.
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described in 1943 by Kershner [12] (compare also [4]), who showed that a set
D ⊂ R2 is equal to D(F ) for a separately continuous F : R2 → R if and only
if D is Fσ and the projection of D onto each axis is meager. More precisely,
the characterization follows from the fact that a bounded set D ⊂ R2 is equal
to the set Dn(F ) = {z ∈ R2 : ωF (z) ≥ 2−n} for a separately continuous
F : R2 → R if and only if D is closed and its projection onto each axis is
nowhere dense. Notice, that this characterization implies, in particular, that
a set of points of discontinuity a separately continuous F : R2 → R can have
full planar measure.

The structure of sets D(F ) for linearly continuous functions F : R2 →
R is considerable more restrictive, as can be seen by the following result of
Slobodnik [19]. More on separate continuity can be found in [7, 15, 16].

Proposition 1. If D is the set of points of discontinuity of a linearly contin-
uous function F : R2 → R, then

(•) D is a union of sets Dn, n = 1, 2, 3, . . ., where each Dn is a rotation of a
graph hn � Pn of a Lipschitz function hn : R→ R restricted to a compact
nowhere dense set Pn.

Since the graph of a Lipschitz function has Hausdorff dimension 1 (see e.g.
[8, sec. 3.2]), this means that so does any set of points of discontinuity of a
linearly continuous function. We have recently shown [5] that the condition
(•) is actually quite close to the full characterization of sets D(F ) for linearly
continuous functions F , by proving that: if D is as in (•), where each function
hn is either convex or C2, then D is equal to the set of points of discontinuity
of some linearly continuous function. This new result implies, in particular,
that any meager Fσ subset of a line is the set of points of discontinuity of
some linearly continuous function; so such a set may have positive 1-Hausdorff
measure.

The main goal of this paper is to show that a function F : R2 → R with
continuous restrictions to all twice differentiable curves can also have a set of
points of discontinuity with large 1-Hausdorff measure.

Notice, that any smooth curve C, with associated injection h = 〈h1, h2〉,
is locally (at a neighborhood of an arbitrary point 〈h1(t), h2(t)〉) a function
of either variable x (when h′1(t) 6= 0) or of variable y (when h′2(t) 6= 0).Thus,
C(C1)-continuity with respect to the class C(C1) of all smooth curves is the
same as the C1 ∪ (C1)−1-continuity, where C1 is the class of all continuously
differentiable functions g : R→ R, and (C1)−1 = {g−1 : g ∈ C1}, with g−1 un-
derstood as an inverse relation, that is, as g−1 = {〈g(y), y〉 : y ∈ R}. Similarly,
C(D2)-continuity, where C(D2) is the class of all (smooth) twice differentiable
curves, coincides with D2 ∪ (D2)−1-continuity.
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2 The main result.

Our example will be constructed using the following simple, but general result
on C-continuous functions. Recall that the support of a function F : R2 → R,
denoted as supp(F ), is defined as the closure of the set {x ∈ R2 : f(x) 6= 0}.
Symbol ω will be used here to denote the first infinite ordinal number, which
is identified with the set of all natural numbers, ω = {0, 1, 2, . . .}.

Lemma 2. Let C be a family of curves in R2 and let {Dj ⊂ R2 : j < ω} be a
pointwise finite family of open sets such that

(F) the set {j < ω : Dj ∩ C 6= ∅} is finite for every C ∈ C.

Then for every sequence 〈Fj : j < ω〉 of continuous functions from R2 into

R such that supp(Fi) ⊂ Di for all i < ω, the function F
def
=
∑
j<ω Fj is

C-continuous. Moreover, if

• the diameters of the sets Dj go to 0, as j →∞,

• P̂ is the set of all z ∈ R2 for which every open U 3 z intersects infinitely
many sets Dj , and

• each function Fj is onto [0, 1],

then P̂ = D(F ) = {z ∈ R2 : ωF (z) = 1}.

Proof. The first part is obvious. The second follows easily from the fact,
that, for any z ∈ P̂ , every open U 3 z contains infinitely many sets Dj .

Lemma 2 will be used with P̂ = h � P , the graph of h restricted to P ,
where h and P are from the proposition below.

Proposition 3. For every M ∈ [0, 1) there exists a C1 function h : R→ R and
a nowhere dense perfect P ⊂ (0, 1) of measure M such that for every x̂ ∈ P :

h′(x̂) = 0 and limx→x̂
|h(x)−h(x̂)|

(x−x̂)2 =∞. (1)

We will postpone the proof of Proposition 3 till the next section. However,

we like to notice here, that the limit limx→x̂
|h(x)−h(x̂)|

(x−x̂)2 is a variant of the limit

limx→x̂ 2h(x)−h(x̂)(x−x̂)2 , which constitutes a generalized second derivative (related

to Peano derivative) of h at x̂. Indeed, if h′′(x̂) exists, finite or infinite, then, by

l’Hôpital’s Rule, limx→x̂ 2h(x)−h(x̂)(x−x̂)2 = limx→x̂ 2h
′(x)−0
2(x−x̂) = limx→x̂

h′(x)−h′(x̂)
x−x̂ =

h′′(x̂). We need Proposition 3 in its current form, since there is no C1 function
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h having an infinite second derivative on set of positive measure.2 But see also
remarks at the end of this section.

Theorem 4. Let h and P be as in Proposition 3. Then P̂ = h � P is the set
of points of discontinuity of a D2-continuous function F : R2 → R. Moreover,
F has oscillation equal 1 at every point from P̂ .

Proof. Let {Jj : j < ω} be an enumeration, without repetitions, of bounded
connected components of R\P . For every j < ω let the Ij be the open middle
third subinterval of Jj and let Fj be a continuous function from R2 onto [0, 1]
with supp(Fj) contained in Dj = {〈x, y〉 ∈ R2 : x ∈ Ij & |y − h(x)| < |Ij |3},
where |Ij | is the length of Ij . We will show that the function F =

∑
j<ω Fj is

as required.
It is enough to show that sets Dj satisfy property (F) for C = D2∪(D2)−1,

since all other assumptions of Lemma 2 are clearly satisfied. To see this, fix a
D2 function g : R→ R. We need to prove that both g and g−1 intersect only
finitely many sets Dj .

To see that g intersects only finitely many sets Dj , by way of contradiction,
assume that there is an infinite set {jn : n < ω} such that g ∩ Djn 6= ∅. For
n < ω choose 〈xn, yn〉 ∈ g ∩Djn . Then g(xn) = yn for all n < ω. Choosing a
subsequence, if necessary, we can assume that limn→∞ xn = x̂ ∈ P . Then, by
the definition of sets Dj , we have

lim
n→∞

(yn − h(xn)) = lim
n→∞

yn − h(xn)

xn − x̂
= lim
n→∞

yn − h(xn)

(xn − x̂)2
= 0, (2)

as limn→∞

∣∣∣yn−h(xn)
(xn−x̂)2

∣∣∣ ≤ limn→∞
|yn−h(xn)|
|Ijn |2

≤ limn→∞ |Ijn | = 0. In particular,

g(x̂) = lim
n→∞

g(xn) = lim
n→∞

yn = lim
n→∞

(yn − h(xn)) + lim
n→∞

h(xn) = h(x̂)

and

g′(x̂) = lim
n→∞

yn − h(x̂)

xn − x̂
= lim
n→∞

yn − h(xn)

xn − x̂
+ lim
n→∞

h(xn)− h(x̂)

xn − x̂
= h′(x̂) = 0.

Hence, by l’Hôpital’s Rule, limx→x̂
g(x)−g(x̂)
(x−x̂)2 = limx→x̂

g′(x)−0
2(x−x̂) = 1

2g
′′(x̂) and,

using (2) once more,

lim
n→∞

h(xn)− h(x̂)

(xn − x̂)2
= lim
n→∞

h(xn)− yn
(xn − x̂)2

+ lim
n→∞

g(xn)− g(x̂)

(xn − x̂)2
=

1

2
g′′(x̂),

2This follows, for example, from [1, thm. 19] (used with f = h′) which says that: for any
real-valued continuous function f defined on a set P ⊂ R of positive measure there exists a
C1 function g : R→ R which agrees with f on an uncountable set.
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where the first equation is justified by yn = g(xn) and h(x̂) = g(x̂). But this

contradicts the assumption on h that limx→x̂
|h(x)−h(x̂)|

(x−x̂)2 =∞.

To see that g−1 intersects only finitely many sets Dj , by way of contradic-
tion, assume that there is an infinite set {jn : n < ω} such that g−1∩Djn 6= ∅.
For n < ω choose 〈xn, yn〉 ∈ g−1∩Djn . Then g(yn) = xn for all n < ω. Choos-
ing a subsequence, if necessary, we can assume that limn→∞ xn = x̂ ∈ P .

Then, ŷ
def
= limn→∞ yn = limn→∞(yn − h(xn)) + limn→∞ h(xn) = h(x̂) and

also g(ŷ) = limn→∞ g(yn) = limn→∞ xn = x̂. Since, by the assumptions from
Proposition 3, h′(x̂) = 0 we obtain

1 = lim
n→∞

g(yn)− g(ŷ)

yn − ŷ
· yn − ŷ
g(yn)− g(ŷ)

= lim
n→∞

g(yn)− g(ŷ)

yn − ŷ
· lim
n→∞

yn − h(x̂)

xn − x̂
= g′(ŷ) · h′(x̂) = g′(ŷ) · 0 = 0,

a contradiction.

It is also worth to notice here, that if h : R → R is a C1 homeomorphism

and P is a perfect set such that h′′(x̂) = limx→x̂
h′(x)−h′(x̂)

x−x̂ = ∞ for every

x̂ ∈ P , then a small modification of the above proof gives a D2 continuous
function F : R2 → R with D(F ) = h � P . This remark is of interest here,
since such an h is easily constructed with standard calculus tools, see e.g. [6,
Example 4.5.1]. However, as mentioned above, for such an h, neither can P
have positive measure, nor can we have h′(x) = 0 for more than finitely many

points x from P . So, in the modified argument for g, the fraction h(xn)−h(x̂)
(xn−x̂)2

would need to be replaced with h(xn)−[h′(x̂)(xn−x̂)+h(x̂)]
(xn−x̂)2 . Moreover, the same

argument that we used to show that g /∈ D2 would need to be repeated for
g−1, however, this would require more restrictions in the definition of the sets
Dj to allow for the reversed role of the variables x and y.

3 Proof of Proposition 3

Function h described below is a minor modification of a map f from [1, thm.
18].

Let ε ∈ (0, 1) be such that M < 1−ε and let K be a symmetrically defined
Cantor-like subset of [0, 1] of measure 1 − ε. More precisely, the set K is
defined as K =

⋂
n<ω

⋃
s∈2n Is = [0, 1] \

⋃
s∈2<ω Js, where: 2n denotes the set

of all sequences from n = {0, 1, . . . , n − 1} into 2 = {0, 1}; 2<ω =
⋃
n<ω 2n
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is the set of all finite 0-1 sequences; I∅ = [0, 1], and, for any s ∈ 2n, Js is
an open interval of length ε

3n+1 sharing the center with Is, while Iŝ 0 and Iŝ 1

are the left and right component intervals of Is \ Js, respectively. Note that
|Js| = ε

3n+1 <
1

3n+1 < |Is| ≤ 1
2n for every s ∈ 2n, so the choice of Js is always

possible. Clearly the set K has the desired measure of 1 −
∑
s∈2<ω |Js| =

1−
∑
n<ω 2n ε

3n+1 = 1− ε.
For every s ∈ 2n let fs be a function from R onto [0, 1/(n+ 1)] defined as

fs(x) = 2
(n+1)|Js|dist(x,R \ Js), where dist(x, T ) = inf{|x− t| : t ∈ T} denotes

the distance from x to T . Then, the function h0 =
∑
s∈2<ω fs : R → [0, 1] is

continuous and our C1 function h : R → R is defined as h(x) =
∫ x
0
h0(t) dt.

Note that h is strictly increasing on [0, 1].
Let P be an arbitrary perfect subset of K of measure M , which is disjoint

with the set of all endpoints of the intervals Js, s ∈ 2<ω. We will show that h
and P are as required.

Clearly, for every x̂ ∈ P ⊂ K we have h′(x̂) = h0(x̂) = 0. To see the other
condition, first notice that for n > 1/ ln(4/3)

if x̂, x0 ∈ K ∩ Is for s ∈ 2n and x̂ 6= x0, then |h(x0)−h(x̂)|
(x0−x̂)2 ≥ ε

6
(4/3)n

(n+1) . (3)

To argue for (3), choose the largest m < ω such that x̂, x0 ∈ It for some
t ∈ 2m. Then m ≥ n, x̂ and x0 are separated by the interval Jt, and

|h(x0)− h(x̂)|
(x0 − x̂)2

=
|
∫ x0

x̂
h0(t) dt|

(x0 − x̂)2
≥
|
∫
Jt
h0(t) dt|
|It|2

=

1
2 |Jt|

1
(m+1)

|It|2
≥

1
2

ε
3m+1

1
(m+1)

(1/2m)2
.

Hence, |h(x0)−h(x̂)|
(x0−x̂)2 ≥

1
2

ε

3m+1
1

(m+1)

(1/2m)2 = ε
6
(4/3)m

(m+1) ≥
ε
6
(4/3)n

(n+1) , as required, where

the last inequality holds, since the function f(x) = (4/3)x

x+1 is increasing for

x > 1/ ln(4/3), having derivative f ′(x) = (4/3)x[ln(4/3)(x+1)−1]
(x+1)2 .

Next, notice that

if s ∈ 2n, x ∈ Js, and x0 is an endpoint of Js, then |h(x)−h(x0)|
(x−x0)2

≥ 3n+1

4(n+1)ε .

(4)
To argue for (4), let x1 be the midpoint between x0 and x. Then h0 is linear
on the interval between x0 and x1 with the slope ± 2

(n+1)|Js| . Hence, indeed,

|h(x)− h(x0)|
(x− x0)2

>
|h(x1)− h(x0)|

4(x1 − x0)2
=

1
2 (x1 − x0)2 2

(n+1)|Js|

4(x1 − x0)2
=

3n+1

4(n+ 1)ε
.

Finally, fix an x̂ ∈ P . We need to show that limx→x̂
|h(x)−h(x̂)|

(x−x̂)2 = ∞. For

this, we fix an arbitrarily large N and show that |h(x)−h(x̂)|(x−x̂)2 ≥ N for the points

x close enough to x̂.
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Let n0 be such that min
{
ε
6
(4/3)n

(n+1) ,
3n+1

4(n+1)ε

}
≥ 4N for all n ≥ n0 and let

s ∈ 2n0 be such that x̂ ∈ Is. Notice that x̂ belongs to the interior U of Is, as

x̂ ∈ P . Hence, it is enough to show that |h(x)−h(x̂)|(x−x̂)2 ≥ N for every x 6= x̂ from

U . So, fix such an x.

If x ∈ K, then |h(x)−h(x̂)|(x−x̂)2 ≥ N follows immediately from (3). So, assume

that x /∈ K. Then x ∈ Jt for some t ⊃ s. Let x0 be the end point of Jt between
x and x̂. Notice, that x0 6= x̂, since x̂ ∈ P . Then, since h is increasing on
[0, 1], properties (3) and (4) imply

|h(x)− h(x̂)|
(x− x̂)2

=
|h(x)− h(x0)|

(x− x0)2
(x− x0)2

(x− x̂)2
+
|h(x0)− h(x̂)|

(x0 − x̂)2
(x0 − x̂)2

(x− x̂)2

≥ 4N
(x− x0)2

(x− x̂)2
+ 4N

(x0 − x̂)2

(x− x̂)2
≥ N,

finishing the proof.
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