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STRICTLY MONOTONE FUNCTIONS ON
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LYAPUNOV FUNCTIONS

Abstract

We consider a real function f of a real variable such that, for every
point x of the preimage f−1(D) of a set D ⊆ R, f is strictly monotone at
x, and give sufficient conditions of strict monotonicity of f on f−1(D).
In particular, we prove that a differentiable function f on an open in-
terval, whose derivative is strictly negative on f−1(D), where D ⊆ R is
an open set, is strictly decreasing on f−1(D).

The latter result has applications in stability theory of differential
equations on RN . The first application provides Lyapunov functions
V for preimages under V of closed sets. The second application is a
generalization of the Lyapunov stability theorem, in which the role of
the asymptotically equilibrium point is played by V −1(−∞, c0], where
V is a Lyapunov function for V −1(−∞, c0], and all sublevel sets of V are
assumed to be compact. Moreover, due to compactness, all solutions of
the differential equation are global to the right.

The second application is also a generalization of a boundedness
result from Geophysical Fluid Dynamics; in particular, it proves rigor-
ously that all trajectories of the famous Lorenz system eventually enter
a compact set.
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1 Introduction.

The purpose of the paper is to present two new monotonicity theorems for real
functions of a real variable, Theorems 3.1, and its corollary, Theorem 3.2, and
some applications of Theorem 3.2 to stability theory of ordinary differential
equations (ODEs) on RN (Theorems 4.2 (4), and 4.3, and Corollary 4.4). The
more general version of Theorem 4.3, Theorem 4.1, is also presented, because
its proof is easier to follow, and Theorem 4.3 is an immediate consequence of
Theorem 4.1 and Theorem 4.2 (4).

The following monotonicity result is well–known from elementary calculus:

Theorem 1.1. Let I ⊆ R be an open interval and f : I → R a differentiable
function on I. If f ′ < 0 on I, then f is strictly decreasing on I.

A direct consequence of Theorem 1.1, well–known in stability theory of
ODEs, is that a strict Lyapunov function V for an equilibrium point x̄ of
a given ODE is strictly decreasing along the trajectories of the ODE. The
monotonicity of V along the trajectories is further used to prove the asymptotic
stability of x̄, i.e. the strong part of the famous Lyapunov’s Stability Theorem
(LST) (for definitions and more details, see Section 2).

In this paper, we present two generalizations of Theorem 1.1: Theorem
3.1 and Theorem 3.2. Theorem 3.2 states that if a differentiable function f
is strictly negative on the preimage f−1(D) of an open set D ⊆ R, then f is
strictly decreasing on f−1(D). In Theorem 3.1 we prove that f remains strictly
decreasing on f−1(D), even if we weaken the regularity of f such that f is
Darboux, right–continuous, and strictly decreasing at x for all x ∈ f−1(D).
Since Theorem 3.2 follows immediately from Theorem 3.1, it is sufficient to
prove only the latter one.

Other generalizations of Theorem 1.1 can be found e.g. in [2, Chapter 11],
[12, Chapter 5], [4], [1, Chapter 5] and [13, Chapter 7]. To our knowledge,
all these generalizations conclude that f is monotone (strictly or not) on the
whole domain of f , and none of them involves preimages of open sets.

As we shall see in Section 4, Theorem 3.2 has applications to stability
theory of ODEs (Theorem 4.2 (4) and Theorem 4.3) which remind us the pre-
viously mentioned applications of Theorem 1.1. However, this time, Lyapunov
functions correspond to closed sets instead of equilibrium points. Theorem 4.2
(4) says that if a given ODE of vectorfield f has a strict Lyapunov function V
for the set V −1(F ), where F ⊂ R is a closed set, then V is strictly decreasing
along the trajectories of the ODE (it is assumed that the solutions of (1) are
uniquely determined by initial conditions, and that the domains of f and V
are equal). If, in addition, we assume that F is of the form V −1(−∞, c0] and
the sublevel sets of V , i.e. the sets of the form V −1(−∞, c), are all compact,
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then all trajectories of the ODE eventually enter every open neighborhood of
V −1(F ) of the form V −1(−∞, c) where c > c0 (Theorem 4.3). Moreover, they
will ultimately enter and remain permanently in a compact neighborhood of
V −1(F ) of the form V −1(−∞, c], with c > c0, proving that all solutions are
global to the right (Corollary 4.4). Theorem 4.3 is a generalization of the
strong part of LST, in which the compact set V −1(−∞, c0] of Theorem 4.3
plays the role of the asymptotically stable equilibrium point of LST. Notice
that in LST, before proving asymptotic stability, one proves stability of the
equilibrium point. In Theorems 4.1 and 4.3, since we lack the stability part,
we need to assume the boundedness (compactness) of the sublevel sets of V
(hypothesis (2)).

A differential system (1) (see § 2.3) for which every component of its vec-
torfield is a polynomial in its variables, of degree less than or equal to two,
and at least one component of the vectorfield is a polynomial of degree two is
called a quadratic system. Theorem 4.3 was previously known in Geophysical
Fluid Dynamics ([9, 5]) for the particular class of quadratic systems (3), called
forced dissipative systems (see the first two examples of Section for more de-
tails). The corresponding strict Lyapunov function was also quadratic. The
novelty of Theorem 4.3 is not only its more general hypothesis, but also the
rigor of its proof (previously [9, 5], it was considered as ”evident” that the strict
Lyapunov function V is strictly decreasing along trajectories if its derivative
along them, d

dtV φ(t,x), is strictly negative outside the region bounded by an
ellipsoid; see also Remark 2.2).

Theorems 4.1 and 4.3 give sufficient conditions for the ω–limit set (see
§ 2.5 for the definition) of the solutions of a differential system to be included
in a certain set. A related result is the LaSalle invariance principle (LSIP)
[8], [6, Lemma 11.1]. There are, however, some differences between the above
mentioned Theorems and LSIP. Thus, regarding the assumptions:

a) The inequality defining the Lyapunov function is non–strict in LSIP, and
strict in our theorems.

b) The set G on which this inequality holds is arbitrary in LSIP, while in
our theorems G is the complement of a certain closed set,

G = RN \ V −1(−∞, c0].

c) In LSIP, the solutions of the differential system must be contained by G
for all positive times, while our theorems do not have such a restriction.

The differences between the conclusions: in LSIP the solutions x(t) of the
differential system would tend, as t → ∞, to the union of all solutions that
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remain in the set {x ∈ clG : ∇V · f(x) = 0} on their maximal interval of
definition, while in our theorems they tend to the closed (and bounded) set
V −1(−∞, c0]. Unlike in [6, Lemma 11.1] we do not need to assume that the
solutions are defined for all t ≥ 0, see Corollary 4.4.

2 Preliminaries.

2.1 By I(x, δ), where x ∈ R and δ > 0 we denote the interval (x− δ, x+ δ).
Given a set A ⊆ R, and a point x ∈ A, the function f : A→ R is called strictly
decreasing at x if there is a δ > 0 such that f ≥ f(x) on (x − δ, x) ∩ A and
f ≤ f(x) on (x, x + δ) ∩ A. When we need to specify also the set on which
the above inequalities hold, we shall say that f is strictly decreasing at x on
I(x, δ). Similarly, we define f strictly increasing at x.

2.2 If A and B are open subsets of R or RN , then C1(A,B) is the set
of continuously differentiable functions from A to B; C0(A,B) is the set of
continuous functions from A to B. For V in C1(RN ,R), ∇V is the gradient
of function V . If u and v are vectors in RN , then u · v denotes their canonical
scalar product. The closure of a set U ⊂ RN is denoted by clU .

2.3 In the paper we consider the autonomous ordinary differential equation
on RN (also called differential system on RN )

ẋ = f(x) (1)

defined by a function f ∈ C1(W,RN ), called the vectorfield of (1), where W
is an open subset of RN . Under these conditions, the solutions of (1) are
uniquely determined by initial conditions. For every x ∈ W there exists a
unique nonextendible solution φ(·,x) : Ix ⊆ R→W of equation (1) such that
φ(0,x) = x, defined on a maximal open interval Ix. Since (1) is autonomous,
one may assume without loss of generality that 0 ∈ Ix = (t−(x), t+(x)). The
image of the function φ(·,x) is called the trajectory of (1) through x at t = 0.
The independent variable t is called time due to physical applications.

The function φ : Ω→W , where Ω = {(t,x) ∈ R×W |t ∈ Ix}, is called the
flow of (1), and has the following basic properties [7]:

(φ 1) φ(0,x) = x, for all x ∈W ;

(φ 2) φ(t, φ(s,x)) = φ(t+ s,x), for all x ∈W, s ∈ Ix, and t ∈ Iφ(s,x);

(φ 3) φ is C1.

Regarding property (φ 2), one can show, by using the uniqueness of solu-
tions of (1), that if one side of equality (φ 2) is defined, then so is the other,
and they are equal (see e.g. [7]).
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If t+(x) = +∞ for all x ∈ W , then the flow φ is called global to the right;
if Ix = R for all x ∈W , then the flow φ is called global.

2.4 (The Theorem on extending solutions [7]) Consider system (1). If x(·)
is a solution on a maximal open interval I = (t−, t+) with t+ < +∞, then
given any compact set K ⊂W , there exists τ ∈ I with x(τ) 6∈ K.

2.5 If there exists a set U ⊂ W ⊆ RN such that for every x ∈ W there is
a T > 0 such that φ(t,x) ∈ U for all t ∈ (T, t+(x)), we say that the solutions
of (1) are uniformly eventually enclosed by U . If, in addition, U is compact,
then system (1) is called dissipative [10], and its solutions are called uniformly
eventually bounded.

Given x ∈W , the ω–limit set of φ(·,x) is the set ω(φ(·,x)) of the points y ∈
W for which there exists a strictly increasing sequence {tn} in (t−(x), t+(x))
such that tn → t+(x) and φ(tn,x)→ y when n→∞ ([7, 3]).

2.6 A point x̄ ∈ W is called an equilibrium point of (1) if f(x̄) = 0. The
equilibrium point x̄ of (1) is stable if for every neighborhood V of x̄ in W
there is a neighborhood U of x̄ in V such that if x ∈ U then φ(t,x) ∈ V for all
t ∈ (0, t+(x)) and t+(x) = +∞. If U of the previous definition can be chosen
such that, in addition, limt→+∞ φ(t,x) = x̄, then x̄ is called asymptotically
stable.

2.7 Given (1) of flow φ, and a function V ∈ C1(W,R), it makes sense to
consider for every x ∈ W the composition function V ◦ φ(·,x) : Ix → R. For
convenience, we shall write V φ(t,x) instead of V (φ(t,x)).

2.8 A function V ∈ C1(W \ {x̄},R) ∩ C0(W,R) such that

(1) V (x̄) = 0, and V (x) > 0 for x 6= x̄;

(2) ∇V · f ≤ 0 on W \ {x̄},

is called a Lyapunov function for x̄. If in (2) above the inequality is strict,
then V is called a strict Lyapunov function for x̄.

It is well–known that if x̄ has a (strict) Lyapunov function, then x̄ is
(asymptotically) stable (LST, [7]).

Remark 2.1. If V is a strict Lyapunov function for x̄, then

d

dt
V φ(t,x) = (∇V · f)(φ(t,x)) < 0,

for all t ∈ φ(·,x)−1(W \ {x̄}). Since the solutions of system (1) are uniquely
determined by initial conditions, and the domains of V and f are equal, the set
φ(·,x)−1(W \ {x̄}) is equal to Ix for all x ∈W \ {x̄}. Since Ix is an interval,
Theorem 1.1 can be applied to V φ(·,x); hence, V φ(·,x) is strictly decreasing
on φ(·,x)−1(W \ {x̄}) = Ix for all x ∈W \ {x̄}.
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2.9 More generally, given a set U ⊂ W , we call V ∈ C1(W,R) a strict
Lyapunov function for the set U , if for every x ∈W \ U the function V φ(·,x)
is strictly decreasing on φ(·,x)−1(W \ U).

Remark 2.2. In practice, it is easier to check whether ∇V · f < 0 on W \U ,
i.e. whether d

dtV φ(t,x) < 0 on φ(·,x)−1(W \ U) for x ∈ W \ U . However,
in general, φ(·,x)−1(W \ U) is no more an interval (as happened when U
was an equilibrium point of (1), see Remark 2.1), which makes Theorem 1.1
inapplicable. The strict monotonicity of V φ(·,x) on φ(·,x)−1(W \ U) is now
ensured by theorems of the type of Theorem 3.2.

2.10 Given a function V : I → R, where I ⊆ R, and an interval (a, b) ⊂ R
with a = −∞ or b = +∞, we shall write the preimage of (a, b) under V as
V −1(a, b) instead of V −1((a, b)).

3 The monotonicity results.

Let I ⊆ R be an open interval, f : I → R a function, and D ⊆ R a set. Recall
that f is right continuous on I if it is right continuous at every x ∈ I, i.e. the
limit from the right of f at x exists, and it is equal to f(x).

Theorem 3.1. If f is

(1) Darboux on I,

(2) right continuous on I, and

(3) strictly decreasing at x, for all x ∈ f−1(D),

then f is strictly decreasing on f−1(D).

Theorem 3.2. If f ′ < 0 on f−1(D), and D is an open set, then f is strictly
decreasing on f−1(D).

The theorems 3.1 and 3.2 remain valid after replacing everywhere ”decreas-
ing” with ”increasing”.

4 The applications.

Consider the differential system (1) defined as in § 2.3, and let φ be its flow.

Theorem 4.1. Let W = RN , F ⊂ RN be a closed set, and let M denote RN
or RN \ F . If V ∈ C1(RN ,R) is such that
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(1) for all x ∈M , V φ(·,x) is strictly decreasing on φ(·,x)−1(RN \ F );

(2) for all x ∈ RN , V −1(−∞, V (x)] is compact,

then for every x ∈M , and for every open set U of F such that U ⊃ F , there
is a T ∈ (0, t+(x)) such that φ(t,x) ∈ U for all t > T .

An immediate consequence is that for every x ∈M , and for every open set
U of F such that U ⊃ F , ω(φ(·,x)) ⊆ cl(U).

Theorem 4.2. If U ⊆W and V ∈ C1(W,R) such that

∇V · f < 0 on U (2)

then

(1) V φ(·,x) ∈ C1(Ix,R), for all x ∈W ;

(2) if U is open, then V φ(·,x) is locally strictly decreasing on φ(·,x)−1(U)
for all x ∈W ;

(3) if U = V −1(D), with D ⊆ R open, then V φ(·,x) is strictly decreasing
on (V φ(·,x))−1(D), for all x ∈W ;

(4) if F ⊂ R is closed, then V φ(·,x) is strictly decreasing on (V φ(·,x))−1(R\
F ) = φ(·,x)−1(W \V −1(F )), for all x ∈W , and V is a strict Lyapunov
function for V −1(F ).

Theorem 4.3. Let W = RN . If there exist c0 ∈ R and V ∈ C1(RN ,R) such
that

(1) ∇V · f < 0 on V −1(c0,+∞);

(2) V −1(−∞, a] is compact for all a ∈ R,

then for every x ∈ RN and c > c0 there is a T = T (c,x) > 0 such that t > T
implies V φ(t,x) < c.

Corollary 4.4. If c > c0, then the solutions of system (1) are uniformly
eventually bounded by the compact set V −1(−∞, c]. Consequently, the flow φ
is global to the right (due to Theorem 4.3 and Theorem on extending solutions,
see § 2.4), and ω(φ(·,x)) ⊆ V −1(−∞, c] for all x ∈ RN .

In hypothesis (2) of Theorems 4.1 and 4.3 one may require merely bound-
edness instead of compactness.
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5 Examples.

We give three examples of differential systems (1) to which Theorem 4.3 can
be applied. Therefore, by Theorem 4.3, these systems are dissipative in the
sense of § 2.5.

5.1 The class of forced dissipative systems

The first example is the class of forced dissipative systems, which is impor-
tant in Geophysical Fluid Dynamics. These systems result from the spectral
expansion and truncation of the governing equations of most fluid dynamical
problems [5], and are described by the equations of the form:

ẋi =

N∑
j,k=1

aijkxjxk −
N∑
j=1

bijxj + ci i = 1, 2, . . . , N. (3)

where the real numbers aijk, bij , and ci satisfy the following conditions:

(c1)
∑N
i,j,k=1 aijkxixjxk = 0, for all x1, x2, . . . , xN in R, and not all of aijk

are zero;

(c2)
∑N
i,j=1 bijxixj > 0, for all x1, x2, . . . , xN in R such that at least one xi

is non–zero;

(c3) at least one of the coefficients ci is non–zero.

Following Lorenz’s ideas [9], we take V = 1
2

∑N
i=1 x

2
i ; then

∇V · f = −
N∑

i,j=1

bij(xi + ei)(xj + ej) +

N∑
i,j=1

bijeiej (4)

where (e1, e2, . . . , eN ) is the unique solution of the linear system
∑N
j=1(bij +

bji) ej = ci, i = 1, 2, · · · , N (the solution is unique due to the dissipativity
condition (c2) imposed on the coefficients bij). Denote X = (x1, x2, . . . , xN ) ∈
RN . Relation (4) and the dissipativity condition (c2) show that the set

E = {X :

N∑
i,j=1

bij(xi + ei)(xj + ej) ≤
N∑

i,j=1

bijeiej} (5)

is an N–dimensional solid ellipsoid. Take c0 = maxE V . Then X ∈ E implies
V (X) ≤ c0; by passing to the contrapositive proposition, V (X) > c0 implies
X ∈ RN \ E . In other words, ∇V · f < 0 on V −1(c0,+∞), i.e. hypothesis (1)
of Theorem 4.3 is fulfilled. Hypothesis (2) of Theorem 4.3 is obviously fulfilled
due to the form of V .
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5.2 Lorenz–63 system

The Lorenz–63 system [9]

ẋ = s(y − x),

ẏ = rx− y − xz, (6)

ż = −bz + xy,

where s, r, b > 0, is a simplified model of atmospheric convection. By taking
V = 1

2 (rx2 + sy2 + s(z − 2r)2) (see [11]), and c0 = maxE V , where E is the
full ellipsoid E = {(x, y, z) ∈ R3 : rx2 + y2 + b(z − r)2 ≤ br2}, we can apply
Theorem 4.3. In this case, ∇V · f = s(−rx2 − y2 − b(z − r)2 + br2).

Lorenz–63 system is not of the form (3), but can be converted to it by the
transformation x′ = x, y′ = y, z′ = z − r − s (see [9]).

5.3 Another example

The following system

ẋ = x− y − xz2 − x(x2 + y2)

3
,

ẏ = x+ y − yz2 − y(x2 + y2)

3
, (7)

ż = −z − z3

3
− z(x2 + y2),

is an example of a P–competitive system with an orbitally stable solution
(see [10] for more details). It is not, and cannot be converted into a forced
dissipative system of the form (3), but it is dissipative in the sense of § 2.5.

In this case V = 1
2 (x2 + y2 + z2), and c0 = maxE V , where E = {(x, y, z) ∈

R3 : x2

3 + y2

3 + 2z2 ≤ 1}. Note that ∇V · f = (x2 + y2)
(

1− x2

3 −
y2

3 − 2z2
)
−

z2 − z4

3 .

6 Proofs of the main results.

Proof of Theorem 3.1 by contradiction. Assume there exist t1 < t2
in f−1(D) such that

f(t1) ≤ f(t2). (8)

By hypothesis (3), for ti (i=1,2) there is an εi (i=1,2) such that f is strictly
decreasing at ti on intervals I(ti, εi) ⊂ f−1(D), (i=1,2). Note that these
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intervals are disjoint (otherwise, if t1 < ξ < t2 is a common point, then
f(t1) > f(ξ) > f(t2) contradicting (8)).

We claim that for t1 and t2 there is a point τ1 in f−1(D) such that t1 <
τ1 < t2 and f(τ1) = f(t2). To prove this, we first pick up t′1 > t1 in I(t1, ε1)
and t′2 < t2 in I(t2, ε2). By hypothesis (3) and by inequality (8) we get

f(t′1) < f(t1) ≤ f(t2) < f(t′2).

Since f is Darboux by hypothesis (1), there exists τ1 such that t′1 < τ1 < t′2
and f(τ1) = f(t2). Moreover, τ1 is in f−1(D) because t2 is in f−1(D).

By repeating the reasoning, we construct the sequence {τn}n≥1 in f−1(D)
such that for all n ≥ 1:

τn+1 < τn, t1 < τn < t2, f(τn) = f(t2). (9)

The sequence {τn} ⊂ R is strictly decreasing and bounded in [t1, t2], hence it
is convergent. Let us denote its limit by τ ∈ [t1, t2]:

τn → τ. (10)

Since f is right continuous at τ by hypothesis (2), we have f(τn)→ f(τ), and
because f(τn) = f(t2) for all n, we get f(τ) = f(t2); thus, τ is in f−1(D).
From hypothesis (3), it follows that there is an ε > 0 such that f is strictly
decreasing at τ on I(τ, ε). This fact together with (9) and (10) leads to a
contradiction: on one hand, I(τ, ε) must contain a term τn, for which f(τn) =
f(t2), while, on the other hand, f(t2) = f(τ) > f(τn).

Proof of Theorem 4.2. (1) For every x ∈ W , the function V φ(·,x) is C1

because it is the composition of the two C1 functions V and φ(·,x). (2) For
every x ∈ W , denote v = V φ(·,x). Then, for every t ∈ φ(·,x)−1(U), we have
φ(t,x) ∈ U , and v′(t) = (∇V · f)(φ(t,x)) < 0, by hypothesis (2). Since U is
open and v′ < 0 on the open set φ(·,x)−1(U), v is locally strictly decreasing
on φ(·,x)−1(U). (3) If U = V −1(D), with D open in R, then φ(·,x)−1(U) =
(V φ(·,x))−1(D), and the statement follows from Theorem 3.2 for f = V φ(·,x),
and x ∈ W . (4) If F ⊂ R is closed, then R \ F is open, and the statement
follows from the previously proved statement (3).

Proof of Theorem 4.1 by contradiction. We prove the theorem only
for M = RN (in the other case the proof is similar). Assume that there is an
x0 in RN and an open set U , U ⊃ F , such that for every T ∈ (0, t+(x0)) there
is a t > T with φ(t,x0) ∈ RN \U . Then there is a strictly increasing sequence
{tk}, tk → θ, with θ ≤ t+(x0), such that

tk ∈ φ(·,x0)−1(RN \ U), for all k ≥ 1. (11)
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Since F ⊂ U , it follows that

tk ∈ φ(·,x0)−1(RN \ F ), for all k ≥ 1. (12)

From (12) and hypothesis (1), we deduce V φ(tk,x0) ≤ V φ(t1,x0), for all
k ≥ 1. In other words, for all k ≥ 1, φ(tk,x0) ∈ V −1(−∞, V φ(t1,x0)], which
is a compact set by hypothesis (2). Thus, by replacing {tk} with one of its
subsequences if needed, we may assume that {φ(tk,x0)} converges, and we
denote by x∗ its limit:

φ(tk,x0)→ x∗. (13)

Since U is open, and includes F , statements (11) and (13) imply

x∗ ∈ cl(RN \ U) = RN \ U ⊂ RN \ F,

hence
x∗ ∈ RN \ F. (14)

Since V is continuous, from (13) it follows that

V φ(tk,x0)→ V (x∗). (15)

Now, (15) and the monotonicity of sequence {V φ(tk,x0)} lead to

V φ(tk,x0) > V (x∗) for all k ≥ 1. (16)

In what follows, we will get a contradiction of (16). To this end, we follow the
steps below:
STEP 1: the set φ(·,x∗)−1(RN \ F ) contains 0 and also an s > 0 which can
be taken arbitrarily small; therefore,

V φ(s,x∗) < V (x∗); (17)

STEP 2: there is a k1 such that

V φ(s+ tk,x0) < V (x∗) for all k ≥ k1; (18)

STEP 3: there is a k2 such that

s+ tk ∈ φ(·,x0)−1(RN \ F ) for all k ≥ k2; (19)

STEP 4: take k > max{k1, k2} and m ≥ 1 such that tm > s+ tk; then,

V φ(tm,x0) < V φ(s+ tk,x0). (20)
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Now relations (18) and (20) contradict (16).
Now we prove the steps above. STEP 1. 0 ∈ φ(·,x∗)−1(RN \ F ) follows

from φ(0,x∗) = x∗ (§ 2.3, property (φ1) of a flow) and (14). The existence
of an s > 0 in φ(·,x∗)−1(RN \ F ) follows from the continuity of the function
σ 7→ φ(σ,x∗) at σ = 0 and from the fact that φ(0,x∗) = x∗ ∈ RN \ F , which
is an open set. STEP 2. From STEP1 and the continuity of ξ 7→ V φ(s, ξ)
at ξ = x∗ we deduce that V φ(s,y) < V (x∗) for all y in a sufficiently small
neighborhood of x∗; the statement follows now from (13) and φ(s, φ(tk,x0)) =
φ(s+tk,x0) (§ 2.3, property (φ2) of a flow). STEP 3. The function ξ 7→ φ(s, ξ)
is continuous at ξ = x∗, and φ(s,x∗) ∈ RN \F which is open; hence, φ(s,y) ∈
RN \ F for all y in a sufficiently small neighborhood of x∗. The statement
follows from (13) and φ(s, φ(tk,x0)) = φ(s + tk,x0) (§ 2.3, property (φ2) of
a flow). STEP 4. Pick k0 > max{k1, k2}; since s > 0 can be taken such that
s < θ−tk0 , and {tk} is strictly increasing and tends to θ, there exists a positive
integer m such that s + tk0 < tm < θ. Due to (12) and (19), both tm and
s+ tk0 are in φ(·,x0)−1(RN \F ), set on which V φ(·,x0) is strictly decreasing
(hypothesis (1)).
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