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1 Introduction

In his doctoral thesis in 1899, René Baire writes, “The continuum constitutes
a set of the second category.” This is one of the the statements for which Baire
is best known. However, the development of this idea barely takes a page in
Baire’s 122 page thesis. The goal of Baire’s thesis was to characterize those
functions of two variables which may not be continuous but are continuous in
each variable separately. By the end of his first 27 pages, Baire had shown that
these functions were pointwise discontinuous on each perfect set. (A function
is pointwise discontinuous with respect to a closed set if the set of points of
continuity of the function restricted to this set is dense with respect to the set.)
The term ‘pointwise discontinuity’ may be misleading because such functions
are actually continuous on a large subset of their domain. Baire showed that
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these functions can be represented as pointwise limits of convergent sequences
of continuous functions. Such functions later became known as functions of
Baire class 1, or simply B1 functions. Baire showed that a function can be
obtained as a convergent sequence of continuous functions if and only if it is
pointwise discontinuous on each perfect subset of its domain.

Near the end of Chapter two of his thesis, Baire introduced the concepts
of first and second category. To define first category, Baire relied on Cantor’s
definition of dense (a set is dense if its closure is the whole space [28, vol.
15, p.2] and on P. du Bois–Reymond’s definition of nowhere dense (a set is
nowhere dense if the complement of its closure is dense [DuB] [Ku, Vol I, p.
66]. A nowhere dense set A, has the property that for each open subset of
the space, there is an open ball contained in this set which does not intersect
A). A set is first category if it can be written as a countable union of nowhere
dense sets and is second category set if it is not first category [Bai, p. 65].
(Following Denjoy, we call sets which are the complements of first category
sets, residual [Den3]. If each member of a residual set has a certain property,
we will call that property typical.)

Within a paragraph of introducing the concept of category, Baire con-
cluded that the continuum is not of the first category and made the point that
first category subsets of the real line, R, are small. Baire then showed that
the set of points of discontinuity of a B1 function is first category. Baire ex-
tended these results by showing that the classes of semicontinuous functions,
functions of bounded variation, and derived functions are all contained in the
class B1. Thus, the above classes of functions all have small sets of points of
discontinuity.

It took twenty more years for the generalization of the Baire Category
theorem to be applied to other complete metric spaces.

Theorem 1 (Baire). Let (X, ρ) be a complete metric space, and S be a
countable union of nowhere dense sets in X. Then the complement of S is
dense in X.

The definitions for first category, second category, residual, and typical all
apply in any complete metric space. Baire’s theorem guarantees that the space
cannot be written as a countable union of nowhere dense sets. In fact, the
complement of a first category set is dense in the space and large in the sense
of category, this set is residual. Sometimes, the Baire Category Theorem will
provide a proof for the existence of functions and sets with certain properties
more easily than providing a construction of a function or set with the property.
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2 Spaces of Functions

First consider the space of all continuous functions, f : [0, 1] → [0, 1] denoted
by C(I, I) where I = [0, 1] or simply C if there is no confusion. Distance is
given by the sup metric:

|f − g| = sup
x∈I

|f(x)− g(x)|.

With this metric, C is a complete metric space, so the Baire Category Theo-
rem holds. (Fréchet showed that this space was a complete space in 1904, but
according to Fréchet, this distance between functions was previously consid-
ered by Weierstrass [39].) Around 1930, numerous authors applied existence
arguments via the Baire Category Theorem to prove the existence of func-
tions of real variables exhibiting certain singularities [58, Vol. I, p. 420]. For
example, Mazurkiewicz and Banach used the category method to show the
existence of a continuous function without a finite derivative at any point [64]
and [5, p. 327].

Theorem 2 (Banach). The typical continuous function has no finite deriva-
tive at any point.

The proof of this result involves a sequence of dense open sets which contain
functions with steep slopes. These sets are complements of the sets

En = {f ∈ C : ∃x ∈ [0, 1− 1/n] % |f(x+ h)− f(x)| ≤ nh, ∀h ∈ (0, 1− x)}.

After showing that the sets En are closed, they are shown to be nowhere dense
by showing that their complements are dense. Let ε > 0. For each f ∈ C find
a piecewise linear function g so that |f − g| < ε/2. For any such g, find a
function h so that |h− g| < ε and h /∈ En as follows. Let M be the maximum
absolute value of the slopes of the line segments which constitute g. Choose
m so that mε > n+M . Define

φ(x) = min(x− [x], [x] + 1− x)

The function φ(x) gives the distance from x to the nearest integer. Set h(x) =
g(x) + εφ(mx). Then for each point of [0, 1), h has a one sided derivative on
the right greater than mε+M > n, so h ∈ C −En. Since |g− h| = ε/2. Thus
the complement of En is dense. See for example [75, p.45], [58, Vol. I, p.
240], [88, p.299] [21, p.463].

Weierstrass had previously given an example of a nowhere differentiable
continuous function as a sum of a uniformly convergent series of sawtooth
functions. In this way, the Baire Category Theorem can sometimes be used to



366 Sara Hawtrey Jones

construct the functions for which it is used to show existence. But, as Oxtoby
points out, “if the proof of nowhere denseness is indirect or long and involved,
it may be difficult to obtain an explicit example in this way [75, p.46].”

Use of the Baire Category theorem helps mathematicians prove the exis-
tence of functions that were very difficult to construct and even more difficult
to visualize. For example, during the 1800’s mathematicians could not de-
termine if differentiable nowhere monotonic functions actually exist. In order
for a differentiable function in C to be nowhere monotonic it must be true
that both the sets {x : f ′(x) > 0} and {x : f ′(x) < 0} are dense in [0, 1].
Dini believed that such functions probably existed while du Bois-Reymond
believed that nowhere monotonic functions could not be differentiable. In
1887, Köpcke provided a complicated construction of a differentiable nowhere
monotonic function. This construction was followed by many others given by
Denjoy, Pereno, Hobson, and Köpcke himself [31], [46]. Some of the shorter
constructions were just ten pages long. Then in 1976, C. Weil used of the
Baire Category Theorem to prove the existence of such functions in 2 pages
[90]. The statement of this theorem gives an idea as to how it was proved. See
also, [19], [21, p. 465].

Theorem 3 (Weil). Let ∆0 be the set of differentiable functions F on the
interval [0, 1] such that F (0) = 0 and F ′ is bounded and defined for all x ∈ [0, 1]
and F(x)=0 for a dense subset of [0,1]. For F,G ∈ ∆0 let

ρ(F,G) = sup
x∈[0,1]

|F ′(x)−G′(x)|.

then (∆0, ρ) is a complete metric space in which the typical member is a dif-
ferentiable nowhere monotonic function [90].

In some cases the Baire Category Theorem was the first method used
to show the existence of functions with certain properties. For instance, in
1931, Oxtoby used the category method to show the existence of a transitive
homeomorphism T of the unit square. If f1(x0) = f(x0), and fn(x0) =
f(fn−1(x0)), then a function f is transitive, if for each pair of open sets U
and V in I, there is a positive integer k such that fk(U) ∩ V )= ∅. Some
spaces admit transitive homeomorphisms and others do not. For example, no
automorphism of the unit interval is transitive, but multiplication by e2πiα,
with α irrational, defines a transitive rotation of the unit circle in the complex
plane. An explicit transformation of the complex plane was given by Besicovich
[7], but it is not easy to exhibit one for the closed unit square, let alone one
that preserves area and leaves boundary points fixed. The existence of such
objects was first exhibited by Oxtoby using the category method [76] and [75,
p.70].
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3 Analytic and C∞–functions

Baire’s theorem illustrates the difference between analytic functions and C∞–
functions. To be analytic at x0, the function must have a Taylor series with a

positive radius of convergence at x0. To be a C∞–function, the nth derivative
must be continuous for every n. We can show using the Baire Category Theo-
rem that most C∞–functions are not analytic at any point. This construction
was outlined by Morgenstern in his paper Unendlich oft differenzierbare nicht–
anaytische [73]. (An English version of the proof can be found in [52].)

Theorem 4 (Morgenstern). Typical C∞–functions are not analytic at any
point [73].

Great mathematicians like Lagrange, Babbage, Herschel and Peacock be-
lieved that every function could be represented by a power series. This as-
sumption was held to be true until as late as 1816. It implies that the value of
a function and all of it’s derivatives at a certain point completely determine
the function for every value of x. It was not until Fourier constructed a power
series that converged on only the interval (0, 1) that this assumption was called
into question. This forced a critical reevaluation of what was meant by a func-
tion, an infinite series, and a derivative [18, p.57]. In 1821, Cauchy exhibited
his famous counterexample to Lagrange’s assertion that distinct functions have
distinct power series:

f(x) = e−
1
x2 f(0) = 0.

This function has the same power series at x = 0 as the constant function
f(x) = 0 [29].

Similar analysis can be done if we consider Fourier series rather than Tay-
lor series. In 1876, P. du Bois–Raymond gave an example of a continuous
function defined on [−π,π] with a Fourier series that diverges at a point. The
existence of such a function is easy to prove by using the uniform boundedness
principle whose proof relies on the Baire Category Theorem. In fact, the use
of a category argument in the proof shows that the typical continuous function
has dense Gδ set of points of nonconvergence [21, P. 684]. However, in each
case this set has measure zero. (To complete the picture, in 1926, Kolmogorov
produced an example of an integrable function whose Fourier series diverges
almost everywhere in [−π,π], but it was still unknown if a continuous func-
tion could have a Fourier series which diverged on a set of positive measure.
Lusin conjectured that it could not. In 1966, Carleson proved that “Lusin’s
conjecture” is true. Namely, the Fourier series for every continuous function
on [−π,π] converges almost everywhere [88, p.362] or [21, p.685]. (Carleson
actually showed that the Fourier series for every L2 function converges almost
everywhere.))
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4 Typical Intersection Patterns

This section involves intersection patterns of continuous functions with various
sets. Let us turn to the intersection patterns that a typical continuous function
exhibits. For f ∈ C, let Mf = max{f(x) : x ∈ I0} and mf = min{f(x) :
x ∈ I0}. Theorem 5 provides the typical intersection pattern for a continuous
function with the family of horizontal lines [19, chapter 13] or [24].

Theorem 5 (Bruckner and Garg). To the typical continuous function in
C there corresponds a countable dense subset, Sf , of (mf ,Mf) such that the
set Eα = { x : f(x) = α} is

(i) a single point when α = mf or α = Mf .

(ii) a nowhere dense perfect set when α )∈ Sf ∪ {mf ,Mf}.

(iii) of the form Pα ∪ {xα} where Pα is a nonempty, nowhere dense, perfect
set and xα is isolated in Eα when α ∈ Sf .

The typical intersection pattern for the family of all lines, given below
requires additional notation. For f ∈ C and γ ∈ R, define a function fγ by

fγ(x) = f(x)− γx.

Theorem 6 (Bruckner and Garg). To the typical continuous function in
C there corresponds a countable dense subset, Γf , of R such that

i) if γ ∈ R − Γf , the function fγ has the same intersection pattern as
described in Theorem 5, and

ii) if γ ∈ Γf , the function fγ meets all conditions of Theorem 5 except that
there is a single exceptional level set that contains two isolated points
instead of one.

Typical continuous functions are very much alike with respect to the in-
tersection patterns of their graphs with lines. One such function differs from
another primarily in which heights or directions are exceptional. Theorem 6
has been extended by Wójtiwicz [91]. He replaces the family of lines by the
graphs of certain other two parameter families of functions.

Thus, the graph of a typical continuous function f intersects many lines
in uncountable sets—the intersections are large in terms of cardinality. This
is expected in terms of the results from the first section because the typical
continuous function is nowhere differentiable (therefore, nowhere monotonic,
nowhere of bounded variation and nowhere convex or concave). However the
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intersections are small with respect to porosity. This will help explain why
the behavior of a typical f ∈ C is pathological with respect to differentiation.

The porosity p(x), of a subset E of I at a point x ∈ E is defined as
follows. For h > 0 let l(x, h) be the length of the longest interval contained in
(I − E) ∩ (x− h, x+ h). The quantity

p(x) = lim sup
h→0

l(x, r)

h

is called the porosity of E at x. When p(x) > 0 for all x ∈ E, E is said to
be porous. If E is porous then E is nowhere dense. Also, λ(E) = 0 where λ
represents Lebegue measure, (this follows from Lebesgue’s Density Theorem).
A set E for which p(x) = 1 for all x ∈ E is called strongly porous.

Theorem 7 (Bruckner and Haussermann). For the typical f ∈ C, if g
is differentiable on I, then Eg = { x : f(x) = g(x)} is a strongly porous set
[25].

Theorem 7 clarifies why the typical f ∈ C is nowhere differentiable with
respect to so many notions of generalized differentiability. For example, recall
that f is approximately differentiable at x, if and only if there is a set E having
x as a point of density such that f |E is differentiable at x [21, p. 316]. Any set
E having x as a point of density is nonporous at x. From E, one can select a
countable closed set A = {an} containing x as an accumulation point, with A
nonporous at x. The function f |A can be extended to a differentiable function,
g, on all of I. Thus {α : f(α) = g(α)} is nonporous at x. It now follows from
Theorem 7 that the typical f ∈ C is nowhere approximately differentiable.
More about the intersection patterns of continuous functions can be found in
[26].

5 Iteration of Continuous Functions

In this section, we will see what the Baire Category Theorem has to say
about the behavior of continuous functions with respect to iteration. More
specifically, we want to contrast the behavior of a typical continuous function
with the behavior of a “nice” function that is usually studied in dynamical
systems. We will discuss the dynamics of one dimensional maps, that is, of
continuous maps of [0, 1] onto itself. The study of iteration of a continuous
map arose from the study of populations or processes that evolve discretely
over time. Problems involving how a population or a process develop over time
can be modeled by differential equations if the process occurs continuously;
however, if the process evolves discretely, they involve a difference equation.
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This may happen, for instance, in estimating the size of a future generation
based on the size of the current generation.

Let xn+1 = f(xn) = fn+1(x0) give the size of the (n+ 1)st–generation as
a function of the size of the nth–generation. If 1 is the theoretical maximum
for the size of the population, then f is a continuous function on [0, 1]. The
sequence {fn(x)} is called the orbit of x. A point x is a periodic point if, for
some n, fn(x) = x. The first such n is called the period of x. The set of
subsequential limit points of the sequence {fn(x)} is the ω-limit set of x with
respect to f and is denoted by ω(x, f).

A common difference equation is the logistic difference equation xn+1 =
kxn(1−xn). The family of functions fk(x) = kx(1−x) will be called the logistic
family. Ideally, the population will stabilize or become semistable, meaning
the sequence x0, x1, x2,... will converge to some fixed point or periodic point
of the function f , and this end behavior will be independent of the initial
observed population x0. If this does not happen, perhaps a small error in the
initial estimate of the size of the population will only have a small effect on
the model’s estimated values for future generations. However, in many cases,
these nice outcomes do not occur. Even with simple models like the logistic
family, chaotic behavior can occur. There are many definitions of chaos, but
they all describe maps where initial estimates which are close together have
orbits which spread out or ω–limit sets that are far apart.

One of the first definitions of chaos to appear in the literature was given
by Li and York in a paper entitled “Period Three Implies Chaos” [61]. As
one might guess from the title, the authors developed a notion of chaos and
then proceeded to show that whenever a function f : [a, b] → [a, b] had a point
x ∈ [a, b] so that x had an orbit of period three with respect to f , then f
behaved chaotically. They deemed a function chaotic if there is a large set of
points whose orbits regularly get close together and then far apart.

Definition 1. A set S is scrambled if, for every pair of points x, y ∈ S,
lim sup
n→∞

|fn(x) − fn(y)| > 0, and

lim inf
n→∞

|fn(x) − fn(y)| = 0.

Definition 2. [61] A function f : [0, 1] → R is LY-chaotic if it possesses a
scrambled set containing at least two points [61].

Li and York originally assumed that for each point x in a scrambled set,

lim sup
n→∞

|fn(x)− fn(p)| > 0,

where p is a periodic point of f . The assumption that the orbits of points
need to be a certain distance from a periodic orbit is redundant, for only one
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such point is ever in a scrambled set. Originally Li and York required an
uncountable scrambled set. However, in 1986, Smital and Kuchte proved that
a two point scrambled set implies the existence of an uncountable scrambled
set [59].

The year after Li and York’s article, May published a paper describing
the dynamics of the logistic family [63]. He shows that higher values of the
coefficient k lead to more and more complicated dynamics. For k > 3.57,
the logistic family exhibits LY-chaos. So even functions with simple analytic
structure can be chaotic. After the appearence of May’s article, mathemat-
ical interest in the study of dynamical systems increased and knowledge of
a remarkable theorem of Šarkovskĭi’s became more widespread. He put an
ordering on the positive integers

3 ≺ 5 ≺ 7 ≺ ... ≺ 2 · 3 ≺ 2 · 5 ≺ ... ≺ 22 · 3 ≺ 22 · 5 ≺ ... ≺ 2n ≺ ... ≺ 22 ≺ 2 ≺ 1

and proved:

Theorem 8 (Šarkovskĭi). [80] If f has an orbit of period n, then f has an
orbit for each period m with n ≺ m in the Šarkovskĭi’s order.

Suppose that f has an orbit of period m · 2k where m is an odd integer.
By Šarkovskĭi’s ordering f will also have an orbit of period 3 · 2k+1. So f2k+1

has an orbit of period 3 and a scrambled set by Li and York’s results. Li and
York show that if f has an iterate that has a scrambled set, then f also has
a scrambled set. Hence, we see that if f has an orbit which is not a power of
two, then f has a scrambled set and it is LY–chaotic [41].

Block and Copple extended this stratification and used it to develop a
useful characterization of chaos that is strictly stronger than LY–chaos. Block
and Copple’s notion of chaos uses the notion of turbulence.

Definition 3 (Block and Copple). A function is turbulent if there exist
intervals J and K with at most one point in common, so that

J ∪K ⊂ f(J) ∩ f(K)

Definition 4. A function is BC–chaotic if some iterate of f is turbulent [12].

Block and Copple show that a function is turbulent only when it has pe-
riodic points of all periods, while functions are chaotic whenever they have
periodic points with periods that are not powers of 2. In the proofs of these
results, the overlapping of intervals required by their definition of chaos forces
the periodic points of odd period to exist as f is iterated.

Another measure for chaos is topological entropy. Topological entropy was
first introduced by Adler, Konheim and McAndrew [1] in 1965 as a numerical
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measure for the complexity of an endomorphism of a compact topological
space. It is a generalization of measure theoretical entropy which was already
being used in this capacity by the Russian school. See [1, p. 317] for a
definition. In 1979, Misiurewicz [69] showed that a continuous map is BC–
chaotic if and only if it has positive topological entropy, h(f) > 0. The
easier half of the proof was given by Bowen and Franks [17] in 1976. (We
have included a discussion of topological entropy not because we use this
notion extensively, but because the language of entropy is used in the literature
rather than BC–chaos. Rather than saying that a function is chaotic in the
sense described by Block and Copple, authors will often write h(f) > 0, even
though they use the properties of turbulence to obtain their results.)

Each of the definitions of chaos discussed thus far have derived their defi-
nitions from the separation of trajectories of points or the mixing of intervals
under iteration. Bruckner and Ceder took a different approach. They consid-
ered the class K of compact subsets of the interval [0, 1], furnished with the
Hausdorffmetric, and studied the map ωf : I → K defined by ωf (x) → ω(x, f)
[23]. If we look at the class of all ω–limit sets for a given function f , calling it
Ω(f), as a subset of K, then Ω(f) is a closed subset of K [14].

Applying the restriction that the function ωf : I → K is continuous is very
restrictive, for this implies that each ω–limit set for f is a fixed point or a
periodic point with period 2. However, looking at the Baire class of ωf turns
out to be a fruitful measure of chaos. It can be shown that ωf is always in the
second Baire class, B2, where B2 is the set of functions that can be obtained
as pointwise limits of members of B1. We will call functions f with ωf /∈ B1,
ω–chaotic. Bruckner and Ceder showed that their notion of chaos is strictly
intermediate to LY-chaos and BC-chaos [23].

Theorem 9 (Bruckner and Ceder). Let f ∈ C(I, I). Then

1. ωf ∈ B2,

2. If f is not LY-chaotic, then ωf ∈ B1 (but the converse fails),

3. If ωf ∈ B1, then f is not BC–chaotic (but the converse fails),

Or simply,
BC–Chaos ⇒ ω–chaos ⇒ LY–Chaos.

(It is interesting to note that for the functions from [0, 1] into K with the
Hausdorff metric, the Borél and Baire classes coincide for finite ordinals. The
only thing needed to show this is an extention of the Tietze extension theorem
to functions in this class. Namely, if F1, ..., Fn are mutually disjoint nonempty
closed subsets in [0, 1], and Y1, ..., Yn are in K, then there exists continuous
functions f : [0, 1] → K such that f(Fi) = Yi for all i.)
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For the typical continuous function, ωf maps each of the points in a residual
set of full measure to its own Cantor set [3]. Since all of these points are getting
mapped to Cantor sets, which are all contained in a zero measure set, the map
ωf is going to be continuous at these points. Hence, “for the typical continuous
function f , the map x → ω(x, f) is continuous at the typical point x [60].”

This is not the ω–limit structure that is generally seen when studying
analytic functions like those in the logistic family. In fact the ω–limit sets
for these types of functions can be described using the language of attractors,
a notion closely related to ω–limit set. An attractor is a set which contains
the ω–limit sets for a large subset of I, and each point of the attractor plays
a crucial role. The set of points whose ω–limit set lies within the attractor
is called the basin of attraction. When we say that the basin of attraction
must be large, we measure large either in terms of Lebesgue measure or Baire
Category. We want the attractor to be the smallest set that will have a basin of
attraction of the same size. Specifically, we have the following two definitions.

Definition 5. A closed set A is an attractor for f if

1. The realm of attraction, ρ(A) = { x : ω(x, f) ⊂ A} has positive measure.

2. There is no strictly smaller set A′ ⊂ A so that λ(ρ(A)) = λ(ρ(A′)).

Definition 6. A closed set A is a topological attractor for f if

1. The realm of attraction, ρ(A) = { x : ω(x, f) ⊂ A} is second category.

2. There is no strictly smaller set A′ ⊂ A so that ρ(A)\ρ(A′) is first cate-
gory.

By considering attractors, we are asking the question, “what is the small-
est set we can find for which there a positive probability that the ω–limit set
for an arbitrary point chosen from I will be contained in this set?” ¿From
the experimental scientists’ point of view, this is the logical question, for they
are interested in the likelihood of a certain outcome. If we require our func-
tion to be smooth in a certain sense, we can predict the type and number of
attractors. Researchers discovered that for the unimodal functions that were
being studied, most points were being attracted to the same ω–limit set. They
called this set the attractor for the function. The attractor always turned out
to be a periodic point, a transitive periodic interval, or a Cantor–like set.

The study of iterated maps has a long history. Poincáre made some of
the first contributions in the 1880’s while studying the iterates of maps of
the circle. In the 1910’s, Fatou and Julia studied the behavior of iterates of
analytic maps [37], [38], and [53]. They showed that if f is a polynomial map,
then only a finite number of its periodic points can be topological attractors. In
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particular, Fatou showed that each map in the logistic family fk(x) = kx(1−x)
with k ∈ [0, 4] has at most one topological attractor see [67].

Scientists found very complicated dynamics for even these well behaved
families of functions [63]. However, it seemed there was always an attractor
which attracted almost every and residually many of the points in I. Em-
pirical evidence suggests that smoothness restrictions on a function will limit
the type and number of attractors; determining these smoothness conditions
has stimulated research. Recent papers that relate to this question include
[15], [16] and [48]. In particular, the relationship between the topological and
measure theoretical attractors is not completely understood. The definitions
of attractors referred to are not used consistently throughout the early lit-
erature, so it is sometimes difficult to relate different authors’ results. With
the definition given, mathematicians have shown that the logistic family has
unique topological and measure theoretical attractors [16]. This behavior does
not occur in every unimodal continuous map, so some feature of the logistic
family had to imply this desirable behavior. In 1932, Denjoy introduced the
concept of a wandering interval [30].

Definition 7 (Denjoy). An subinterval J ⊂ I is a wandering interval if each
of the successive images of J , J, f(J), f2(J), . . . are pairwise disjoint.

Maps in the logistic family as well as all piecewise monotone maps don’t
have wandering intervals, and this is the key to their desirable behavior. In
fact, Denjoy constructed a diffeomorphism f ∈ C1(S1, S1) of the circle, S1,
without periodic points and having a wandering interval J ⊂ S1. However, for
C2 diffeomorphisms of the circle, such wandering intervals cannot exist [30].
In 1963, Schwartz gave another proof of this result [81], but neither Denjoy’s
or Schwartz’s techniques could be applied to the maps of the interval until
Singer, introduced the analytical tool called the Schwartzian derivative,

S(f) =
D3f

Df
− 3

2
(
D2f

Df
)2.

Singer showed that for functions with S(f) < 0, the basin of any periodic
attractor must contain a critical point [83].

In 1979, using this idea and the techniques of Schwartz, Guckenheimer and
Misirewicz, Singer proved the nonexistence of wandering intervals for unimodal
maps with an everywhere negative Schwartzian derivative [81], [42], and [70].
A map f ∈ C3(I, I), f(0) = 0 = f(1), Df(0) > 1, with unique critical point
c, and with S(f) < 0 everywhere except the critical point will be called S–
unimodal . In 1985, Milnor used this result to describe the types of attractors
of S–unimodal maps of I [68]. (Compare the same result in Preston’s book
which uses slightly different language [77].)
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Theorem 10 (Milnor). For S–unimodal maps there is only one attractor,
A, and it has one of the following forms:

1. A is a limit cycle i.e. it is the orbit of a periodic point whose basin has
nonempty interior.

2. A =
⋃p−1

0 fk(J) is the cycle of transitive periodic intervals; ie: fp(J) ⊂
J and fp|J is topologically transitive.

3. A =
∞⋂

n=1

pn−1⋃

k=0

fk(In) is a solenoid; here In is a periodic interval with

period pn → ∞, pn|pn+1, I1 ⊃ I2 ⊃ . . . . We can also describe A as the
closure of the orbit of the critical point.

In each case, the basin of attraction is a residual set B, with ω(x, f) = A
for each x ∈ B. Furthermore, when A is either a limit set or a solenoid then
for almost every point x ∈ I, ω(x, f) = A.

To see how each of these types of attractors occur in the logistic family
read [33]. In general, this is the behavior that a researcher expects to see when
he iterates a function. In case 1, the function may or may not be chaotic. In
particular, if the limit cycle has a period of a power of 2, then the function is
not chaotic; if the limit cycle is not a power of 2, then the function is chaotic.
In case 2, the function is always chaotic. In case 3 the function will be chaotic
if it is not a 2∞–function . A function f is called a 2∞–function if f has a
periodic point of period 2n for each n and no periodic points with period not a
power of 2. This will occur if each of the primes in the solenoid is 2. When this
happens any of the three types of chaos may be possible and the distinction
between the types of chaos can be seen. Bruckner and Ceder describe what
the ω–limit sets, and therefore the attractor in this case, must look like for a
function to be chaotic in each of the three senses decribed above [23].

There are several ω–limit set structures which define chaos. A set M ⊂ I
is a minimal set with respect to f if f(M) = M and M has no proper subset
which is non-empty and invariant relative to f . Notice that ω–limit sets are
invarient under f . A point x is a homoclinic point if there is a periodic
point z with z ∈ ω(x, f) and x ∈

⋂
ε>0

⋃
m≥0 f

m(z − ε, z + ε). That is, for
each neighborhood U(z, ε) of z there is an m so that x ∈ fm(U(z, ε)). See
[12, p.153]. Thus, a homoclinic point is one that tends towards a periodic
point under backward iteration and which lands on the same periodic point
under forward iteration. When f has a homoclinic point x, with an associated
periodic point z, then in every neighborhood of z, there are infinitely many
distinct periodic points [33, p.125]. The set of all periodic points is denoted
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by Per(f). We get the following equivalences by compiling the results from
several authors [79], [69], [11], [84].

Theorem 11. The following are equivalent for each f ∈ C:

1. f is not BC–chaotic,

2. f has zero topological entropy, h(f) = 0,

3. The period of every periodic orbit is a power of 2,

4. There are no homoclinic trajectories,

5. The set of all periodic points of f , Per(f), is a Gδ,

6. Every ω–limit set contains a unique minimal set, and

7. If ω(x, f) is infinite, then ω(x, f) ∩ Per(f) = ∅.

If f is not LY–Chaotic or ω–chaotic, then each of the properties (1)–(7)
hold. However, more can be said in the case of non–LY–chaos. In particular,
the ω–limit sets for f will either be finite periodic orbits or Cantor sets. There
is a slight difference between the ω–limit sets for LY–chaotic functions and
those for ω–chaotic functions. Namely, a 2∞–function is ω–chaotic if and only
if it has an infinite ω–limit set with isolated points [23]. Functions with this
property are LY–chaotic, but not every LY–chaotic function has an infinite
ω–limit set with isolated points. A function will be LY–chaotic if and only if
there is not a periodic point between every two points of any infinite ω–limit
set. Functions which are not LY–chaotic also have nice properties with respect
to the set of all ω–limit points, ω(f) = ∪{ω(x, f) : x ∈ [0, 1]}. Gongfu showed
that ω(f) = {x ∈ [0, 1] : limn→∞ f2n(x) = x} whenever f is not LY–chaotic
[40].

We will now contrast the ω–limit sets of smooth, nonchaotic functions
with the behavior of the typical continuous function. Usually, typical continu-
ous functions exhibit considerable pathology in comparison with well behaved
functions; the same is true with respect to iteration. It is rather surprising that
we can say anything about the iterative behavior of a typical continuous func-
tion considering the difficulties encountered when studying ‘nice’ functions.
However, the regularity seen in the intersecton patterns of a typical contin-
uous function also appears in the study of their iterative behavior. Much of
the work done in this area can be found in Dynamics of Typical Continuous
Functions by Agronsky, Bruckner and Laczkovich [3]. They start by describ-
ing the ω–limit structure of a typical continuous function, obtaining several
interesting results along the way. They finish by describing how a typical point
of a typical continuous function behaves. They use the standard method of
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showing that certain subsets of C, with the properties we will describe below,
are residual in C.

The next theorem provides a contrast between the behavior of the typical
continuous function and the behavior of the classes of ‘nice’ continuous func-
tions with respect to smoothness and chaos that we discussed above. Instead
of one or finitely many attractors there are none, because all of the action is
taking place on a null set. Most x have their own ω–limit set, which turns out
to be a Cantor set [3].

Theorem 12 (Agronsky, Bruckner and Laczkovich). The typical contin-
uous function, f has the following properties:

1. For each x in some residual subset of [0, 1] there corresponds a Cantor
set H = ω(x, f).

2. There are c pairwise disjoint such Cantor ω–limit sets, where c is the
cardinality of the continuum.

3. If H is such a Cantor ω–limit set, then f maps H homeomorphically
onto itself and each x ∈ H has a dense orbit in H.

4. The basin of attraction of H, ρ(H) = {x : ω(x, f) ⊂ H}, is nowhere
dense.

In the process of proving this result, the authors discover that for a typical
continuous function f ∈ C every neighborhood of every periodic point contains
periodic points of arbitrarily large periods. Simon proceeded to make this
result more specific by showing that in the neighborhood of every periodic
point of period n there are periodic points of period n · k for every integer k
[82]. From this we can see that the usual notion of an attractive periodic orbit
for such functions is impossible. Further, for each f in this residual set and
for each sequence of intervals {J, f(J), . . . fn−1(J)},

⋃∞
m=0 f

m(J) contains a
Cantor set and is thus contained in a nondegenerate interval. Thus, an interval
cannot contract about a point as one finds in the simple attracting periodic
orbits for the logistic family.

For a typical continuous function, no point has a dense orbit in any interval.
Suppose that the orbit of x, γ(x, f) = {fn(x) : n = 1, 2, 3...} is dense in an
interval J . Then E = {x ∈ J : γ(x, f) is dense in J} would be dense in J and
of type Gδ and hence residual. But then no point of E could be attracted to a
Cantor set, which would violate part (1) of the theorem. Thus the transitive
periodic intervals that are attractors for the S-unimodal do not occur for a
typical continuous function.

A typical function f has no dense orbits. If we iterate a typical point x in I
the sequence gk(x) will appear to move randomly for a while until it enters its
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microscopic attraction to its Cantor set K. The set K may be contained in a
very small interval in which case it will appear to ’the scientist’ that the orbit
approaches a fixed point. If the smallest interval containing K can be ‘seen’,
then ’the scientist’ will observe periodic motion with the period depending on
the accuracy of the computer. It may also be that it takes so long for the orbit
of x to be attracted to K that the limiting behavior is never observed, giving
the appearance of random behavior and the transitive periodic interval that
the ’scientist’ expects to see. For more on the analysis of this discussion see
[3].

Now, for any subset K ⊂ I and f ∈ C let

K∗
f =

∞⋃

n=−∞
fn(K) A(f) =

⋃

x∈I

ω(x, f).

Theorem 13 (Agronsky, Bruckner and Laczkovich). Let K ⊂ [0, 1] be
of first category and full measure. For f ∈ C, let Lf = I −K∗

f . Then for the
typical function f in C:

1. A(f) ⊂ Lf (hence A(f) is of measure zero),

2. ω(x, f) is perfect for every x ∈ K∗
f ,

3. ω(x, f) ∩ ω(y, f) = ∅ for every x, y ∈ K, x )= y, and

4. f is one-to-one on
⋃∞

n=0 f
n(K).

This theorem gives a lot of information about the iterative behavior of the
typical continuous function. A typical point in [0,1] is attracted to a Cantor
set and we may prescribe any residual subset of [0,1] to contain the closure of
the union of all ω–limit sets for all f in a residual subset of C. Within the
proof we find that for a typical continuous function f , the set of fixed points
of fn, Fix(fn), is nowhere dense and perfect. Simons shows that this set is
actually bilaterally strongly σ–porous [82]. He gets as corollaries for typical
continuous functions f ,

1. The set of periodic points of period k is dense and relatively open in
Fix(fk),

2. The set of periodic points of period k is dense in itself, and

3. The set of periodic points of period k is not closed for every k > 1.

We see that the typical continuous function does not have an attractor.
A(f) does contain the ω–limit sets of a full measure subset of I. However, no
set has ω(x, f) equal to A(f). In fact a subset of A(f), A(f)−H for any of the
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Cantor ω–limit sets H , also attracts a subset of I of full measure. Thus, A(f)
does not satisfy the second criterion for an attractor. No set is an ω–limit
set for any set of positive measure as in the case of nicely behaved functions.
There are no periodic orbits, periodic transitive intervals, or solenoids which
attract a set of positive measure.

Mathematicians sometimes put added restrictions on continuous functions
like monotonicity, differentiability or analyticity to get the behavior that they
desired. Similarly, mathematicians studying iteration of continuous functions
had to put additional restrictions on the functions they were studying in order
to get the results that they desired. One might wonder what the ω–limit
sets for a typical differentiable function or continuously differentiable function
might look like.

Bruckner and Steele approached the behavior of functions under iteration
from a different vantage point. Rather than looking at how the Baire Category
Theorem applied to the space of continuous functions C they look at the space
K of closed nonempty subsets of the unit interval with the Hausdorff metric.
The Hausdorff metric on K is given by

d(E,F ) = inf{r : E ⊂ Vr(F ) and F ⊂ Vr(E)}

where Vr(C) = {y ∈ [0, 1] : dist(y, C) < r}. In the process of trying to un-
derstand ω–limit sets of continuous functions they studied the typical element
of this complete metric space. They found that the typical elements of K are
small Cantor sets which can also be taken to be subsets of the irrationals. Let
K∗ represent this large subset of K. We can also leave out the set

A = {E ∈ K:
there are disjoint portions P and Q of E
and f Lipschitz such that f(P ) ⊃ Q

}.

Giving us K∗ −A as all but a first category subset of K [27].
It has been shown that every nonempty nowhere dense closed set is an ω–

limit set for some continuous function. However, the construction produces a
highly non-smooth function [2]. Given the typical ω–limit set in K, one might
wonder how smooth can the function with this ω–limit set be. Bruckner and
Steele have shown that we cannot even assume that the function with the
typical ω–limit set is Lipschitz [27]. Since ω–limit sets map into themselves
upon iteration, it makes sense to study the behavior of functions that map a
generic element E ∈ K into itself. They show that unless f is the identity on
some portion of E, there is a Cantor subset D ⊂ E on which f is nowhere
Lipschitz. The set D may be nowhere dense in E , but it is large in the sense
that it maps onto all of E while its complement in E maps onto a first category
subset in E. It then follows that f is nondifferentiable on a dense subset of
D of type Gδ, and that f maps its set of points of differentiability in E onto
a first category subset of E. Thus, if E ∈ K∗ − A and is an ω–limit set for
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f , then f : E → E. Suppose that f is not the identity on any portion of E,
then f cannot be Lipschitz on I for there is a Cantor set K ⊂ E such that
f |K is not Lipschitz on any portion of K. Furthermore, f is not differentiable
on a dense Gδ subset of K. It follows that the generic closed set E is not an
ω–limit set for any Lipschitz function or any differentiable function.

6 Kolmogorov’s Theorem

How complicated can a continuous function be? Certainly the examples of
nowhere differentiable functions, the intersection patterns, and the ω–limit
behavior of the typical continuous functions make us believe that functions
f ∈ C[I,R] can be badly behaved. What happens if we look at continu-
ous functions of several variables, f ∈ C[In,R]? Does the possible behavior
become more complex? Sprecher states that, “the increase in the degrees of
freedom with increasing n does not increase the functional complexity, thereby
implying that the “worst” functions of C[I,R] are as ‘bad’ as the ‘worst’ func-
tions of C[In,R] [86]. The meaning of the above statement as well as its proof
are related to Baire’s category theory. Most of the following development is
taken from a series of expository articles by Sprecher and Lorentz [85], [86],
[62].

Hilbert conjectured in his thirteenth problem presented in his famous talk
at the International Congress of Mathematics in Paris in 1900 that, “the equa-
tion of the seventh degree f7 + xf3 + yf2 + zf + 1 = 0 is not solvable with
the help of any continuous functions of only two variables [45].” The stated
function of the seventh degree is general in the sense that it can be obtained
from an arbitrary seventh degree polynomial φ(f) =

∑7
i=1 a1f

i by a series of
algebraic equalities involving functions that use only one variable.

The statement of this problem originated out of the attempts to eliminate
by algebraic means the largest possible number of coefficients from polynomial
equations

∑n
k=0 akx

k = 0, thereby expressing their solutions, regarded as
functions of n+ 1 coefficients as functions of fewer coefficients.

It was Hilbert’s notion that the number of variables of a function
is a useful measure of functional complexity in the following sense:
Consider a continuous function f of n variables, and a class Sm

of continuous functions of m ≤ n variables. If the function f can
be represented as a finite number of sums and superpositions of
functions Sm, and if m is the least natural number for which this
is true, then we can usem as a measure of the functional complexity
of f relative to the class Sm [86].

Here, a superposition means a composition of functions. For instance, let
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f(x, y) = xy. We can write this in terms of a finite number of superpositions
of continuous functions of one variable and the binary operation of addition.
This follows from the observation that

xy =
1

4
(x+ y)2 − 1

4
(x− y)2 = u([a(x) + b(y)]) + v([c(x) + d(y)])

where u(t) = −v(t) = 1
4 t

2 and a(t) = b(t) = c(t) = −d(t) = t are all func-
tions of one variable. Kolmogorov showed that this constructionis possible
for all continuous functions of any number of variables. An improvement of
Kolmogorov’s theorem, given by Hedberg, [44] can be stated as follows.

Theorem 14 (Hedberg). If n ≥ 2 there are real numbers λ1,λ2, . . . ,λn and
continuous functions φ1, . . . ,φ2n+1 ∈ C[I] with the following property: for each
continuous function f ∈ C[In,R] there exists g ∈ C[R] such that

f(x1, . . . , xn) =
2n+1∑

k=1

g(λ1φk(x1) + · · ·+ λnφk(xn))

In this case, hk(x1, . . . , xn) = λ1φk(x1) + · · · + λnφk(xn) is the sum of
functions of one variable, g is a function of one real variable, and f is the
sum of 2n+ 1 functional values of g. In other words, any continuous function
of n variables can be written as a superposition of continuous functions of
a single variable. Thus, Hilbert’s measure of functional complexity does not
distinguish between classes of continuous functions of different numbers of
variables. It is from this theorem that Sprecher made the observation that
the ‘worst’ continuous functions of one variable are as ‘bad’ as the ‘worst’
continuous functions of several variables.

The category method can be employed to prove Kolmogorov’s theorem.
The proof Kolmogorov gives of his theorem is quite technical; using the cat-
egory method eliminates many complicated constructions. In addition, the
category method phrases Kolmogorov’s theorem in a somewhat more general
setting. Namely, λ1,λ2, . . . ,λn can be chosen so that all of the (2n+1)–tuples
of continuous functions (φ1, . . . ,φ2n+1), except a set of first category relative
to the metric space C(I)2n+1, have the stated property [44]. The number of
summands, 2n+ 1, is the best possible. Doss gave a proof for n = 2 in 1963,
but the general case was not proved until 1983 when Sternfeld published an
extensive paper giving insight into Kolmogorov’s theorem [87].

Kolmogorov’s theorem does not hold when we put certain smoothness con-
ditions on the function in addition to continuity. We know that smoothness
conditions provide a useful measure of functional complexity. For instance,
there is an analytic function of three variables that cannot be represented as
a finite superposition of analytic functions of two variables [89]. The earliest
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results along these lines were obtained by Ostrovski in 1920 [74]. He proved
that the analytic function

ζ(x, y) =
∞∑

n=1

xn

ny

cannot be represented as a finite superposition of infinitely differentiable func-
tions of one variable and algebraic functions of any number of variables.

Vituskin developed a functional to determine the complexity of a function
which took into account both smoothness conditions and number of variables.
Unlike Hilbert’s conjecture, this functional could distinguish functions with
differing numbers of variables as follows: Let q = p + a where p is a non–
negative integer and 0 < a ≤ 1. Let Wn

q be the class of p–times continuously
differentiable functions of n variables defined on a closed bounded region of
Rn, whose pth partial derivatives belong to class Lip (α). If we use n/q, with
q ≥ 0, as a measure of the functional complexity of the class Wn

q , then not all
functions with complexity index n/q can be represented by superpositions of
functions with complexity n′/q′ < n/q. For instance, this result says that there
are functions f ∈ C[I3,R] which cannot be represented as a superposition of
continuously differentiable functions of two variables [89]. This is a result that
is close to the one that Hilbert was looking for.

7 Pseudo–arcs and subsets of the plane

The category method has been used in the space of compact subsets of the
plane K, with the Hausdorff metric to determine what typical compact con-
nected subsets of the plane look like. Complicated constructions of curves
that do not contain arcs started to appear at the beginning of the twentieth
century. At the International Mathematics Conference in Cambridge in 1912,
Janiszewski gave a rather sketchy definition of a curve on the plane which con-
tains no arcs. (An arc is any set homeomorphic to an interval, while any one
dimensional continuum, or compact connected Hausdorff–space, is a curve.)
“At that time, the existence of a curve of that kind seemed quite extraordi-
nary [58, p. 30].” As with the case of the nowhere monotonic differentiable
function, the Baire Category Theorem provides and easy proof of existence
when constructions are difficult to visualize.

The typical continuum in the plane is a Janiszewski curve or pseudo–arc.
It can be shown that a residual set (in fact a dense Gδ) of curves in the plane
are pseudo–arcs, and a pseudo–arc does not contain an arc [8]. A pseudo–arc
is defined to be a snakelike, hereditarily indecomposable continuum. A finite
sequence of open sets Gi is an ε–chain of open sets if Gi ∩Gj )= ∅ if and only
if |i − j| ≤ 1 (the Gi intersect each other only if they are adjacent) and the
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diameter of each Gi is less than ε. A set is snakelike if for each ε > 0 there is
a chain of open sets Gi containing the set. Certainly, an arc is snakelike, but
arcs are decomposable. A continuum is indecomposable if it cannot be written
as the union of two proper subcontinua. If P is any point in the interior of
the arc AB then the arcs AP and PB are proper subcontinua such that their
union is all of AB, making the arc AB decomposable. Finally, a property is
hereditary if it is enjoyed by every nondegenerate subspace. In our case, this
means that not only is a pseudo–arc indecomposable, each of its subspaces are
indecomposable. Every two pseudo–arcs are homeomorphic [71]. Thus, like
an arc, a pseudo–arc is homeomorphic to each of its subcontinua. Prior to
Moise’s paper the only known homogeneous nondegenerate locally connected
plane continuum was the simple closed curve. In 1921, Mazurkiewicz had
asked whether any continua other than an arc had the property that is was
homeomorphic to each of it’s subcontinua [65] [58, vol. II, p.225].

To get a picture of what a Pseudo–arc and an indecomposable continuum
look like we need a theorem by Mazurkiewicz in 1927 [66, p.305]. A space is
irreduciblebetween the points a and b, provided it is connected and these two
points cannot be joined by any closed connected set which is different from
the whole space [58, vol. II, p.190].

Theorem 15 (Mazurkiewicz). A complete space X is indecomposable if
and only if X contains three points a, b, and c between every pair of which
it is irreducible.

This theorem suggests an example of a snakelike indecomposable contin-
uum, K, described as follows: Start with three points, a, b, c, in R2. For
n = 0, 1, 2, . . . ,

let C0 be a chain from a to c through b,
let C3n+1 be a chain from b to c through a,
let C3n+2 be a chain from a to b through c,
let C3n+3 be a chain from a to c through b.

In each case, Ck ⊂ Ck+1. Then

K =
⋂

Ck =
⋂

C3n =
⋂

C3n+1 =
⋂

C3n+2.

But,
⋂
C3n is irreducible between a and c,

⋂
C3n+1 is irreducible between b and

c, and
⋂
C3n+2 is irreducible between a and b. Since the continua is irreducible

between each pair of points, it is indecomposable by Mazurkiewicz’s theorem.
Since each iteration places the continua in a smaller chain, it is snakelike. We
can see the first three steps in this iterative process in the picture below [47,
p.141].
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Figure 1. An Indecomposable Continuum

We now have a snakelike indecomposable continuum, but a pseudo–arc
has the additional property of being hereditarily indecomposable. We will
construct a continuum so that each portion has three points, between each
two of which it is indecomposable. The following description was given by
Bing [9], the picture appears in Hocking and Young [47, p. 141], and the
originators of this construction are Möisee [71] and Knaster [56]. If the chain
E = [e1, e2, . . . , eh] is a refinement of the chain D = [d1, d2, . . . , dm], then E
is crooked in D provided that if k − n > 2 and there are links ei and ej of E
with ei ⊂ dn and ej ⊂ dk, then there are links er and es of E with er ⊂ dk−1

and es ⊂ dn+1 and i > r > s > j or i < r < s < j. Figure 2 shows that E is
crooked in D.

Figure 2. E is crooked in D

In the plane let D1, D2, . . . be a sequence of chains between the distinct
points a and b such that for each i:

1. Di+1 is crooked in Di,
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2. No link of Di has a diameter more than 1
i , and

3. The closure of each link of Di+1 is a compact subset of a link of Di.

Then, D =
⋂
Di is a pseudo–arc; that is a snakelike hereditarily indecompos-

able continuum. The following picture depicts a pseudo–arc. Each Di is a
union of links Ui,j and pictured in Figure 3 [47, p. 142]. Notice that D1 is
made from the five links U1,1, .., U1,5 with U1,1 meeting only U1,2, and U1,2

meeting only U1,3, ect., and a is in U1,1 and b ia in U1,5. Next there are 45
open sets U2,1, ...U2,45 as pictured. Any number of subdivisions larger than 4
would have worked to form a pseudo-arc.

Figure 3. A Pseudo–arc

Earlier we stated that the typical continuum is a pseudo–arc. Bing gave a
simple proof for this result using the Baire Category Theorem.

Theorem 16 (Bing). If X is Euclidean n–space or any Hilbert space, then
the typical compact continua is a pseudo–arc.

Proof :We want to show that the set of all pseudo–arcs, non-
degenerate, snakelike, hereditarily indecomposable continua, form
a residual subset of the space of all compact continua with the
Hausdorff metric, K. Let P denote the set of all pseudo–arcs, N
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the set of all nondegenerate continua, S the set of all snakelike
continua, and H the set of hereditarily indecomposable continua.
Then, P = N ∩ S ∩H . We will show that P is dense and each of
N,S,H can be written as a countable intersection of open sets.

Notice first that N is open because the collection of all single-
tons {x : x ∈ X} is a closed subset of K.

Let Fi be the collection of all continua f ∈ K such that f cannot
be covered by a 1/i–chain. If {fj} is a sequence of continua in Fi

such that fj → f0, f0 is also an element of Fi, for if a 1/i–chain
covers f0 it will also cover fj for some j. Hence, Fi is closed. Note
that

⋃
Fi is the set of all nonchainable continua, making S =

⋂
F c
i

a countable intersection of open sets.
Let Gi be the set of all compact continua, g, such that g con-

tains a subcontinua g′ which is the union of two subcontinua g1
and g2 such that g1 contains a point at a distance 1/i or more from
g2 and g2 contains a point at a distance 1/i or more from g1. One
can see that Gi is closed in K, and each element of K not in

⋃
Gi

is a hereditarily indecomposable continua. We have H =
⋂
Gc

i is
the intersection of a sequence of open sets, and P = N ∩ S ∩H is
also a countable intersections of open sets.

To finish showing that P is residual (in fact a dense Gδ) we
need only show that P is dense. Let ε > 0 and g ∈ K. There is
a broken line ab whose distance from g is less than ε/2. Let D be
an ε/2–chain form a to b covering the arc ab. Each element of D
is the interior of a sphere. With a construction similar to the one
given above we can find a pseudo–arc containing a and b, which
is covered by D. The Hausdorff distance between g and h is less
than ε.

Here the Baire Category Theorem gives an easy proof of what a typical
one dimensional subset of the plane looks like. A construction called the Lakes
of Wada is an example of a bounded one dimensional continuum which is the
boundary of three disjoint domains. This example is explained in Hocking
and Young [47, p.143] and is due to Yoneyama [92]. For more information on
Pseudo–arcs see [58, vol. II, p. 213] or [47, p.141].

A snakelike continua becomes circlelike if the a coincides with b and the
first covering circle only meets the last covering circle and the second covering
circle. We can then make the definition of a pseudo–circle to be a hereditarily
indecomposable circlelike continuum. This is just the obvious extension of a
pseudo–arc. In 1982, M. Handel gave an example of a C∞–diffeomorphism
of the plane with a strange attractor that is a pseudo–circle [43]. Thus these
bizarre objects in space are examples of the attactors that we looked at earlier.
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M. Herman gave a modification of Handel’s construction. He constructed a
C∞–diffeomorphism f of the plane with an invariant pseudo–circle, Γ, which
divides the plane into two regions such that f is analytic on the bounded
components of R2 − Γ [44]. The above two facts can be found in [54, p.310].
In 1995, Kennedy and Yorke gave an example of a C∞–diffeomorphism of a
7–manifold which has an invariant set that contains many connected compo-
nents that are pseudo–circles. Compare this to the typical ω–limit sets for a
continuous function on an interval. Notice that the set which contains all of
the ω–limit sets is invariant. Kennedy and York’s example is perturbable in
the sense that for C1 maps sufficiently close to the example map the invariant
set again contains uncountably many connected components most of which
are pseudo–circles. In fact, f has the following features:

1. There exists an invariant set Bf , and a neighborhood U of Bf such that
if fn(x) ∈ U for all integers n, then x is in Bf .

2. There is a point in Bf with a dense trajectory under f .

3. The number of connected components of Bf is uncountable and residu-
ally many of the components are pseudo–circles.

4. For each g in some C1 neighborhood of f , the invariant set Bg has the
same structure as Bf .

The structure of this invariant set resembles the level set structure of the
typical continuous function in section 4 and the typical ω–limit set we saw in
section 5.

Question 1. What do the typical ω–limit sets for continuous functions defined
on the plane look like.

Interest in what happens typically continues to be studied for continuous
functions. For example, see Descriptive mapping properties of typical contin-
uous functions, by Bernd Kirchheim [55], and Typical continuous functions
are virtually nonmonotone, by P. D. Humke and M. Laczkovich [51]. Baire’s
theorem is increasingly being used in other spaces. See for instance, Points
of nondifferentiability of typical Lipschitz functions by D. Preiss and J. Tǐser
[78].

Some of the questions that the Baire category theorem has helped to ad-
dress are: what exactly are the implications of continuity to intersection pat-
terns, differentiability, and ω–limit sets? What does the intersection pattern
of a continuous function with a line look like? What is the difference between
C∞ and analytic? What can subsets of the plane look like? Are continuous
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functions defined on spaces of higher dimension more complex? More refer-
ences, information, and background for all of these topics can be found in
my thesis, as well as more background and applications involving the Baire
Category Theorem [52].
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