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AN EXAMPLE OF A QUASI-CONTINUOUS
HAMEL FUNCTION

Abstract

We say that f : R → R is a Hamel function if f , considered as
a subset of R2, is a Hamel basis of R2. For a Cantor set C ⊂ R we
construct a quasi-continuous Hamel function such that f�(R \ C) is of
Baire class one.

1 Introduction.

Let us establish some of terminology to be used. By R and Q we denote the
sets of all reals and rationals, respectively. The symbol |A| stands for the
cardinality of a set A. The cardinality of R is denoted by c. Ordinal numbers
are identified with the set of their predecessors. No distinction is made between
a function and its graph. The symbol rng(f) denotes the range of f . We say
that C ⊂ R is a Cantor set if C is homeomorphic with the ternary Cantor set
(i.e., C is perfect, nowhere dense and bounded).

A function f : R → R is quasi-continuous (in the sense of Kempisty) at a
point x0 ∈ R if int(U∩f−1(V )) 6= ∅ for all open neighbourhoods U of x0 and V
of f(x0). f is quasi-continuous if it is quasi-continuous at each x ∈ R. Recall
that each quasi-continuous function f : R→ R is pointwise discontinuous, i.e.,
the set C(f) of all continuity points of f is dense in R, and consequently f
has the Baire property. (See e.g. [8].)

We will consider Rn, n < ω, as a linear space over the field Q. For A ⊂
Rn the symbol LIN(A) denotes the linear span of A. Any basis of Rn over
Q will be referred as a Hamel basis. We say that f : R → R is a Hamel
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function if f , considered as a subset of R2, is a Hamel basis of R2. A function
f : A→ R, where A ⊂ R is called linearly independent function if f is a linearly
independent subset of R2.

For f : A→ R, where A ⊂ R, the symbol LC(f) denotes the set of all sums∑k
i=1 qif(xi) such that: k < ω, qi ∈ Q and xi ∈ A for i < k, and

∑k
i=1 xi = 0.

Notice that LC(f) is always a linear subspace of R [9].
If V is a linear space (over Q) and W is a subspace of V , then the symbol

codimV (W ) denotes the codimension of W in V (i.e., the dimension of the
quotient space V/W ).

The class of Hamel functions has been introduced by Krzysztof P lotka
in his Ph.D. Dissertation and studied in [9]–[11], [12], [6], [5], and [2]. In
particular, it is known that every Hamel function is continuous on no non-
degenerate interval [9, Fact 2.3(iii)]. Moreover, since Hamel basis can not be
Borel set, no Hamel function is Borel measurable. (See [6, Remark 5.7(2)].)
In the first result of this note we show that for every non-degenerate interval
J ⊂ R there is a Hamel function f such that f�J is of the Baire class one.
(As usually, we denote the first Baire class by B1.) This answers a question
posed recently by I. Rec law (oral communication). In the second theorem we
construct a quasi-continuous Hamel function. This solves Problem 5.3 from
[6]. Our example is pointwise discontinuous thus Baire measurable, and can
(or not) be Lebesgue measurable. We expand here a method of construction
of measurable Hamel functions introduced in [2].

2 Main Results.

Lemma 1. [3, Lemma 1] Let I = [0, 1] and C be a Cantor set. There exists
a strictly increasing quasi-continuous injection f : I → C. This means, in
particular, that f is of the first Baire class.

Corollary 2. If I ⊂ R is a non-degenerate interval and C is a Cantor set
then there is a strictly increasing quasi-continuous injection f : I → C.

Lemma 3. [12, Lemma 2] Let H1, H2 ⊂ R be Hamel bases. If f0 is a bijection
between R \ H1 and H2, then the function f = f0 ∪ (H1 × {0}) is a Hamel
function.

Theorem 4. For every non-degenerate interval I 6= R there exists a Hamel
function f : R→ R such that f�I is in the first Baire class.

Proof. Let H2 be a Hamel basis which contains a perfect set C and such
that |H2 \ C| = c. (See e.g. [4, Theorem XI.7.2].) By Corollary 2 there exists
a quasi-continuous injection f0 : I → C which is of the first Baire class. Since
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int(R\I) 6= ∅, it contains a Hamel basis. (See e.g. [4, Corollary IX.3.2], p. 214.)
Fix a Hamel basisH1 ⊂ R\I and a notice that |R\(I∪H1)| = c = |H2\rng(f0)|.
Let f1 : R \ (I ∪H1)→ H2 \ rng(f0) be a bijection and f2 = H1 × {0}. Then
Lemma 3 implies that f = f0 ∪ f1 ∪ f2 is a Hamel function.

Theorem 5. Let J be an open interval. If f : J → R is a derivative, then it
is not linearly independent function.

Proof. We repeat the proof of [9, Fact 2.3(iii)]. Fix a ∈ J and h > 0 with
(a−h, a+h) ⊂ J . Let g : [0, h)→ R be defined by g(x) = f(a−x) +f(a+x).
Notice that g is a derivative. Indeed, if F is a primitive of f then G : x 7→
−F (a − x) + F (a + x) is a primitive for g. Hence g is Darboux. Now, two
cases are possible.

Case 1. g is constant on [0, h). Then for any x ∈ (0, h) we have

〈a− x, f(a− x)〉+ 〈a+ x, f(a+ x)〉 = 〈2a, g(x)〉 = 〈2a, g(0)〉 = 2〈a, f(a)〉

thus f is not linearly independent.
Case 2. g is not constant. Then rng(g) is a non-degenerate interval and

therefore there are x1, x2 ∈ (0, h) and q1, q2 ∈ Q \ {0} such that x1 6= x2 and
g(xi) = g(a) + qi = 2f(a) + qi for i = 1, 2. But then

〈a− xi, f(a− xi)〉+ 〈a+ xi, f(a+ xi)〉 = 〈2a, g(xi)〉

for i = 1, 2, and

q2〈2a, g(x1)〉 − q1〈2a, g(x2)〉 = 2(q2 − q1)〈a, f(a)〉,

which implies that f is not linearly independent.

Problem 1. Does there exist a Hamel function f : R → R such that f�J is
Darboux Baire one for some non-degenerate interval J?

Lemma 6. [9, Example 2.2] If A ⊂ R, f : A→ R is an injection and rng(f)
is linearly independent, then f is a linearly independent function.

Theorem 7. [5, Theorem 6] Suppose A ⊂ R spans R and f : A → R is a
linearly independent function. Then f is extendable to a Hamel function iff
codimR2(LIN(f)) = |R \A|.

Lemma 8. [5, Lemma 6] Suppose A ⊂ R and f : A → R is a linearly
independent function. Then codimLIN(A)×R(LIN(f)) ≥ codimRLC(f).

Corollary 9. Let A ⊂ R span R, H ⊂ R be a Hamel basis and f : A→ H be
an injection. If |R \ A| = c = |H \ rng(f)|, then f is extendable to a Hamel
function on R.
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Proof. Lemma 6 implies that f is a linearly independent function. Since
|H\rng(f)| = c, |codimRLC(f)| = c and Lemma 8 yields codimR2(LIN(f)) = c.
Thus codimR2(LIN(f)) = |R \ A|, and by Theorem 7, f is extendable to a
Hamel function.

Theorem 10. Let C ⊂ R be a Cantor set. There exists a quasi-continuous
Hamel function f : R→ R with f�(R \ C) ∈ B1.

Proof. Let {In : n < ω} be a sequence of all open intervals with rational
end-points and let {Pn,m : n,m < ω} be a sequence of perfect sets such that

1. if Pi,j ∩ Pn,m 6= ∅ then 〈i, j〉 = 〈n,m〉;

2.
⋃

m Pn,m ⊂ In for each n < ω;

3. P =
⋃

n

⋃
m Pn,m is a linearly independent set [7, Theorem 1]. (See also

[1, Lemma 3.3].)

Let H be a Hamel basis with P ⊂ H. We may assume that |H \ P | = c.
Let J be the family of all components of the set R \ C and let 〈Jn〉n be a
partition of J with C ⊂ cl(

⋃
Jn) for each n. Let Jn = {Jn,m : m < ω}. For

n,m < ω let fn,m : Jn,m → Pn,m be a quasi-continuous increasing injection
as in Corollary 2, hence fn,m ∈ B1. Let f0 =

⋃
n,m<ω fn,m. Then f0 is an

injection from R\C into P . By Lemma 6, f0 is a linearly independent function.
Clearly R\C spans R and |H \ rng(f0)| = c = |C|, thus Corollary 9 yields that
f0 can be extended to a Hamel function f : R → R. Obviously, f�(R \ C) is
of the first Baire class. We will verify that f is quasi-continuous at each point
x ∈ R. This is clear for x ∈ R \ C. Now, fix x ∈ C and δ, ε > 0. There are
n,m < ω for which f(x) ∈ In ⊂ (f(x)− ε, f(x) + ε) and Jn,m ⊂ (x− δ, x+ δ).
Then f(Jn,m) = rng(fn,m) ⊂ Pn,m ⊂ In.

3 Some Final Remarks.

Notice that the function f constructed above is pointwise discontinuous and
therefore it has the Baire property. Moreover, f is different from a Baire
one function on the set C. Thus, if C has Lebesgue measure null then f is
Lebesgue measurable. On the other hand, if C has positive measure, then
an easy modification of the construction of f gives a non-measurable quasi-
continuous Hamel function.

Corollary 11. There exists a quasi-continuous Hamel function which is not
Lebesgue measurable.
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Proof. LetH and P be as in the proof of Theorem 10. Let C ⊂ R be a Cantor
set of positive measure. Let 〈B0, B1, B2〉 be a partition of C onto Bernstein-
like sets sets, hence non-measurable and of size c each. Let 〈H0, H1, H2〉 be a
partition of H \P such that |H0| = |H1| = |H2| = c and the distance between
H0 and H1 is equal to ε > 0. Now, let A = R \ B2 and f : A → H be an
injection such that:

1. f is defined on R \ C as in the proof of Theorem 10;

2. f�Bi is a bijection between Bi and Hi for i = 0, 1.

By Corollary 9, f is extendable to a Hamel function. Let U be the ε/2-
neighbourhood of H0 and D = (f�C)−1(U). Then B0 ⊂ D and B1 ⊂ R \D,
hence D is not measurable, so f�C is non-measurable and therefore f is non-
measurable too.

Problem 2. Does there exist a quasi-continuous Hamel function having Dar-
boux property?
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